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ABSTRACT
The nosocomial pathogen Clostridioides difficile is a burden to the healthcare system. Gut micro-
biome disruption, most commonly by broad-spectrum antibiotic treatment, is well established to 
generate a state that is susceptible to CDI. A variety of metabolites produced by the host and/or gut 
microbiota have been shown to interact with C. difficile. Certain bile acids promote/inhibit germina-
tion while other cholesterol-derived compounds and amino acids used in the Stickland metabolic 
pathway affect growth and CDI colonization. Short chain fatty acids maintain intestinal barrier 
integrity and a myriad of other metabolic compounds are used as nutritional sources or used by 
C. difficile to inhibit or outcompete other bacteria in the gut. As the move toward non-antibiotic CDI 
treatment takes place, a deeper understanding of interactions between C. difficile and the host’s gut 
microbiome and metabolites becomes more relevant.
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Introduction

Clostridioides difficile is a Gram-positive, patho-
genic, spore forming, anaerobic bacterium that is 
considered the main cause of antibiotic- 
associated diarrhea, pseudomembranous colitis 
and toxic megacolon.1 According to the 
Centers for Disease Control and Prevention 
(CDC), C. difficile is a major nosocomial patho-
gen with more than 220,000 infections, 13,000 
deaths, and nearly $5 billion in annual treatment 
associated costs that are predicted to increase in 
the future.2,3 This, combined with its inherent 
natural antibiotic resistance, led to the CDC 
classifying C. difficile as an ‘urgent threat’ to 
the United States healthcare system. The greatest 
risk factor for C. difficile infection (CDI) is prior 
treatment with broad-spectrum antibiotics. 
Antibiotics render the host susceptible to CDI 
by changing the ecology of the microbiota, 
which is known to provide ‘colonization resis-
tance’ against invading pathogens, C. difficile- 
included.4,5 Interestingly, infants and newborns 
can be C. difficile carriers6 and C. difficile can be 
found in approximately 53% of healthy adults.7 

Thus, C. difficile could be considered a part of 
the microbiome in humans, but this is mostly 
defined by age.8

Endospores are metabolically dormant forms of 
spore-forming bacteria produced in response to 
stress (e.g., nutrient limitation).9–11 For C. difficile, 
the spore form is essential for host-to-host trans-
mission due to the strictly anaerobic nature of the 
vegetative form.12–14 Thus, in susceptible hosts, 
C. difficile spores must germinate into the active, 
vegetative form in order to multiply and cause 
disease. Germination by C. difficile spores is trig-
gered upon recognition of certain bile acids and 
amino acids by germinant receptors.11,15,16

Dormant C. difficile spores are considered infec-
tious agents, but the growing C. difficile vegetative 
cells secrete the TcdA and TcdB toxins that are 
responsible for the primary symptoms of disease 
(e.g., diarrhea and colitis);14,17–19 while some 
C. difficile strains secrete a third toxin, a binary 
toxin.20 The most common treatments for CDI 
are broad-spectrum antibiotics like vancomycin, 
although fidaxomicin (a narrower-spectrum anti-
biotic)is now recommended for initial and recur-
rent CDI . Unfortunately, the higher cost of 
fidaxomicin is limiting its use, and the continued 
alteration to the colonic microbiota by these anti-
biotics, lead to patients experiencing recurring dis-
ease due to the presence of C. difficile spores within 
the gastrointestinal tract or in the surrounding 
environment.21,22
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Recently, fecal microbial transplantation (FMT) 
has emerged as an effective treatment against 
C. difficile, especially for patients with recurrent 
CDI. FMT is hypothesized to drive protection 
against CDI through the restoration of gut 
microbes, gut associated metabolites [e.g., second-
ary bile acids and short chain fatty acids (SCFA)]23 

and/or microbial bile acid biotransformation . 
Nevertheless, the use of FMT is not without risk 
for the potential introduction of harmful microbes 
to the recipient.24–26 Thus, effective and safe treat-
ments for CDI that result in the restoration of the 
protective metabolic effects provided by the micro-
biome still need to be developed. In this review, we 
summarize studies focusing on metabolites pro-
duced by the host or gut microbiota and how 
these molecules influence C. difficile pathogenesis.

Bile acid metabolites and their role in C. difficile 
pathogenesis

Bile acids are cholesterol-based molecules synthe-
sized by hepatocytes in the liver that play key roles 
in regulating metabolic pathways and aiding in the 
absorption of fats and cholesterol during 
digestion.27,28 There are two pathways for bile 
acid synthesis: the classical pathway generates 
both cholic acid (CA) and chenodeoxycholic acid 
(CDCA) while the alternative bile acid synthesis 
pathway only forms CDCA.29 Before being secreted 
into the intestines, primary bile acids are conju-
gated with either taurine or glycine at C-24 to 
generate taurocholic acid (TA)/taurochenodeoxy-
cholic acid (TCDCA) and glycocholic (GCA) acid/ 
glycochenodeoxycholic acid (GCDCA) 
(Figure 1).30,31 Reabsorption of bile acids takes 
place throughout the intestines and the reabsorbed 
bile acids are recycled back to the liver for addi-
tional rounds of digestion.29,31 During this entero-
hepatic recirculation pathway, bile acid synthesis is 
regulated through the Farsenoid X receptor (FXR) 
transcriptional activator32 . Bile acid binding prin-
cipally through CDCA to FXR generates 
a conformational change in FXR that leads to the 
synthesis of FGF19 in illeal enterocytes32,33 . FGF19 
is secreted by the ileal enterocytes and binds to the 
FGFR4 receptor on the cell surface of hepatocytes. 
Binding of FGF19 to the receptor leads to a negative 
feedback regulation on bile acid synthesis.32,33 In an 

FMT model for recurrent CDI patients, levels of 
FGF19 were significantly increased post-FMT, thus 
suggesting upregulation of the FXR-FGF pathway 
after FMT that may aid in C. difficile clearance.34 

Furthermore administration of obeticholic acid, an 
FXR agonist, to HFD CDI-infected mice resulted in 
decreases in disease severity, and the use of urso-
deoxycholate (UCA) in a CDI mouse model 
showed increased levels of FXR as well as TGR5 
that modulates the immune response against 
C. difficile.35,36 The mentioned studies on FXR sug-
gest that FXR modulation may be important for 
CDI treatment but further research is necessary to 
move past the correlation observed in FXR that 
shows protection against CDI.

A small percentahe of bile acids escape entero-
hepatic recirculation, and can be deconjugated by 
the bile salt hydrolases that are expressed in many 
gut microbes. Subsequently, deconjugated bile 
acids can be 7α-dehydroxylated by a small subset 
of gut microbial species to generate secondary bile 
acids (deoxycholic acid (DCA), from CA, and litho-
cholic acid (LCA) from CDCA) (Figure 1).

Cholic acid-derived bile acids promote C. difficile 
germination, whereas bile acids of the CDCA 
family act as inhibitors of C. difficile 
germination.16,37,38 In addition to acting as activa-
tors/inhibitors of C. difficile spore germination, bile 
acids affect C. difficile vegetative growth. The host- 
derived, primary, bile acids TA and CDCA have 
different effects on C. difficile growth. Vegetative 
cell growth seems to be unaffected by TA, however 
C. difficile growth is strongly inhibited by CDCA.16 

Interestingly, DCA, a product of the 7α- 
dehydroxylation of CA by the colonic microbiota, 
is also toxic to C. difficile growth in-vitro, suggest-
ing that the 7α-dehydroxylation of CA by the colo-
nic microbiota may prevent C. difficile from 
colonizing healthy hosts.16 When the minimal inhi-
bitory concentrations (MIC) of various bile acids 
were determined, the MIC of CA was 10 mM for 2 
different C. difficile strains, a concentration that is 
not found in the GI tract, thus not physiologically 
relevant.39 However, increasing the hydrophobicity 
of the base CA structure (which has three hydroxyl 
groups, Figure 1), by removing either the 12α 
hydroxyl (generating CDCA) or the 7α hydroxyl 
(generating DCA) resulted in the MIC decreasing 
from 10-fold to 1 mM.39 Moreover, the 7β-epimer 
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of CDCA, UCA) (Figure 1), inhibits growth of 
C. difficile cells,40 although over a 24-h time period, 
C. difficile grew in the presence of 2 mM UCA.41 

Because CDCA completely inhibited the growth of 
C. difficile vegetative cells over a 24-h period and 
UCA did not, this could imply that stereochemistry 
of the bile acid structure plays a role in toxicity.39,40 

Importantly, though these two studies were done 
using different C. difficile isolates, which may have 
different MIC values for bile acids as observed for 
other C. difficile strains.39

Mice are one of the most common animal mod-
els used in CDI studies and their murine bile acid 
composition and their effects on CDI are well 
understood.39,42 In rodents, the presence of alter-

native hydroxylating enzymes yields other primary 
bile acids (α/β/ω-muricholic acids) (Figure 1).43 

Muricholic acids have a MIC similar to that of 
CDCA and DCA.39 Similar to CA, muricholic 
acids are also trihydroxyl bile acids but the hydro-
xyls are in the 3, 6, and 7 positions instead of the 3, 
7, and 12 positions that are found on CA-derived 
bile acids (Figure 1).39 A study found that in addi-
tion to the bile acids described above, isodeoxy-
cholic acid (a 7α, 12α-hydroxy bile acid), 
lithocholic acid (a 3α-hydroxy bile acid), isolitho-
cholic acid (a 3β-hydroxy bile acid), and hyodeoxy-
cholic acid also inhibit the growth of C. difficile 
vegetative cells.44 Furthermore, isoallolithocholic 
acid (isoalloLCA), the isomer of isoLCA had an 

Figure 1. Structures of the bile acids discussed in this review. Shaded rows indicate secondary bile acids. Unshaded rows indicate 
conjugated and deconjugated primary bile acids.
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MIC90 of 2 µM in C. difficile CD630 (a laboratory 
strain) and in the highly toxigenic C. difficile 
VPI10463 strain.45

Due to the inherent toxicity of secondary bile 
acids for C. difficile growth, it was hypothesized 
that their production would toxify an environment 
and limit C. difficile growth.16,46 To test this 
hypothesis, Theriot and Young5 showed evidence 
that the presence of secondary bile acids is respon-
sible for protection against CDI. Using a multi- 
omics approach, the authors identified C. difficile 
resistant and susceptible states in an antibiotic- 
treated murine model. A susceptible state corre-
lated with high levels of conjugated primary bile 
acids (e.g., TA) whereas a resistance state correlated 
with higher levels of secondary bile acids (e.g., 
DCA). Later, Buffie et al.4 also provided compelling 
data in support of this hypothesis. Using mouse 
models and human subjects, the authors found 
that high levels of DCA or the presence of the 
genetic operon that is known to generate secondary 
bile acids (bai), strongly correlated with 
a protective environment. Additionally, mice trea-
ted with different antibiotics resulted in variable 
metabolic profiles and certain secondary bile acids 
(i.e., omega-muricholic acid, LCA and, to a lesser 
extent, hyodeoxycholic acid, and UCA) that could 
inhibit TA- and DCA-mediated colony formation 
by C. difficile spores.16,38,39,47

These landmark studies demonstrated that 
increased secondary bile acids and the genes encod-
ing proteins responsible for their production 
strongly correlate with disease-resistant states and 
increased primary bile acids correlate with disease- 
susceptible states. A more recent article45 analyzing 
metabolites in centennials collected stool from 
centennials(~107 year olds), elderly adults (85– 
89 years old), and young adults (21–55 years old) 
and bile acids were measured. The authors 
observed higher levels of isoLCA, 3-oxoLCA, 
alloLCA, 3-oxoalloLCA, and isoalloLCA in the cen-
tennial samples, when compared to the other study 
population. Additionally, the authors characterized 
the biosynthetic pathways to generate these CDCA 
derivatives and suggested that further elucidation 
of microbial biotransformations may expand our 
understanding of intestinal homeostasis and, as 
a result, possible protection effects of additional 
bile acids against CDI45

Interestingly, a recent study using a cholate- 
deficient mouse strain showed that the cholate- 
derived secondary bile acid (DCA) is dispensable 
for protection against CDI, and that lack of the bile 
acid transcriptional activator FXR, does not show 
differences in CDI mice. Also, when germ free mice 
were monoassociated with bacteria known to gen-
erate secondary bile acids, no secondary bile acids 
were present in fecal samples, but the mice were 
still protected against CDI.48 This emerging evi-
dence would suggest that although bile acids are 
important for C. difficile colonization to be estab-
lished in the gut, these metabolites may not play 
such an important role in generating a protective 
environment against C. difficile. In support of this, 
a 2018 study49 showed that the levels of the con-
jugated primary bile acids TA and TCDCA 
decreased 2 days post-FMT. In contrast, there was 
an increase of the secondary bile acids DCA, LCA, 
and UDCA.49 Interestingly, the authors note that 
although levels of secondary bile acids increased, 
the presence of secondary bile acids was not indi-
cative of FMT success or failure, thus suggesting 
that although bile acids may play a role in protec-
tion, there are other mechanisms driving CDI 
resistance.49,50

Regardless, C. difficile encounters bile acid dur-
ing colonization and its growth in the gut may 
impact bile acid synthesis in the liver. Taking 
advantage of MALDI imaging mass spectrometry, 
Wexler et al.51 found the levels of primary bile acids 
in the mouse gut increased significantly as early as 
one-day post-CDI. Additionally, the authors found 
that the introduction of cholestyramine, a bile-acid 
sequestering drug, lead to delayed C. difficile 
colonization.51 Their results suggest that primary 
bile acids are required to efficiently establish 
C. difficile in a host.

Regarding secondary bile acids, in addition to its 
toxic effect against C. difficile vegetative cells, the 
secondary bile salt DCA induces C. difficile biofilm 
formation at low concentrations (240 µM) in a non- 
biofilm-producing C. difficile CD630∆erm strain.52 

Thus, it is possible that a decrease in bile acid levels 
during late infection stages may generate favorable 
conditions for biofilm formation. Indeed, the 
authors hypothesized that the low concentrations 
of the bile salt encountered during the natural 
restoration of microbiome may allow the cells to 
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transition toward biofilm formation. This would 
protect C. difficile vegetative cells against concen-
trations of antibacterial compounds that may nor-
mally inhibit growth (i.e., antibiotics or other bile 
acids).52

In addition to promoting germination and 
inducing biofilm formation, bile acids can alter 
C. difficile physiology in other ways. Low 
amounts of LCA (0.08 mM) resulted in more 
elongated vegetative cells and absence of flagella. 
Fewer flagella were also observed when vegeta-
tive cells were incubated in 0.8 mM DCA and 
0.3 mM CDCA. The authors hypothesized that 
lack of flagella may allow for better adherence to 
intestinal lining during infection. Additionally, 
bile acids resulted in up-regulation of the cha-
peron proteins DnaK, DnaJ, GrpE, GroL, and 
GroS, but the mechanism of up-regulation for 
chaperones is still unknown.53

Finally, bile acids inhibit TcdB toxin activity by 
binding to the toxin. Both conjugated and decon-
jugated secondary bile acids (e.g., DCA, LCA, 
GDCA, TDCA, GLCA, and TLCA) have greater 
potency in inhibiting toxin activity than their pri-
mary bile acid counterparts, but toxin binding by 
bile acids is reversible. The reversible binding and 
inhibition of bile acids to C. difficile toxins may 
thus suggest modulation mechanisms taking place 
in the gut depending on bile acid composition in 
the host.54

The role of bile acids in relation to C. difficile 
physiology and pathogenesis has been studied 
and characterized, extensively, since the discov-
ery of their function as germinants for C. difficile 
spores.16,46 Because of the many functions bile 
acids play in the host, it is not surprising that 
the interaction with C. difficile is complex and 
multifaceted, with both positive and negative 
interactions observed – depending on the con-
formation of, the abundance of, and the location 
of specific bile acids as well as the C. difficile life 
cycle stage in the host. More work should be 
done that move the field from data that correlate 
what bile acids are present in the host to poten-
tial causative interactions between bile acids and 
the host/C. difficile.

Stickland metabolites, amino acids, and the 
Wood Ljundahl pathway in C. difficile 
pathogenesis

Stickland metabolism was first identified in 1934 
as the predominant pathway for Clostridium spor-
ogenes energy production.55 Stickland metabolism 
couples pairs of amino acids that may act as elec-
tron donors or acceptors.56,57 The donor amino 
acid is oxidatively deaminated or decarboxylated 
to produce NADH, whereas the electron accepting 
amino acid is reduced to regenerate NAD+ 

(Figure 2(a)). Although a myriad of amino acids 
can be used in the oxidative branch, the reductive 
branch is fueled only by proline or glycine. In the 
reductive branch, proline is consumed by proline 
reductase (PrdB, PrdA), a selenium-containing 
enzyme (selenoenzyme) that generates 5-aminova-
lerate and NAD+, and glycine is consumed by 
glycine reductase (GrdA, GrdB), selenoproteins 
that generate acetate and NAD+ (Figure 2(b, 
c)).58,59

Although Stickland metabolism is well- 
characterized in Clostridium sticklandii,60 this alter-
native metabolic pathway in other Clostridial species 
has just recently been elucidated. Bouillaut et al.59 

analyzed the C. difficile glycine and proline reduc-
tion operons and their activity in the reductive path-
way of Stickland metabolism. A mutation in the 
prdB subunit of the proline reductase enzyme 
resulted in a decrease in growth in rich media, but 
a mutation in a grdA mutant did not affect growth in 
rich medium.59 Additionally, the authors character-
ize the sigma-54 dependent activator, PrdR that acts 
as a mediator for PrdB-dependent activation and 
proline-dependent toxin repression.59 In addition, 
given the role the Stickland reductive branch has in 
regenerating NAD+ for the cell, the redox dependent 
transcriptional repressor, Rex, has a role in proline- 
dependent regulation and is controlled by PrdR in 
C. difficile.61 Using DNA binding assays and qRT- 
PCR, the authors found that proline seems to be the 
preferred amino acid for regeneration of NAD+. In 
presence of excess proline, PrdR stimulates proline 
reductase expression and simultaneously Rex 
represses the glycine reductase gene grdE. NADH 
is then oxidized and, as a result, the ratio of NADH/ 
NAD+ is low. Alternatively, when levels of proline 
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are low, the NADH/NAD+ ratio increases and the 
high levels of NADH prevents Rex from repressing 
glycine reductase expression (Figure 2(b,c)).61

Selenium is an essential component of the 
proline and glycine reductases. Selenium is 
incorporated into these proteins as selenocys-
teine. Selenocysteine is generated through 
a synthesis pathway where the product of the 
selD gene reacts inorganic phosphate with 
hydrogen selenide to generate 
selenophosphate.58,62,63 A selD mutant is unable 
to incorporate selenium into proteins and this 
results in a complete loss of the reductive branch 
of Stickland metabolism. The loss of selenopho-
sphate generation results in a defect in the abil-
ity of C. difficile spores to outgrow following 
germination in peptide-rich media.63,64 Also, 

the absence of selenophosphate altered 
C. difficile physiology so that other NAD+ regen-
eration pathways were expressed.64

Several studies have correlated the depletion or 
increased levels of amino acids important for 
Stickland metabolism using both in vitro and 
in vivo approaches.48,65–68 In an in vitro, multi- 
omics approach, the metabolome of multiple 
C. difficile growth stages found that Stickland meta-
bolites were dramatically depleted upon entry into 
stationary phase69 . Furthermore, in stool samples 
derived from hospitalized patients, amino acids 
used for Stickland metabolism were depleted in 
CDI patients, suggesting that these amino acids 
were consumed by C. difficile vegetative cells. In 
this study, branched chain amino acids, such as 
leucine, were hypothesized to be the preferred 

Figure 2. Oxidative and reductive branch of Stickland metabolism in C. difficile. Graphical representation of the oxidative and reductive 
Stickland pathways. A) Oxidation of a myriad of amino acids takes place in the oxidative branch of Stickland metabolism resulting in 2 
NADH molecules and 1 ATP molecule produced. B) Proline and glycine are used to regenerate NAD+ in the reductive branch. When 
excess proline is available in the surrounding environment and the NADH/NAD+ ratio in the cell is low, the PrdR activator promotes 
proline reductase (PR) expression to generate 5-aminovalerate and NAD+. Concurrently, Rex inhibits glycine reductase (GR). C) When 
proline levels are low and the NADH/NAD+ ratio is high, Rex is unable to inhibit glycine reductase allowing acetate formation. Proline 
reductase activity is not present. Created with BioRender.com.
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amino acid used by C. difficile; other amino acids, 
such as proline, tyrosine, and phenylalanine are 
possible sources of energy for both C. difficile and 
other gut microbes.67

Proline availability is important for C. difficile 
colonization in mice. A mutation in proline reduc-
tase (prdB) resulted in decreased colonization in 
a humanized microbiome mouse model.65 

Moreover, C. difficile can take advantage of inflam-
mation-induced collagen degradation. During this 
toxin-dependent process, the host cells respond to 
this inflammation by producing matrix metallopro-
teases. This results in the degradation of collagen – 
a protein rich in proline.70

Building upon this, in mice monoassociated with 
C. scindens, C. hiranonis, or C. leptum, proline was 
greatly depleted and mice were protected against 
CDI.48 This work is also supported by in vitro con-
ditions where C. difficile and C. hiranonis compete 
for nutrients.71 Interestingly, Battagliogli et al.65 

observed high levels of the amino acids glycine, 
proline, threonine, and alanine in a dysbiotic 
colon, whereas Aguirre et. al.48 observed depletion 
of proline and glycine in their monoassociated mice 
(amino acids essential for the reductive pathway of 
Stickland metabolism).48,65 Nevertheless, direct 
comparison should not be made since one study 
used a humanized microbiome mouse model and 
the other used germ-free mice that were monoas-
sociated with individual bacteria.

Expanding on the hypothesis that depletion of 
amino acids is important for Stickland metabolism, 
and may drive protection against CDI, Girinathan 
et al.66 found that the gut commensal bacterium 
P. bifermentans protects against CDI, at least in 
part, through depleting nutrient sources used by 
C. difficile. Using P. bifermentans monoassociated 
mice, as well as carbon-source enrichment analysis 
of the gut-metabolomic environment, the authors 
found alterations in the substrates/products of 
Stickland metabolism (such as proline, glycine, 
threonine and 4-hydroxyproline) and production 
of 5-aminovalerate.66

Although in vivo FMT studies have reported 
levels of amino acids in FMT-recipients, such as 
increasing levels of valine, isoleucine, and leucine 
(amino acids able to be used in the oxidative 
branch), the presence of Stickland products in 
these recipients have not been reported [besides 

the SCFA (acetate, propionate)].72–74 In 
a chemostat model, levels of 5-aminovalerate 
decreased post-FMT and isobutyrate levels remain 
constant post-FMT. A plausible explanation for the 
observed 5-aminovalerate levels could be the lack of 
Stickland fermenters included in the stable com-
munities introduced into the chemostat, such as 
P. bifermentans.75

Expressed at lower levels when other forms of 
energy production are present, the Wood- 
Ljungdahl Pathway (WLP) may need examining 
during CDI. Through the WLP, two molecules of 
CO2 are reduced to acetate.76 The WLP can be 
coupled with butyrate production to allow for 
increased efficiency of ATP formation by decreas-
ing nutritional requirements. Thus, the WLP may 
prove useful when glucose or amino acid levels are 
low, and C. difficile may need to adapt to low 
nutrient conditions.77 Moreover, in a mouse 
model of CDI, the WLP increased expression 
twenty-four hours post-infection.78 This suggests 
more attention should be given to this pathway in 
animal models, or in patient cohort samples.

Stickland metabolism by C. difficile during host 
colonization is well-established.48,65,68 Nevertheless, 
the availability of the substrates needed for the oxi-
dative and reductive branches of Stickland metabo-
lism, and required compounds for WLP, during CDI 
likely shapes the ability of the bacterium to cause 
disease. Similarly, the presence of Stickland-using 
microbial competitors in the host microbiome also 
shapes how C. difficile colonizes a host.48,66,79 

Therefore, a better understanding of specific condi-
tions in which C. difficile takes advantage of alter-
native metabolic pathways is necessary for the study 
of novel therapeutics that may modulate these 
pathways.

Non bile acid metabolites that correlate or show 
protection against C. difficile pathogenesis

The gut microbiome is complex, with interactions 
occurring between resident and invading bacteria 
that result in the generation of secondary metabo-
lites. One such metabolite is coprostanol. 
Coprostanol is generated through the reduction of 
the double bond between C5 and C6 of 
cholesterol.80 In the metabolome of healthy con-
trols vs. CDI patients, 63 bacterial OTUs were 
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identified that positively correlated with the pre-
sence of coprostanol, which in turn negatively cor-
related with CDI patients.81 The majority of 
phylotypes that correlated with coprostanol pre-
sence were members of the Lachnospiraceae and 
Ruminococcaceae families. Coprostanol may 
enhance resistance to CDI by decreasing the avail-
ability of cholesterol which could reduce the abun-
dance of metabolites (i.e., primary bile acids) that 
are necessary for germination by C. difficile spores 
(Figure 3(a,b).81

Three microbial-derived SCFAs (propionate, 
acetate, and butyrate) have long been associated 
with CDI resistance.82–85 In general, SCFAs are 
believed to play important roles in maintaining 
gut homeostasis.86 Several studies have shown that 
SCFAs are depleted during CDI5,81,86 Recently, 
butyrate, and acetate were found to protect against 
CDI by aiding in maintaining intestinal barrier 
integrity.87,88 Butyrate plays a role in maintaining 

intestinal barrier integrity through limiting the per-
meability of intestinal epithelial cells to C. difficile 
toxins by stabilizing the hypoxia-inducible factor 1 
alpha (HIF-1α).87 Acetate acts during the early 
stages of C. difficile infection by activating the free 
fatty acid receptor 2 (FFAR2) signaling pathway by 
augmentation of IL-1B production from neutro-
phils and IL-1 R through signaling of ILC3. These 
two types of immune cells then induce production 
of IL-22 that is implicated in antimicrobial and 
repair mechanisms in intestinal epithelial cells.88

The mechanism by which propionate confers 
protection against CDI has yet to be elucidated. 
However, taking from data published on butyrate 
and acetate, a hypothesis could be that propionate 
acts upon specific host immune factors (Figure 3a). 
Interestingly, Gregory et al.89 suggested that 
increasing levels of SFCAs as the gut microbiome 
recovers from disruption, may be used by C. difficile 
vegetative cells as a triggering signal to upregulate 

Figure 3. Gut metabolites effect in C. difficile growth and colonization. A) Examples of mechanisms of inhibition or protection against 
CDI. Aa) Gut microbes produce SCFA that aid in intestinal barrier function. Ab) Bacteria that perform 7α-dehydroxylation generate 
secondary bile acids that correlate with CDI resistant states. On the other hand Ac) generation of p-cresol by C. difficile may affect 
barrier function in Gram-negative bacteria, Ad) release of sialic acid from the colon mucus layer is used as a nutrient source by 
C. difficile. B) In an undisrupted gut environment amino acid, SCFA and secondary bile acid levels are high, creating a resistant state 
against C. difficile through immune defenses and nutrient limitation. High levels of the cholesterol derivative, coprostanol, are observed 
indicative of limited availability of primary bile acids. Introduction of antibiotics compromises the gut environment, and C. difficile 
toxins disrupt the intestinal barrier. C. difficile also promotes increasing levels of p-cresol, conjugated primary bile acids (e.g. TA) and 
sorbitol as well as use sialic acid as a nutrient source. FMT treatment allows restauration of gut metabolites and restore a resistant state 
against CDI. Created with BioRender.com.
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toxin secretion and promote the inflammation that 
would allow the bacterium to maintain coloniza-
tion in the gut.89

A recent study that used1H-NMR on stool sam-
ples derived from recurring CDI patients that 
received FMT, through capsule or colonoscopy, 
found increased levels of acetate, butyrate, and pro-
pionate in recipients 12-weeks post-FMT.85 

Interestingly, valerate, another SCFA was depleted 
in a chemostat C. difficile infection model.75 Similar 
to the other SCFA, valerate levels were restored 
upon FMT. The study also found that valerate 
inhibited in vitro C. difficile vegetative growth in 
a dose-dependent manner, and that introducing 
valerate orally in the form of 15 mM glycerol triva-
lerate into a C. difficile mouse model decreased total 
viable counts.75,85 It is important to note, though, 
that the glycerol trivalerate given to the mice was 
above physiologically relevant concentration since 
the authors found that chemostat FMT cultures 
only reached 4 mM valerate.

In addition to SCFAs, the microbiome produces 
antimicrobial compounds. Two Clostridial species, 
C. scindens and C. sordellii secrete tryptophan- 
derived antibiotic compounds (i.e., 1-acetyl-β- 
carboline and turbomycin A) that inhibit 
C. difficile growth.90 Interestingly, the anti- 
C. difficile effect of the antibiotics was enhanced 
by DCA and LCA. These findings suggest that 
a combination of secondary bile acids as well as 
antibiotics is at play during prevention of 
disease.90 However, a recent study with mice that 
were monoassociated with C. scindens did not 
detect 1-acetyl-β-carboline in their metabolomics 
analysis,48 suggesting that the activity of 1-acetyl-β- 
carboline may require specific conditions to be 
produced.

Dynamic interactions between gut microbes are 
constantly taking place and involve the production 
of and the sensing of secondary metabolites.91 

Although the mechanisms by which some of these 
metabolites protect against CDI are still 
unclear,81,87,88,90 their identification provides 
important data that can be directly tested as poten-
tial treatment options for CDI. Moreover, 
a microbiome-centric approach for CDI treatment 
will most likely find other metabolites that show 
protection against CDI and could be explored for 
therapeutic approaches.

Metabolites and their beneficial roles for 
C. difficile infection

In recent years, the research focus on the modulation 
of the microbiome by C. difficile and how the bacter-
ium survives in the host has increased.92–96 C. difficile 
can produce products that promote inflammation and 
that have antibacterial effects. C. difficile generates 
p-cresol, a phenolic compound that affects the integ-
rity of surface barriers in bacterial cells with a higher 
effect observed in Gram-negative bacteria.93 The 
hpdBCA operon is responsible for the fermentation 
of tyrosine to p-hydroxyphenylacetate to then gener-
ate p-cresol using the 4-hydroxyphenylacetate dehy-
drogenase enzyme. In a mouse model of recurrent 
CDI, mice infected with a hpdC mutant strain, had 
increased microbial diversity compared to mice 
infected with the wildtype strain, as well as lower 
C. difficile viable counts. Additionally, when exogen-
ous p-cresol was introduced to healthy human fecal 
slurries, the number of viable total anaerobes 
increased, thus suggesting that generation of p-cresol 
by C. difficile may give the bacterium a competitive 
advantage over other gut microbial species (Figure 3 
(a,c)).93

Similar to the production of p-cresol, production of 
sorbitol by C. difficile may enhance colonization. 
A C. difficile strain that is unable to produce sorbitol 
is outcompeted 10-fold by its wildtype counterpart in 
a mouse model.94 Upon further investigation, the 
authors found that the inflammation induced by the 
C. difficile toxins results in an upregulation of aldose 
reductase which generates host-derived sorbitol. 
These results show how C. difficile is able to use 
a diet and host-derived nutrient to expand in the 
perturbed microbiome environment (Figure 3(b)).94

C. difficile also can use metabolites produced by the 
host and other gut microbes during 
colonization.92,95,96 The gut symbiont Bacteroides the-
tatiotaomicron encodes a sialidase enzyme that cleaves 
and releases sialic acid from mucosal glycoconjugates. 
C. difficile encodes a sialic acid catabolic operon. Using 
a transcriptional analysis of germ free and 
B. thetatiotaomicron monoassociated mice, the data 
showed that the ability of B. thetatiotaomicron to 
release sialic acid resulted in increased expression 
levels of the C. difficile sialic acid operon.95 

Additionally, a spike in free sialic acid 1 day after 
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antibiotic treatment of mice was observed but these 
levels reduced 3 days after antibiotic treatment.95 

Moreover, mice monoassociated with 
a B. thetatiotaomicron sialidase mutant strain and 
then infected with C. difficile had lower C. difficile 
CFU counts (Figure 3(a-d)).95 These results suggest 
an important role of sialic acid during in vivo 
infection.

Another host-produced metabolite, heme, can be 
used by C. difficile.92 The heme-sensing membrane 
protein system, HsmRA, protects against redox 
damage generated from antibiotic treatment of CDI. 
C. difficile HsmA binds to heme that is released from 
the inflamed GI tract and shields the bacterium from 
redox-active molecules. Although the specific 
mechanism of protection by HsmA is still unknown, 
the authors hypothesized the use of HsmRA by other 
pathogens for protection against oxidative stress may 
be taking place.92

Finally, indole may play a role during C. difficile 
infections. Supernatant from C. difficile stationary 
phase cultures can induce the expression of trypto-
phanase (tnaA) in E. coli. The levels of indole 
increased in other indole-producing microbes in the 
gut (e.g., L. reuteri and E. faecalis) in co-culturing 
assays with C. difficile. Interestingly, the MIC 
(5 mM) of C. difficile strains were found to be higher 
than the MIC of multiple gastrointestinal bacteria 
tested, ranging from 2–4 mM. These results led the 
authors to the hypothesis that the ability of C. difficile 
to resist higher gut indole concentrations may provide 
the bacterium a competitive advantage.96 Importantly, 
these experiments were performed under in vitro con-
ditions and future work with animal models is needed 
to test the proposed hypothesis.

Successful C. difficile colonization, occurs when the 
host gut environment is disrupted. As a result, the 
bacterium must adapt and take advantage of resources 
available to maintain colonization and exclude the 
reestablishment of competing microbes.97,98 The abil-
ity of the C. difficile bacterium to establish a niche in 
the gut environment by use of metabolites from intest-
inal epithelial cells, as well as secreted compounds to 
outcompete other gut microbes, suggests C. difficile is 
a bacterial generalist.68 Although the factors that cor-
relate with an environment that excludes C. difficile 
are well documented, the factors that C. difficile uses to 
exclude the microbiome from reestablishing itself are 
comparatively less understood. By inhibiting these 

mechanism, the normally-protective microbiome 
may gain a foothold and return the GI to 
a colonization resistant environment.

Conclusions and future directions

This review highlights specific metabolic compounds 
that have been regarded as important during the life 
cycle and pathogenesis pathway of CDI. As the 
research field, moves toward a microbiome-centric 
study of gut diseases, molecules used as nutritional 
sources for both pathogen and resident gut bacteria 
are being identified. In Figure 3, we show graphical 
representations of microbiome stages that may allow 
or prevent the gut environment to succumb to 
a C. difficile disease stage, as well as promote recovery.

C. difficile pathogenesis is complex. Although much 
work has focused on the effect that bile acids and 
antimicrobials have on the bacterium, considering 
the physiology of C. difficile for developing new treat-
ments is emerging in the field. Potential treatment 
options against CDI have slowly progressed toward 
approaches that focus on restoring the gut micro-
biome ecosystem as a whole and not what affects 
C. difficile. Although some progress has been made, 
there are still many aspects to uncover regarding gut 
microbiota niche growth and competition in the GI 
tract. The move from broad-spectrum antibiotic treat-
ment to more specific antibiotics, like ridinilazole that 
showed fewer CDI recurrences in a phase 2 trial, is 
happening at present.99 Targeted molecules such as 
nanobodies or DARPins have also emerged and,100 

will probably become the norm for treatment against 
CDI in the future. Alternatively, specific strategies to 
reintroduce defined microbial communities to combat 
CDI, in the form of targeted microbiome therapies 
(e.g., SER-109, composed of purified Firmicutes bac-
terial spores),101 might also work as an effective treat-
ment strategy. Unraveling of additional bile salt 
biotransformations that can be taken advantage of to 
potentially modulate bile acid composition as well as 
bile acid analogs that do not undergo enterohepatic 
recirculation are yet other potential CDI 
treatments.45,102 Finally, introduction of probiotics 
specifically targeting CDI or synbiotics (probiotics 
combined with prebiotics) that may modify the gut 
microbiome by increasing engraftment through intro-
duction of specific nutrient sources appear to have 
potential for treatment in the future.103,104 It is 
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important to mention though, that as understanding 
of the complex CDI pathogenesis and life cycle 
expands, the realization that individual treatments 
options may not be the way forward and comprehen-
sive treatment plans may provide the best results, 
especially in regards to relapsing C. difficile episodes.
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