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Abstract
The RecA-family recombinase Rad51 is the central player in homologous recombination (HR), the faithful pathway for 
repairing DNA double-strand breaks (DSBs) during both mitosis and meiosis. The behavior of Rad51 protein in vivo is 
fine-tuned via posttranslational modifications conducted by multiple protein kinases in response to cell cycle cues and 
DNA lesions. Unrepaired DSBs and ssDNA also activate Mec1ATR​ and Tel1ATM family kinases to initiate the DNA damage 
response (DDR) that safeguards genomic integrity. Defects in HR and DDR trigger genome instability and result in cancer 
predisposition, infertility, developmental defects, neurological diseases or premature aging. Intriguingly, yeast Mec1ATR​- and 
Tel1ATM-dependent phosphorylation promotes Rad51 protein stability during DDR, revealing how Mec1ATR​ can alleviate 
proteotoxic stress. Moreover, Mec1ATR​- and Tel1ATM-dependent phosphorylation also occurs on DDR-unrelated proteins, 
suggesting that Mec1ATR​ and Tel1ATM have a DDR-independent function in protein homeostasis. In this minireview, we first 
describe how human and budding yeast Rad51 are phosphorylated by multiple protein kinases at different positions to pro-
mote homology-directed DNA repair and recombination (HDRR). Then, we discuss recent findings showing that intrinsic 
structural disorder and Mec1ATR​/Tel1ATM-dependent phosphorylation are coordinated in yeast Rad51 to regulate both HR 
and protein homeostasis.

Keywords  Rad51 phosphorylation · Mec1ATR​ and Tel1ATM · DNA damage response · S/T-Q cluster domain · Intrinsic 
structural disorder · Protein homeostasis

Introduction

During homology-directed DNA repair and recombination 
(HDRR), DSBs are initially resected to generate single-
stranded DNA (ssDNA). This ssDNA is rapidly protected 
by an ssDNA binding protein complex, RPA, which is sub-
sequently replaced by Rad51 to form a right-handed nucleo-
protein filament. This presynaptic filament is essential for 

homology search and strand invasion. A hallmark of the 
Rad51 family recombinases from yeast to mammals is that 
not only are they highly homologous in terms of amino acid 
sequences, but they also behave similarly in vitro. Surpris-
ingly, heterologous expression of fission yeast Rad51 or 
human Rad51 fails to complement the HDRR defects of the 
budding yeast rad51 mutant (Shinohara et al. 1993). Fur-
ther analyses unveiled that Rad51 recombinases do not act 
alone in vivo. Rad51 nucleoprotein filaments are regulated 
via the coordinated actions of diverse Rad51 mediators or 
interacting partners (Kowalczykowski 2015; Prakash et al. 
2009, 2015; San Filippo et al. 2008). It is also noteworthy 
that Rad51 recombinases and their mediators often undergo 
a variety of post-translational modifications (e.g., phospho-
rylation, sumoylation or ubiquitination) in response to DNA 
damage agents, cell cycle cues or other signaling molecules 
(Burger et al. 2019; Cremona et al. 2012; Heyer 2015). Pro-
tein phosphorylation and dephosphorylation play key roles 
in many physiological processes and are often deregulated 
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under pathological conditions. This reversible mechanism 
is mediated by various protein kinases and phosphatases 
through the addition or removal of a phosphate group 
(PO4

3−) of polar amino acids, including serine (S), threo-
nine (T), tyrosine (Y) or histidine (H). In the budding yeast 
Saccharomyces cerevisiae, multiple kinases and their trans-
ducers are involved in coordinating different HR modules 
for repairing DNA lesions in mitosis and meiosis (Chuang 
et al. 2012; Crickard and Greene 2018). Although the strand 
exchange function of Rad51 is critical for repairing sponta-
neous DSBs during vegetative growth, it is repressed during 
meiosis by the meiosis-specific protein Hed1 (Busygina et al. 
2008; Tsubouchi and Roeder 2006). Meiotic Rad51 plays a 
critical role in template choice for HDRR, supporting the 
strand exchange reaction carried out by the meiosis-specific 
RecA family protein Dmc1 to repair the programmed DSBs 
induced by Spo11 (Cloud et al. 2012). Here, we present an 
overview of Rad51 protein phosphorylation in human and 
budding yeast. We also discuss recent findings implying that 
the N-terminal domain (NTD) of yeast Rad51 has dual roles 
in regulating HDRR and Rad51 homeostasis via its intrinsic 
structural disorder and through Mec1ATR​/Tel1ATM-dependent 
phosphorylation.

Human and yeast Rad51 recombinases are 
differentially phosphorylated by multiple 
protein kinases

Human Rad51 has been shown to be phosphorylated by 
three serine/threonine kinases [checkpoint kinase 1 (Chk1), 
polo-like kinase 1 (Plk1), casein kinase 2 (Ck2)] and two 
tyrosine kinases [Abelson tyrosine kinase (c-Abl) and 
mesenchymal-epithelial transition factor (c-Met)] (Chabot 
et al. 2019; Narayanaswamy et al. 2016; Popova et al. 2009; 
Sorensen et al. 2005; Subramanyam et al. 2016; Yata et al. 
2012). The phosphorylation sites on human Rad51 and their 
biological functions in promoting HDRR are summarized in 
Table 1. The key function of Chk1 and its paralog Chk2 is 
to relay DNA damage response (DDR) signals from three 
DNA damage-sensing protein kinases, i.e., ATM (ataxia-
telangiectasia mutated), ATR (ATM- and Rad3-Related), 
and DNA-dependent protein kinase (DNA-PKcs) (Blackford 
and Jackson 2017; Marechal and Zou 2013). DNA-PKcs are 
not present in the S. cerevisiae genome, whereas Mec1 and 
Tel1 are the S. cerevisiae orthologs of mammalian ATR and 
ATM, respectively (Craven et al. 2002). c-Abl is phospho-
rylated and activated by ATM (Wang et al. 2011), whereas 
c-Met signaling is wired into DDR pathways (Medova et al. 
2013). Plk1 plays an important role in the initiation, mainte-
nance, and completion of mitosis (Liu et al. 2017), and it is 
dephosphorylated and inactivated by protein phosphatase 2A 
(PP2A) through the ATM/Chk1 DDR pathway (Hyun et al. 

2014; Lee et al. 2010). Intriguingly, Plk1 and Ck2 act syn-
ergistically during DDR. Plk1 phosphorylates human Rad51 
at serine 14 (S14), which primes subsequent Ck2-mediated 
phosphorylation at Rad51 threonine 13 (T13) and triggers 
Rad51 binding to the forkhead-associated (FHA) domain of 
Nbs1 (Yata et al. 2012). Plk1 also phosphorylates Mre11, 
a component of the Mre11/Rad50/Nbs1 (MRN) complex, 
at S649 during DDR. Mre11-S649 phosphorylation enables 
subsequent Ck2-mediated phosphorylation at Mre11-S688 
to impede loading of the MRN complex onto damaged 
DNA, thereby inhibiting HDRR and premature DNA dam-
age checkpoint termination (Li et al. 2017). Further inves-
tigations are needed to reveal the relationship between the 
Rad51–NBS1 interaction and the formation of Rad51 foci 
during DDR.

Three protein kinases (Mec1ATR​, Tel1ATM and Cdc28cdk) 
are known to phosphorylate budding yeast Rad51 at differ-
ent target sites (Table 1) (Flott et al. 2011; Lim et al. 2020; 
Woo et al. 2020). Cdc28cdk, the catalytic subunit of cyclin-
dependent protein kinase (CDK), is the master regulator 
of mitotic and meiotic cell cycles in S. cerevisiae. Using a 
monoclonal antibody specific for phospho-serines (S*) in 
PXS*P, PXS*PXR/K or S*PXR/K motifs, it was found that 
Cdc28cdk could phosphorylate S125 and S375 of an epitope-
tagged Rad51 (HA-TEV-Rad51) both in vitro and in vivo 
(Table 1). Yeast mutant analyses further revealed that mutant 
non-phosphorylatable Rad51-2A (i.e., Rad51-S125A, S375A) 
and Rad51-2E (i.e., Rad51-S125E, S375E) impair the DNA 
binding affinity of Rad51 and the Rad51–Rad52 interaction 
(Lim et al. 2020). Although these results are important, it is 
noteworthy that the addition of an epitope or fusion protein 
tag(s) to native Rad51 often results in deleterious impacts to 
its normal cellular function and/or unexpected post-transla-
tional modification(s) (CNC and TFW, unpublished results). 
Further investigations are necessary to confirm phospho-
rylation of S125, S375 and S192 (see below) on native Rad51 
protein in vivo using antisera targeted specifically against 
the corresponding phosphorylated peptides. It will also be 
important to determine if these modifications affect other 
biochemical or biological properties of native Rad51 in vivo, 
such as protein stability and nuclear import.

Mec1ATR​ and Tel1ATM preferentially phosphorylate S/T-Q 
motifs, i.e., S and T that are followed by glutamine (Q) 
(Traven and Heierhorst 2005). Mec1ATR​ alone can perform 
most of the consolidated functions of Tel1ATM and Mec1ATR​ 
in S. cerevisiae (Corcoles-Saez et al. 2018; Mallory and 
Petes 2000; Weinert et al. 1994). Yeast Rad51 contains four 
S/Q motifs, i.e., S2Q, S12Q, S30Q, and S192Q. Mec1ATR​ is 
likely responsible for S192 phosphorylation, with S192 being 
indispensable for Rad51 adenosine triphosphate (ATP) 
hydrolysis and DNA-binding activity in vitro as well as 
HDRR in vivo (Flott et al. 2011). Several lines of evidence 
indicate that the three S/Q motifs (S2Q, S12Q, S30Q) in yeast 
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Rad51-NTD are authentically phosphorylated in a Mec1ATR​

/Tel1ATM-dependent manner (Woo et al. 2020). First, anti-
sera specific to phosphorylated Rad51-S2Q, Rad51-S12Q 
and Rad51-S30Q peptides detect phosphorylated Rad51 
during both vegetative growth and meiosis. Second, no or 
negligible signals are detected in corresponding antisera of 

three respective single-amino-acid substitution mutants (i.e., 
rad51-S2A, rad51-S12A or rad51-S30A), in the phosphoryl-
ation-defective mutant rad51-3A, and in the mec1-kd sml1Δ 
tel1Δ triple mutant. Third, phosphorylation of Rad51-NTD 
is only moderately diminished in the tel1Δ single mutant, 
indicating that Mec1ATR​ plays a more prominent role than 

Table 1   Summary of protein phosphorylation in human and yeast Rad51

a Antisera specific to phosphorylated Rad51 were generated by the corresponding synthetic phosphopeptides and validated by non-phosphoryl-
ated Rad51 mutants
b The c-Met kinase assays were performed in vitro using recombinant human Rad51 (WT and mutants) and validated by an anti-phosphotyrosine 
antibody
c See Fig. 9 in Woo et al. (2020)
d The α-phospho-CDK substrate [Cell Signaling Technology, #2325 (not #23255)] was used to detect phosphorylated HA-TEV-Rad51 protein 
in vivo. This mAb specifically detects phospho-serine (S*) in PXS*P, PXS*PXR/K or S*PXR/K motifs and it does not react with phospho-
threonine- or phospho-tyrosine-containing peptides/proteins
e Two recombinant Cdc28 protein kinases (Cdc28-as1-GS and GST-Cdc28) phosphorylate the recombinant GST-Rad51 protein in vitro

Species Target site Kinase Detection of phosphorylated native 
(√) or fusion-tagged (Δ) Rad51 
proteins in vivo or in vitro (#)

Biological function(s) References

Human T309 Chk1 Δ (GFP-Rad51) Flag-Chk1 immunoprecipitates and 
phosphorylates GFP-Rad51. T309 
phosphorylation promotes the 
formation of GFP-Rad51 foci

Sorensen et al. (2005)

Human S14 Plk1 √a S14 phosphorylation primes T13 
phosphorylation

Yata et al. (2012)

Human T13 Ck2 √a T13 phosphorylation triggers Rad51 
binding to the FHA domain of 
Nbs1 and the formation of Rad51 
foci

Yata et al. (2012)

Human Y54 c-Abl Δa (HA-Rad51) Y54 phosphorylation enhances 
RAD51 nucleoprotein filament 
formation, and allows RAD51 to 
compete efficiently with ssDNA 
binding protein RPA

Popova et al. (2009) and 
Subramanyam et al. (2016)

Human Y315 c-Abl Δa (HA-Rad51) Y315 phosphorylation stimulates Y54 
phosphorylation

Popova et al. (2009)

Human T309

Y315
Chk1
c-Abl

√a Chk1-dependent T309 phosphoryla-
tion is preferentially stimulated 
by auto-/paracrine signaling of 
PLAUR/TLR4 receptor

Narayanaswamy et al. (2016)

Human Y159

Y191

Y205

Y315

c-Met #b (His6-tagged Rad51) C-Met phosphorylates four tyrosine 
residues localized mainly in the 
Rad51 subunit-subunit interface. 
These modifications might regu-
late Rad51–BRCA2 interaction

Chabot et al. (2019)

S. cerevisiae GIS125EAK
VDS375PCLP

Cdc28 Δd (HA-TEV-Rad51)
#e (GST-Rad51)

Both S125 and S375 are required for 
DNA-binding activity in vitro 
and homologous recombination 
in vivo

Lim et al. (2020)

S. cerevisiae S192Q Mec1 Δa,c (Rad51-Myc, Rad51-TAP) Ser192 is required for Rad51 ATP 
hydrolysis and DNA-binding 
activity in vitro and homologous 
recombination in vivo

Flott et al. (2011)

S. cerevisiae S2Q
S12Q
S30Q

Mec1
Tel1

√a S2, S12 and S30 phosphorylation act 
synergistically to enhance Rad51 
stability against proteasome-medi-
ated degradation

Woo et al. (2020)
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Tel1ATM in Rad51-NTD phosphorylation. Interestingly, 
phosphorylation of Rad51-NTD also occurs during vegeta-
tive growth in the absence of genotoxin treatments or in 
sporulating spo11Δ diploid cells, but it is not detected in 
G1-arrested haploid cells or during early meiosis. The reduc-
tion of cellular DSB levels during meiosis of the spo11-
hypomorphic strain (i.e., spo11-da-HA) leads to a corre-
sponding reduction in phosphorylation levels of Rad51-NTD 
without apparent perturbation of steady-state Rad51 protein 
levels (Woo et al. 2020). Given that Spo11 is the catalytic 
center where meiotic recombination after the premeiotic S 
phase is initiated (Keeney 2008), we infer that the robust-
ness of Rad51-NTD phosphorylation is tightly associated 
with different levels of DNA lesions. It is noteworthy that 
DSB levels are gradually increased as meiosis progresses in 
WT yeast (Joshi et al. 2015; Padmore et al. 1991). Accord-
ingly, time-course immunoblots following cycloheximide-
shutoff experiments (to establish for how long Rad51 is 
detectable upon inhibition of protein synthesis) show that 
Rad51 in early meiotic stages is hypophosphorylated and 
is indeed less stable than the hyperphosphorylated Rad51 
in later meiosis (Woo et al. 2020). Together, these results 
suggest that spontaneous DSBs are responsible for inducing 
Mec1ATR​/Tel1ATM-dependent Rad51-NTD phosphorylation 
during the vegetative S phase and the premeiotic S phase 
preceding meiotic Spo11-induced DSBs. It is crucial to fur-
ther decipher if this low-level spontaneous phosphorylation 
of Rad51 primes for rapid and robust hyperphosphoryla-
tion in response to genotoxin treatments or meiotic DSBs 
in yeast.

Yeast Rad51 is a paradigm for how the ATR/
ATM signaling network regulates 
both homologous recombination 
and protein homeostasis

As displayed in Table 1, all known kinases that phosphoryl-
ate human Rad51 and yeast Rad51 at various target sites 
have positive roles in HDRR. Given our recent findings 
(Woo et al. 2020), summarized below from a mechanistic 
perspective, Rad51-NTD phosphorylation is unique because 
its primary role is to enhance Rad51 protein stability by pre-
venting its degradation via the proteasomal pathway. Also 
noteworthy is that this function can be mimicked by replac-
ing the wild-type (WT) RAD51 gene with the phosphomi-
metic mutant (rad51-3D) but not with the phosphorylation-
defective mutant (rad51-3A). Overexpression of WT or even 
Rad51-3A proteins can also rescue the HDRR defects dis-
played by the rad51-3A and/or rad51 null (rad51Δ) mutants. 
Cycloheximide-shutoff experiments have further revealed 
that the half-lives of non-phosphorylated Rad51-3A pro-
teins are ~ 30 min in vivo. In contrast, phosphorylated WT 

protein and Rad51-3D remain stable for > 180 min (Woo 
et al. 2020). These differing half-lives of Rad51 proteins 
readily explain why Rad51 phosphorylation has more pro-
found impacts on Rad51-mediated DNA repair during meio-
sis than during vegetative growth (Woo et al. 2020), given 
that the mitotic S phase lasts for 20–30 min (Brewer et al. 
1984; Slater et al. 1977) whereas the pre-meiotic S phase 
during synchronous meiosis of SK1 yeast lasts 65–80 min 
(Cha et al. 2000; Padmore et al. 1991). In addition, Spo11-
induced DSBs take place 1.5–3.5 h after cells have been 
transferred to the meiosis medium, and the chromosomal 
foci of recombinases appear and disappear within a single 
peak (2.5–5 h), with maximum abundance at 3 h (Shinohara 
et al. 2000), implicating a long period (~ 5 h) when Rad51 is 
required to repair spontaneous DSBs in pre-meiotic S phase 
and the subsequent Spo11-induced DSBs (Padmore et al. 
1991). The non-phosphorylated Rad51-3A is labile and fails 
to support DSB repair in dmc1Δ hed1Δ meiosis (Woo et al. 
2020). Thus, higher Rad51 protein stability is required for 
meiotic DSB repair when Dmc1 is not available. Although 
the best-known functions of Mec1ATR​ and Tel1ATM are their 
roles in mediating DDR, they also have essential functions 
in regulating protein homeostasis or proteostasis (Corcoles-
Saez et al. 2019, 2018). Along with the observations that 
hyperphosphorylated Rad51 is more stable than hypophos-
phorylated Rad51 during DDR, we suggest that Rad51 is a 
paradigm for Mec1ATR​/Tel1ATM-dependent phosphorylation 
that couples Rad51 homeostasis to HDRR.

Rad51‑NTD displays a nanny function 
in promoting protein expression

The NTD (1–66 amino acids) of budding yeast Rad51 is 
unique. Multiple sequence alignments of Rad51 proteins 
from a variety of model organisms (e.g., fission yeast, Neu-
rospora crassa, Drosophila melanogaster, Caenorhabditis 
elegans, human, and mouse) have revealed that Rad51-NTD 
(1–66 amino acids) is specific to the genus Saccharomyces 
(Woo et al. 2020). Yeast mutants (rad51-ΔN) expressing 
NTD-truncated mutant proteins still possess the capability 
of promoting HDRR during both mitosis and meiosis but 
exhibit much lower efficiency in this function. Consistent 
with the HDRR-impaired phenotypes, steady-state levels 
of Rad51-ΔN protein in rad51-ΔN mutant cells were only 
∼ 3% relative to those of WT Rad51. Further analyses dem-
onstrated that Rad51-NTD can act autonomously to promote 
the expression of an exogenous protein, β-galactosidase 
(LacZ), with steady-state levels of Rad51-NTD-LacZ 
being ≥ 13.2-fold higher in vegetative cells than those of 
LacZ alone (Woo et al. 2020).

Although the highly abundant Rad51 proteins aris-
ing from efficient transcription or translation have been 
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correlated with developmental or pathological conditions, 
such as respectively in mouse embryonic stem cells or irra-
diation-resistant tumor cells (Raderschall et al. 2002; Tichy 
et al. 2012), our understanding of how cells secure Rad51 
protein stability in various physiological environments is 
limited (Ahmed et al. 2018; Ning et al. 2017; Woo et al. 
2020). It will be critical to verify if other organisms also 
sustain such highly efficient protein turnover machineries 
to downregulate Rad51 and/or its nucleoprotein filaments 
during DDR and if such regulation is also susceptible to 
counteractions conferred by the yeast Rad51-NTD.

Intrinsic structural disorder is critical 
for the nanny function of Rad51‑NTD

Many targets of Mec1ATR​ and Tel1ATM contain at least one 
S/T-Q cluster domain (SCD), which has been defined as 
the presence of at least three S/T-Q sites in a stretch of 50 
amino acids in S. cerevisiae or 100 amino acids in mam-
mals (Cheung et al. 2012; Traven and Heierhorst 2005). 
Yeast Rad51-NTD contains three SQ motifs that are phos-
phorylated dependently on Mec1ATR​ and Tel1ATM, so it can 
be ascribed as an SCD. The best-understood mechanism 
of SCD phosphorylation involves their association with 
binding partners harboring a forkhead-associated (FHA) 
domain (Durocher and Jackson 2002). For example, the 
human tumor suppressor protein CHK2 has an NH2-teminal 
SCD, followed by an FHA domain and a COOH-terminal 
catalytic kinase domain. ATR-dependent phosphorylation at 
CHK2-SCD induces CHK2 activation and phosphorylation-
dependent oligomerization via the phospho-SCD/CHK2-
FHA interaction (Xu et al. 2002). Moreover, the SCD1 
domain (residues 1–29) of the S. cerevisiae Rad53 check-
point kinase contains two adjacent TQ motifs (T5Q and T8Q) 
specifically required for recruitment and activation of the 
Dun1 kinase (Lee et al. 2008). Dun1 phosphorylates Sml1, 
a potent inhibitor of ribonucleotide reductase (Rnr1), at four 
serine residues (S56, S58, S60, S61), resulting in proteasomal 
degradation of Sml1 (Andreson et al. 2010). The sml1 null 
mutant was originally identified as a suppressor of mec1 via-
bility (Zhao et al. 1998). Similarly, phosphorylation of the 
S. cerevisiae Hop1 SCD (residues 258–324) at T318Q pro-
motes its interaction with the FHA domain of Mek1 protein 
kinase. Both Hop1 and Mek1 are meiosis-specific proteins 
essential for HDRR between homologous non-sister chro-
mosomes (Carballo et al. 2008). Notably, it has been shown 
that there is low sequence complexity in SCDs enriched for 
S/T-Q motifs (Traven and Heierhorst 2005). Low sequence 
complexity and high content of S, T, Q, asparagine (N), pro-
line (P), glycine (G) or charged amino acids is a common 
feature of many intrinsically disordered regions (IDRs) in 
proteins (Macossay-Castillo et al. 2019; Romero et al. 2001; 

Uversky 2019). IDRs are known to be involved in folding, 
proteasomal degradation, molecular recognition, and protein 
modifications (Tsvetkov et al. 2008; Uversky 2019; Wright 
and Dyson 1999). Highly-charged IDR protein sequences 
act as entropic bristles (EBs) that, when translationally 
fused to partner proteins, enhance water solubility (but not 
the overall quantity) of the partner proteins (Santner et al. 
2012). However, assessments of the steady-state abundance 
of proteins with IDRs in cells are challenging because they 
are often proteolytically degraded, yet they sometimes form 
abnormal aggregates such as disease-causing prions that can 
persist in cells.

Inspired by these properties of IDRs, we recently reported 
that, like Rad51-NTD, the IDRs of several other yeast DDR 
proteins [e.g., Rad53-SCD1, Hop1-SCD and Sml1-NTD 
(residues 1–50)], as well as non-DDR proteins [e.g., the 
prion (nucleation) domains of three yeast prion-causing 
proteins (Sup35, Ure2 and New1) and the NTDs of Vps64 
(Far9), Ssk2 and Kel1], possess autonomous and exchange-
able activities to enhance high-level protein expression when 
they are artificially designed as N-terminal fusion tags of 
LacZ or GFP, among others. We have discovered an inter-
esting correlation between relative LacZ activities and the 
overall S/T/Q/N percentages in the total amino acid content 
of these N-terminal IDRs (N-IDRs). Proteome-wide analy-
ses also suggest that such high S/T/Q/N contents in N-IDRs 
confer a high predicted folding rate on the proteins that carry 
them. Intriguingly, all the above-mentioned N-IDRs in the 
non-DDR proteins also possess at least one S/T-Q motif 
that may be susceptible to phosphorylation by Mec1ATR​ 
and Tel1ATM. For instance, phosphorylation of Sup35-S17Q 
in response to DNA lesions has been assessed in immuno-
blots (Chuang et al. 2020). Therefore, we have proposed 
the “N-terminal intrinsic disorder facilitates abundance” 
(NIDFA) hypothesis that N-IDRs with high S/T/Q/N con-
tents facilitate protein folding and some could be subject to 
proteostasis controlled by Mec1ATR​ and Tel1ATM due to the 
sporadic emergence of S/T-Q motifs (Chuang et al. 2020). 
Our NIDFA hypothesis could account for the functions of 
proteins that harbor an N-IDR but lack binding partners or 
that fold prior to protein–protein interaction, distinguish-
ing it from two interesting hypothetical models that have 
been proposed previously. In the first of which, the IDRs in 
some proteins adopt distinct conformations upon binding to 
a partner protein, depending on the involvement of different 
binding partners, chaperones (to support protein folding or 
degradation) or post-translational modifications (Dyson and 
Wright 2002; Oldfield et al. 2008; Tompa et al. 2009; Wright 
and Dyson 1999). These interactions in turn protect IDRs 
from proteolytic degradation. Alternatively, the “N-terminal 
folding nucleation” (NFN) hypothesis illustrates that intra-
molecular interactions modulated by the structured N-termi-
nal domains (SNTDs) that fold spontaneously during protein 



394	 Current Genetics (2021) 67:389–396

1 3

translation could serve as a nucleation point to organize the 
as yet unstructured amino acid chain and thus reduce the risk 
of degradation or aggregation of IDR-containing proteins 
(Simister et al. 2011). Further investigations must be carried 
out to delineate if the N-IDRs with high S/T/Q/N content in 
DDR and/or non-DDR proteins represent docking modules 
for Mec1ATR​- and Tel1ATM-dependent regulation of protein 
homeostasis.

Conclusion and perspectives

Although our knowledge of the post-translational modifica-
tions of other DNA recombinase proteins, e.g., RadA, RecA, 
and Dmc1, is currently limited, findings regarding the post-
translational modification of Rad51 have begun to reveal 
how cells fine-tune the activity of recombinases in HDRR. 
In addition to regulating the catalytic activity of Rad51, 
the unique Rad51-NTD in yeast has demonstrated another 
mechanism by which HDRR can be controlled. In conclu-
sion, S. cerevisiae Rad51-NTD possesses dual functions 
to sustain sufficient levels of Rad51 protein under extreme 
physiological conditions, such as robust DNA lesions or 
long periods of DNA repair during vegetative growth and 
meiosis. As an IDR with high S/T/Q content, Rad51-NTD 
exhibits autonomous expression-enhancing activity for high-
level production of native Rad51 and when fused to exog-
enous β-galactosidase in vivo. Furthermore, Rad51-NTD 
is an SCD harboring three putative Mec1/Tel1 target sites. 
Mec1ATR​/Tel1ATM-dependent phosphorylation antagonizes 
the proteasomal degradation pathway and further extends 
the half-life of Rad51. Further investigations are needed to 
reveal the genetic determinants that control and/or regulate 
the protein-expression-enhancement function of SCDs in 
DDR proteins and even other IDRs of non-DDR proteins. 
Finally, given that > 1000 potential functional IDR segments 
have been identified in disease-related proteins (Anbo et al. 
2019), in conjunction with the implications that deficiencies 
of ATM and ATR result in Ataxia-Telangiectasia and Seckel 
syndrome (Shiloh 2001), it is also important to understand 
whether IDRs or SCDs in human also exert similar func-
tions in coordinating HDRR and protein homeostasis. A 
rather clear example of the involvement of IDRs in human 
disease is illustrated by the pathogenic mechanism of Hun-
tington’s disease (HD) (DiFiglia et al. 1997), which is linked 
to the expansion of a polyglutamine (poly-Q) domain in the 
N-terminal part of huntingtin protein (Htt) leading to its 
aberrant aggregation. We propose that the enhanced IDR 
property conferred by the expanded poly-Q domain may be 
one of the reasons why Htt aggregates are highly stable, 
as shown in a yeast HD model (Meriin et al. 2002). Most 
intriguingly, Mec1ATR​ has been shown to be essential for 

relieving the cellular toxicity conferred by Htt aggregation in 
yeast (Corcoles-Saez et al. 2018), further implying a DDR-
independent role of Mec1ATR​ in modulating the proteostasis 
of IDR-containing proteins.
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