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Abstract: In this paper, we propose to quantitatively compare loss functions based on parameterized
Tsallis–Havrda–Charvat entropy and classical Shannon entropy for the training of a deep network
in the case of small datasets which are usually encountered in medical applications. Shannon cross-
entropy is widely used as a loss function for most neural networks applied to the segmentation,
classification and detection of images. Shannon entropy is a particular case of Tsallis–Havrda–Charvat
entropy. In this work, we compare these two entropies through a medical application for predicting
recurrence in patients with head–neck and lung cancers after treatment. Based on both CT images and
patient information, a multitask deep neural network is proposed to perform a recurrence prediction
task using cross-entropy as a loss function and an image reconstruction task. Tsallis–Havrda–Charvat
cross-entropy is a parameterized cross-entropy with the parameter α. Shannon entropy is a particular
case of Tsallis–Havrda–Charvat entropy for α = 1. The influence of this parameter on the final
prediction results is studied. In this paper, the experiments are conducted on two datasets including
in total 580 patients, of whom 434 suffered from head–neck cancers and 146 from lung cancers.
The results show that Tsallis–Havrda–Charvat entropy can achieve better performance in terms of
prediction accuracy with some values of α.

Keywords: deep neural networks; Shannon entropy; Tsallis–Havrda–Charvat entropy; generalized
entropies; recurrence prediction; head–neck cancer; lung cancer

1. Introduction

This paper is devoted to studying the loss function based on Tsallis–Havrda–Charvat
entropy in deep neural networks [1] for the prediction of outcomes in lung and head–neck
cancers. When used for categorical prediction, the loss function is generally a cross-
entropy related to a given entropy function. Indeed, cross-entropy-based loss functions are
appropriate for evaluating how a probability distribution is close to the Dirac distribution.
In deep neural networks, the output is a probability for each class obtained from a softmax
activation function, and the Dirac distribution concentrated on one class represents the
ground truth. There are several ways to compare these distributions [2–4]. Entropy-based
metrics, such as divergences and cross-entropies, are the most common because they are
the most appropriate way to sum up the informative content of a distribution, as explained
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in [5]. In Ref. [6], different entropies are presented. In classification and prediction, the
cross-entropy is derived from an entropy measure and used as a loss function measuring
the difference between the predicted probability and the real Dirac probability. To sum up,
in most neural networks used for prediction, Shannon-related cross-entropy is the most
common and widely used for segmentation [7], classification [8], or detection [9] and many
other applications [10–13]. The reason why Shannon is the most used is twofold: first,
because Shannon was the first entropy in the domain of information theory, and secondly,
because it is extensive in the sense that the entropy of a multivariate distribution whose
margins are independent is the sum of the marginal entropies. This last property makes the
calculation of Shannon entropy easy. In Ref. [14], different ways of choosing an entropy and
an associated divergence are detailed. Among them, Shannon entropy can be extended by
replacing the logarithm by another function. Cross-entropies can be defined by replacing
the counting measure (resp. Lebesgue measure for continuous case) by a Radon–Nykodim
derivative between probability measures. Shannon’s entropy can be generalized on other
entropies such as Renyi [15] and Tsallis–Havrda–Charvat [16,17]. In this paper, we are
interested in a particular generalization of Shannon cross-entropy: Tsallis–Havrda–Charvat
cross-entropy [18]. This class of entropies has the particularity of being parametrized with
one parameter α and we recover Shannon entropy when the value of the parameter equal
to 1. The relevance and possibilities of Tsallis–Havrda–Charvat in the medical field have
been discussed before and this paper expands on the Tsallis–Havrda–Charvat formula.

Tsallis–Havrda–Charvat entropy was introduced independently by Tsallis [19] in the
context of statistical physics and by Havrda and Charvat [20] in the context of information
theory. Tsallis–Havrda–Charvat entropy has been used in publications in several fields,
including medical imaging [21,22]. Tsallis–Havrda–Charvat entropy has rarely been used in
deep learning, especially because of the difficulties with interpreting the hyperparameters
α. However, there exist some scientific articles on this issue. In Ref. [23], Tsallis–Havrda–
Charvat entropy is used to reduce the loss while classifying an image. In Ref. [18], the
authors define Tsallis–Havrda–Charvat entropy in terms of axiomatization and propose
a generalization based on this. In Ref. [24], the maximization of the entropy measure is
studied for different classes of entropies such as Tsallis–Havrda–Charvat; the maximization
of Tsallis–Havrda–Charvat entropy under constraints appears to be a way to generalize
Gaussian distributions. In our previous work [17], Tsallis–Havrda–Charvat cross-entropy
is used for the detection of noisy images in pulmonary microendoscopy. To capitalize and
improve on this previous work, we propose to use deep learning in this paper. It allows for
taking advantage of the previously used architecture by tuning and improving it to achieve
better results. Deep learning is also very relevant for our field of study.

Deep learning has been widely developed in the medical field for classification or
segmentation tasks [25–27]. Classification can be used to identify automatically the kind of
cancer from which the patient is suffering [28,29] or the relevant outcomes after treatment,
such as survival expectation [30] or relation to the treatment [31]. Recurrence in cancer
after treatment is one of the main concerns for physicians [32], as it can dramatically impact
the outcome for patients and their life expectancy. It would be beneficial for treatment
selection if one could predict whether a recurrence will occur. Some studies have been
carried out using CT scan images and clinical data. To our knowledge, there is no article
using Tsallis–Havrda–Charvat for recurrence prediction [17]. The novelty of this article
lies in the performance comparison of Shannon and Tsallis–Havrda–Charvat entropies
in the context of cancer recurrence prediction with CT scan data combined with clinical
information for patients affected by head and neck (H&N) or lung cancers (examples of
the analyzed CT images are displayed in Figure 1). Moreover, we decided to study the
parameter value in particular to examine its impact in order to predict these recurrences in
both kinds of cancer. As medical data are generally scarce, the choice of a good entropy is
important even if it can improve the performance only by 1 or 2 percent.
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The paper is organized as follows. In the first section, we recall how categorical
Shannon cross-entropy is defined and how it can be generalized for Tsallis–Havrda–Charvat.
The second section is devoted to experiments and a comparison between the two entropies.

Figure 1. Input images: head–neck CT (above) and lung CT (below).

2. Entropy

As our problem concerns binary prediction, we focused only on finite-state random
variables whose state-space was provided with the counting measure. Obviously, these
results can be generalized for the finite-dimensional vectorial space Rn provided with the
Lebesgue measure.

2.1. Shannon Entropy and Related Cross-Entropy

For a discrete random variable Y, taking its values in Ω = {1, . . . , k} with respective
probabilities p1, . . . , pk, Shannon entropy is defined by:

H(p) = −
k

∑
i=1

log(pi)× pi (1)

Shannon is minimal and equal to 0 if pi = 1 for one i and 0 otherwise; it is maximal if Y is
uniformly distributed. The corresponding cross-entropy is given by:

H(q : p) = −
k

∑
i=1

log(qi)pi (2)

Generally, in a classification problem, the true distribution p is a Dirac distribution δi0 ,
where i0 is the class of the data. In this case, the cross-entropy is H(p; q) = − log(qi0) ≥ 0.
As a consequence, qi0 is closer to 0 and H(p; q) is higher. Furthermore, minimizing the
cross-entropy forces q to be as close as possible to the distribution p, and as this last one is
the Dirac distribution δi0 , the minimum of the cross-entropy is 0.



Entropy 2022, 24, 436 4 of 11

2.2. Tsallis–Havrda–Charvat Cross-Entropy

There are several ways to generalize Shannon entropy, as explained in [14]. Shannon
entropy can be expressed by:

H(q) = −
k

∑
i=1

h(qi) (3)

where h(u) = u log(u). h is a convex function such that h(1) = 0. The idea is to choose
another function satisfying the same properties. Tsallis–Havrda–Charvat entropy is defined
by choosing:

hα(u) =
uα − u
α− 1

, (4)

where α > 0 and is given by:

Hα(q) =
1

α− 1
×

[
1−

k

∑
i=1

qα
i

]
(5)

The associated cross-entropy is given by:

Hα(q : p) =
1

α− 1
×

[
1−

k

∑
i=1

qα−1
i pi

]
(6)

As for classical cross-entropy, Tsallis–Havrda–Charvat cross-entropy forces the predicted
distribution q to be as close as possible to p when p is a Dirac distribution.

3. Neural Network Architecture for Recurrence Prediction

The proposed architecture used for recurrence prediction is a multitask neural network
with a U-Net backbone, with one branch able to perform prediction tasks and another to
reconstruct the input image for extracting features to help prediction. The architecture is
presented in Figure 2.

Figure 2. Architecture of the multitask neural network for recurrence prediction (T2) with the help of
another task (T1: image reconstruction).

The U-Net backbone is composed of three convolutional layers skipped by concatena-
tions to add the features extracted from descending convolutions to the ascending ones.
Within the convolution layers, we use ReLU activation functions.
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At the bottom of the network, the extracted features are sent as inputs to one branch
of fully connected layers in charge of making a decision path to determine whether the
patient is at risk of recurrence.

Two main tasks are jointly carried out by the network. T1 is the reconstruction task,
specific to the U-Net part of the network. It allows for determining whether the features
extracted by the descending part of the U are relevant for prediction and classification and
representative of the whole CT scan at the same time. The loss function used in this task is
the mean squared error. It is defined as follows:

Lrec =
1
N

N

∑
n=1
‖~yn −~̂yn‖2, (7)

where~yn represents the true data values for the n-th patient and ~̂yn is the estimated output
from the network, with ‖.‖ being the Euclidean norm and N the number of patients.

The mean squared error computes the squared distance between the predicted output
and the input image volumes. This function allows for comparing the predicted images
and the true ones voxel-by-voxel and to train the network to recompose the images from
the extracted features.

T2 is the prediction task. It is used to determine, from the same input, whether the
current patient is at risk of encountering a recurrence of their cancer. It is constructed with
fully connected layers and ends up in a binary classification. The prediction task’s loss
function was the subject of our tests. We compared two entropies through this task.

The first, and most commonly used, was Shannon’s binary cross-entropy.

Lpred,1 = − 1
N

N

∑
n=1

[pn × log(qn) + (1− pn)× log(1− qn)], (8)

where pn is the true class, pn = 1 if recurrence, pn = 0 otherwise, and qn is the estimated
probability of recurrence, with N being the number of patients.

The second entropy was the generalized formula, Tsallis–Havrda–Charvat binary
cross-entropy.

Lpred,α =
1

α− 1
×

[
1− 1

N

N

∑
n=1

(qα−1
n pn + (1− qn)

α−1(1− pn))

]
(9)

Binary cross-entropies are loss functions that are able to compare binary predictions
with ground truths, which makes them relevant for our binary labels.

The total loss function of the network is the sum of the two losses. The choice of this
total loss function was motivated by different experiments in which we used different
weights for the individual loss functions. It appears that the sum with equal weights
provided the best results.

Ltotal = Lrec + Lpred,α (10)

The prediction branch is the subject of interest for this article, with the reconstruction
task being used to help the prediction in the feature extraction step.

Regarding the execution time and its change owing to the increasing or decreasing
complexity of the network, we proposed to lock our network at a certain level of complexity
and find an acceptable execution time of 5–7 h for a number of epochs of 100. This was
considered to be a good compromise between obtaining a sufficient number of epochs to
achieve meaningful results and not obtaining so many as to cause overfitting. We decided
to use convolution layers in our U-Net backbone because of the limited computational
power of available machines and thus the need to limit the number of parameters in the
network. Allowing for a few hours of computations enabled the experiments to be run at
night so that the results could be available and ready for analysis the next day.
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4. Experiments
4.1. Datasets

The datasets were composed of 580 patients, among which 434 suffered from head–
neck cancer and 146 from lung cancer. Both datasets were small in size. We chose to
conduct experiments on the two subsets (head–neck and lung) separately. Indeed, the
optimal value of α depends on the kind of data used. Moreover, we had already tested the
total dataset of 580 and the results were poor. We therefore chose to show only the results
for separate datasets.

CT images used in the neural network were resized with an image resolution of
128 × 128 × 64 voxels. The patient information used as input data in the neural network
was of two kinds, namely quantitative and qualitative, as shown in Tables 1 and 2.

Table 1. Quantitative clinical data processed through the network.

Clinical Data Modality

Hemoglobin g/dL
Lymphocytes Giga/L

Leucocytes Giga/L
Thrombocytes Giga/L

Albumin g/L
Treatment duration Days

Total irradiation dose Gy
Number of fractions /

Average dose per fraction Gy
Weight at the start and end of treatment kg

Table 2. Qualitative clinical data processed through the network.

Clinical Data Modality

Gender M/F
Tabacology Smoker, non-smoker, former smoker

Use of induction chemotherapy Yes/No
Use of concomitant chemotherapy Yes/No

TNM Tumor, Node, Metastasis

Our experiments consisted of comparing the accuracy of Tsallis–Havrda–Charvat and
Shannon for both datasets.

4.2. Evaluation Method

Since the study was conducted on small datasets (434 and 146 patients), a result
validation strategy was required. We proposed to use the k-fold cross-validation relevant
for small data validation. In our work, we used a five-fold cross-validation.

The procedure unfolds as follows:

• Shuffle the dataset;
• Split it randomly into 5 subsets;
• For each subset:

Take the subset as a test dataset;
Take the other sets as training data;
Fit the model to the training data and evaluate it on the test dataset;
Retain the evaluation score;

• Summarize the skill of the model from the samples of model evaluation scores.

Furthermore, accuracy was proposed as a metric for evaluation. It consisted, in this
case, in comparing the values of the ground truth and the prediction and summing all these
occurrences over the size of the dataset.
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4.3. Results

The results achieved during the tests are displayed in this section. Reconstructed
images are mainly used in order to show the relevance of extracted features for the pre-
diction. Therefore, their performance is not very important here, because the objective is
the prediction of recurrence. The original images and reconstructed ones are featured in
Figure 3. We can see that the reconstructed images are similar to the input images, meaning
that our network is able to recover input images.

Figure 3. Input images: original images (left) vs. reconstructed images (right).

The loss of information generates uncertainty in each image. A possible improvement
would be to use a fuzzy image processor to improve the quality of the obtained images, as
described in [33].

Comparison Results

Regarding Tsallis–Havrda–Charvat, we studied its hyperparameter α as varying from
0.1 to 2.0. When α = 1, this entropy corresponds to Shannon entropy. The displayed
p-value measures whether the results acquired by Tsallis–Havrda–Charvat five-fold cross-
validation are statistically different from Shannon’s. Two conditions must be satisfied
in order to accept the Tsallis–Havrda–Charvat entropy as providing better results than
Shannon entropy: the average of the five-fold results must be superior to Shannon and the
p-value must be smaller than 0.05. The results are described in the following tables.

The results achieved for the dataset of head–neck cancers are described in Table 3.
Regarding the dataset containing lung cancers, the results achieved are described in

Table 4.
After fine-tuning, we obtained a set of optimal hyperparameters.
The results achieved via the Tsallis–Havrda–Charvat formula confirm that, for most

values of the hyperparameter α, the final accuracy is not superior to the accuracy obtained
by Shannon’s loss function. It can also be observed that the loss function derived from
Havrda–Charvat equation can provide better results than Shannon’s in some cases. How-
ever, it is difficult to know a priori what value of α is good for an application. Its choice is
still a challenge.
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Table 3. Accuracy obtained by loss function derived from Tsallis–Havrda–Charvat entropy in a
function of α for the head–neck cancer dataset (p-values lower than 0.05 and accuracies higher than
Shannon’s are highlighted in blue).

5-Fold
α 1 2 3 4 5 Average SD p-Value

0.1 0.68 0.53 0.6 0.58 0.63 0.60 0.06 0.01
0.3 0.60 0.70 0.70 0.70 0.43 0.63 0.12 0.28
0.5 0.58 0.58 0.60 0.70 0.73 0.64 0.07 0.27
0.7 0.85 0.70 0.60 0.70 0.65 0.70 0.09 0.25
0.9 0.58 0.60 0.60 0.60 0.68 0.61 0.04 0.07
1.0 0.75 0.65 0.68 0.58 0.70 0.67 0.06 N/A (Shannon entropy)
1.1 0.68 0.75 0.75 0.73 0.75 0.73 0.03 0.09
1.3 0.63 0.73 0.68 0.75 0.70 0.70 0.05 0.32
1.5 0.70 0.78 0.85 0.80 0.88 0.80 0.07 0.03
1.7 0.80 0.73 0.63 0.75 078 0.74 0.07 0.07
1.9 0.75 0.73 0.73 0.75 0.83 0.76 0.05 0.02
2.1 0.68 0.63 0.60 0.62 0.575 0.63 0.04 0.12
2.3 0.73 0.73 0.73 0.73 0.7 0.72 0.01 0.09
2.5 0.75 0.58 0.68 0.68 0.6 0.66 0.07 0.34
2.7 0.68 0.53 0.45 0.63 0.6 0.58 0.09 0.04
2.9 0.73 0.73 0.73 0.75 0.73 0.73 0.01 0.07
3.1 0.7 0.55 0.65 0.57 0.63 0.62 0.06 0.02
3.3 0.65 0.65 0.65 0.58 0.55 0.62 0.05 0.07
3.5 0.73 0.75 0.73 0.75 0.70 0.73 0.02 0.08
3.7 0.73 0.70 0.60 0.60 0.58 0.64 0.07 0.20
3.9 0.68 0.70 0.55 0.58 0.53 0.61 0.08 0.09

Table 4. Accuracy obtained by loss function derived from Tsallis–Havrda–Charvat entropy in a
function of α for the lung cancer dataset (p-values lower than 0.05 and accuracies higher than
Shannon’s are highlighted in blue).

5-Fold
α 1 2 3 4 5 Average SD p-Value

0.1 0.58 0.58 0.47 0.58 0.63 0.57 0.06 0.23
0.3 0.58 0.58 0.58 0.58 0.68 0.60 0.04 0.13
0.5 0.63 0.58 0.52 0.58 0.52 0.56 0.03 0.26
0.7 0.58 0.58 0.63 0.63 0.58 0.60 0.03 0.13
0.9 0.63 0.53 0.68 0.47 0.53 057 0.08 0.21
1.0 0.73 0.47 0.47 0.47 0.47 0.52 0.12 N/A (Shannon entropy)
1.1 0.63 0.63 0.52 0.52 0.52 0.56 0.06 0.18
1.3 0.68 0.53 0.53 0.47 0.53 0.55 0.08 0.15
1.5 0.58 0.53 0.53 0.47 0.53 0.53 0.04 0.44
1.7 0.73 0.47 0.63 0.57 0.42 0.56 0.12 0.37
1.9 0.69 0.63 0.58 0.53 0.68 0.62 0.07 0.04
2.1 0.79 0..84 0.73 0..79 0.79 0.79 0.04 0.004
2.3 0.84 0.78 0.84 0.73 0.84 0.81 0.05 0.002
2.5 0.79 0.84 0.74 0.68 0.63 0.74 0.08 0.007
2.7 0.79 0.74 0.69 0.74 0.74 0.74 0.04 0.003
2.9 0.79 0.79 0.79 0.79 0.73 0.78 0.03 0.004
3.1 0.74 0.74 0.78 0.78 0.68 0.74 0.04 0.008
3.3 0.79 0.79 0.74 0.74 0.74 0.76 0.03 0.003
3.5 0.74 0.73 0.68 0.33 0.58 0.61 0.17 0.12
3.7 0.68 0.63 0.47 0.63 0.73 0.63 0.09 0.07
3.9 0.78 0.53 0.47 0.47 0.63 0.58 0.13 0.07

We highlighted the results providing both better accuracy and a significant p-value in
blue. The most promising values were achieved for α equal to 1.5 with head–neck cancers
and between 1.9 and 3.5 with lung cancer. In this regard, we can state that the results
obtained by Tsallis–Havrda–Charvat can be significantly improved compared to Shannon.
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When analyzing the lung cancer results, a plateau can be easily noticed where Tsallis–
Havrda–Charvat achieves better results than Shannon. This involves a specific set of values
of α, from 1.9 to 3.5, in which the Tsallis–Havrda–Charvat loss function is significantly more
efficient than Shannon’s.

5. Discussion

It has been determined that the Tsallis–Havrda–Charvat loss function performs equally
well or better than Shannon cross-entropy, depending on the value of its hyperparameter α.
It can be said that the Tsallis–Havrda–Charvat loss function, depending on the value of its
hyperparameter α, can fit a wider array of input data and can potentially yield better results.

Conversely, we can state that, based on the calculated p-values and standard devi-
ations, Tsallis–Havrda–Charvat entropy seems more unstable than Shannon entropy, as
its standard deviation may reach 0.12, where Shannon’s is only 0.06. Furthermore, when
looking at the p-values for several values of α, the results of Havrda–Charvat are not
statistically different from Shannon’s. The instability of the results obtained using Tsallis–
Havrda–Charvat could be explained by the fact that, despite the five-fold method, the data
are still too scarce to reach a stable answer. In addition, data are tridimensional, making it
more difficult than with 2D images to extract relevant features and thereby complicating
the network’s tasks even further. In the analysis of 3D images, multiple slices must be
taken into account in order to make a decision, which drastically increases the number
of variables to be learned by the neural network. Moreover, in order to be usable for
analysis by the neural network, the data are all supposed to have the same size. This
is why, as for reasons of computational power, it was decided to have the data resized
to 128× 128× 64 voxels. This size, despite still being full of information for the network,
implies a loss of information for wider, larger and deeper images.

Nevertheless, the value of α plays a large part in the behavior of the loss function, and
it is the key element that can be set to fit the input data, but the questions remains: what α
fits which data? The choice of the value of the hyperparameter α remains a challenge as it
depends strongly on the kind of data. In perspective, it would be interesting to develop
an algorithm for selecting automatically the value of this hyperparameter in order to fit it
as accurately as possible to the data. The aim is to reach the plateau, or area, of α where
the Tsallis–Havrda–Charvat loss function provides consistently better results and features
a smaller SD and p-value. A further analysis needs to be conducted on the link between
input data and the location of the best α area in order to determine the kind of extracted
feature and the kind of neuronal path that cause one area to be more efficient than another.
For instance, in our case, the question is about which key feature of the input lung cancer
images leads to better values between 1.9 and 3.5 and which key feature of the input H&N
cancer images lead to better results for α equal to 1.5.

6. Conclusions

In this article, we established that, for our data and in some cases, Tsallis–Havrda–
Charvat cross-entropy performs better than a Shannon-based loss function. Tsallis–Havrda–
Charvat performed best on the head–neck dataset and lung dataset, at 80% and 81%,
respectively, of correct recurrence prediction, while Shannon’s results for these two datasets
were 67% and 52%, respectively. This makes the Tsallis–Havrda–Charvat formula the best
candidate for further research on these datasets. For further research we might adapt
Tsallis–Havrda–Charvat binary cross-entropy to a categorical cross-entropy. This would
allow for making multi-class predictions, including estimating the time between the end
of cancer treatment and recurrence. Another axis of evolution could be finding a way to
automatically determine the proper value of α for a given application.
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