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Dear Editor,
Based on a candidate gene analysis, Obara and colleagues

previously reported an association between Parkinson’s

disease (PD) and deletion structural variants (SV)s at the

MIDN locus in the Japanese population.1 In their recent

study, using genotyping data from a British cohort, Obara

and colleagues further suggest MIDN as a confirmed and

universal risk factor of PD.2

To establish the pathogenicity of MIDN, as part of the

International Parkinson’s Disease Genomics Consortium

(IPDGC), we utilized the summary statistics from the most

recent PD meta-analysis, which involved 37.7k PD cases,

18.6 U.K. biobank proxy-cases, and 1.4 million controls.

Consequently, we did not identify an association with risk

of PD at this locus based on common SNP variants

(Fig. S1)3. In addition, we analyzed whole genome

sequencing data (WGS) from eight cohorts totaling 3868

individuals (2742 PD cases and 1126 controls of European

ancestry). SVs were genotyped from the WGS using the

highly sensitive detection tool Manta.4 The only major

deletion detected was of a reference Alu retrotransposon

(GRCh38 chr19:1247064-1247368, MAF = 0.014); how-

ever, further analysis identified no significant association

between the Alu deletion and risk for PD (P = 0.74,

b = �0.03, SE = 0.22) (Appendix S1). Four additional sin-

gleton deletions were detected, including deletions of three

reference Alu retrotransposons and a 4822-bp deletion that

was detected in a healthy control (Fig. S2 and Table S1).

Further, Obara and colleague reported deletions at the

MIDN locus in 1.64% of controls. In view of this, we uti-

lized gnomadSV, a comprehensive public SV database.

This resource provides a call set of ~445k SVs that were

detected in 14,891 genomes, spanning four major global

populations.5 In support of our WGS analysis, as shown

in (Fig. S3) no common deletion SVs were detected in

the general population.

In summary, we did not identify any PD-associated

deletions within 100 kb of MIDN in the 3,868 individuals

analyzed. SV calling using SNP genotyping data is notori-

ously difficult and it has been repeatedly reported that

this method can result in a high false positive rate.6–8

Due to this factor, SVs require functional validation,

which was not presented for the MIDN deletions

described in the Obara and colleagues’ studies. Therefore,

the lack of validation of the reported SVs, supported by

the lack of evidence of these events in both the gno-

madSV data and our WGS analysis, suggests that the

MIDN deletions reported require further study before

they can be unequivocally associated with PD.
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in the Supporting Information section at the end of the
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Appendix S1. Supplementary Methods.

Table S1. Clinical and demographic characteristics

of WGS data.

Figure S1. Locuszoom plot of the MIDN locus from the

most recent PD meta-analysis involving 37.7 PD cases,

18.6 UK biobank proxy-cases and 1.4M controls shows

no association with PD based on common variants.

Figure S2. IGV snapshot of a heterozygous 4,822bp dele-

tion (illustrated in red) detected with MANTA in a

healthy control individual.

Figure S3. Snapshot of the MIDN locus generated by the

gnomadSV browser (https://gnomad.broadinstitute.org/

region/19-1217850-1294000?dataset=gnomad_sv_r2_1).
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