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Abstract
The rapid advances in the field of genome editing using targeted
endonucleases have called considerable attention to the potential of this
technology for human gene therapy. Targeted correction of disease-causing
mutations could ensure lifelong, tissue-specific expression of the relevant gene,
thereby alleviating or resolving a specific disease phenotype. In this review, we
aim to explore the potential of this technology for the therapy of β-thalassemia.
This blood disorder is caused by mutations in the gene encoding the β-globin
chain of hemoglobin, leading to severe anemia in affected patients. Curative
allogeneic bone marrow transplantation is available only to a small subset of
patients, leaving the majority of patients dependent on regular blood
transfusions and iron chelation therapy. The transfer of gene-corrected
autologous hematopoietic stem cells could provide a therapeutic alternative, as
recent results from gene therapy trials using a lentiviral gene addition approach
have demonstrated. Genome editing has the potential to further advance this
approach as it eliminates the need for semi-randomly integrating viral vectors
and their associated risk of insertional mutagenesis. In the following pages we
will highlight the advantages and risks of genome editing compared to standard
therapy for β-thalassemia and elaborate on lessons learned from recent gene
therapy trials.
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β-Thalassemia
β-Thalassemia is a common congenital blood disorder caused by 
mutations in the β-globin gene. Reduced or absent β-globin expres-
sion leads to an imbalance of the α-globin and β-globin subunits 
that form the hemoglobin tetramer. The toxic accumulation of 
excess α-globin chains in developing erythrocytes results in severe 
anemia due to ineffective erythropoiesis1. In its most serious form, 
β-thalassemia major, the condition is fatal if left untreated2. Cur-
rently, allogenic bone marrow transplantation (BMT) is the only 
curative therapeutic option. However, due to the rarity of suitable 
donors, this treatment is available only to a small subset of patients 
and the procedure itself entails a risk of potentially life-threatening 
immunological complications and graft failure, especially for 
patients over 3 years of age3,4.

The majority of β-thalassemia patients depend on regular blood 
transfusions combined with iron chelation therapy for their 
survival5. Even under optimal care, this treatment regimen provides 
a suboptimal quality of life and leaves patients at an increased risk 
of death from cardiomyopathies and infection6,7. New therapeutic 
strategies are therefore needed to better manage β-thalassemia.

Gene therapy for β-Thalassemia
In the past 25 years, the field of gene therapy has made consider-
able progress. Gene therapy aims at the functional cure of disor-
ders through modification of a patient’s genome. Depending on the 
nature of the causative mutation, this could be achieved through the 
introduction of a therapeutic gene, correction of the disease-causing 
mutation, or the elimination of deleterious gene products (reviewed 
by Kay et al., 2011)8.

The major obstacle all gene therapy approaches face is safe and 
efficient gene delivery to the affected tissue or cell type. In vivo 
delivery is particularly difficult due to poor tissue accessibility, 
vector immunogenicity, and limited target cell specificity9. Mono-
genic blood disorders such as severe combined immune deficiency 
(SCID), sickle-cell anemia, and β-thalassemia are remarkably 
attractive targets for gene therapy due to the unique accessibil-
ity of hematopoietic progenitor cells, which can be isolated from 
patient bone marrow10. The ex vivo correction and re-introduction 
of autologous hematopoietic stem cells (HSCs) has no associated 
risk of graft-versus-host disease, the major adverse effect of allo-
genic BMT. Eliminating the necessity of a matched donor poten-
tially makes this approach applicable to all patients. Gene therapy 
could therefore provide a safer and more generally available cura-
tive treatment for blood disorders than allogenic BMT.

Past and ongoing gene therapy trials are mostly focused on the deliv-
ery of a therapeutic gene using integrating viral vectors. This gene 
addition approach has been successfully applied in severe combined 
immunodeficiencies11–13, retinal disorders14–16, and hemophilia17. 
The first successful gene therapy trial for β-thalassemia was 
reported in 201018. The trial employed a lentiviral vector for ex vivo 
delivery of a β-globin transgene into patient HSCs, which were 
subsequently returned to the patient. The treatment was successful 
in one patient who remained transfusion-independent for up to 7 
years19,20. A second trial was subsequently initiated using a modified 
vector. Although long-term results are yet to be released, promising 

preliminary data describe two patients remaining transfusion- 
independent for 14 and 16 months, respectively21. These trials dem-
onstrate that gene therapy has the potential to provide effective 
long-term therapy following a single treatment.

The greatest caveat in the use of integrating lentiviral and retrovi-
ral vectors lies in the inability to control for target site selection, 
which can result in considerable genotoxicity from the transactiva-
tion of nearby proto-oncogenes22,23. This was tragically confirmed 
when four out of nine children treated in the first gene therapy trial 
for SCID-X1 developed leukemia as a result of gamma-retrovirus 
vector integration, causing the death of one patient24. Following 
this setback, vector design was improved by the development of 
self-inactivating lentiviruses, insulator elements, and tissue-specific 
promoters25–27. Nonetheless, insertional mutagenesis still remains 
the major concern with retroviral and lentiviral gene therapy 
approaches28. The importance of understanding and managing this 
risk was again demonstrated by the appearance of a dominant clone 
with a transactivating insertion event near the HMGA2 gene in the 
HSCs of the first successfully treated β-thalassemia gene therapy 
patient18. This event, though only transient, has again emphasized 
the necessity for careful monitoring of patients following treatment 
with integrating vectors.

This issue has driven the search for safer gene therapy approaches. 
One possible solution is the targeted integration of a therapeutic gene 
into a genomic “safe harbor” site that supports long-term transgene 
expression without affecting transcriptional activity at endogenous 
loci. The natural preference of adeno-associated viruses (AAVs) 
for integration at the AAVS1 site on chromosome 19 could poten-
tially provide an alternative to the semi-random integration profile 
of lentiviral and retroviral vectors29. However, their small transgene 
capacity limits the usefulness of AAVs as gene therapy vectors30–32. 
Hybrid strategies combining the site-selective recombinase activ-
ity of the AAV rep protein with larger vectors have the potential 
to overcome this limitation. Based on this principle, we have pre-
viously achieved targeted integration of a bacterial artificial chro-
mosome carrying the whole human β-globin locus into the AAVS1 
site in K562 cells33. Another approach, gene repair through homolo-
gous recombination, has been proposed already in the 1980s34,35. In 
1985, Smithies et al. demonstrated the introduction of heterologous 
DNA sequences into the β-globin locus of human cell lines using 
homologous recombination36. These results led to the first specu-
lation that targeted genome modification via homologous recom-
bination in HSCs could provide a cure for β-hemoglobinopathies. 
However, before the emergence of targeted endonucleases, this 
approach remained limited by low efficiency.

Genome editing
The discovery and development of targetable endonucleases has 
kindled a new enthusiasm for the previously niche area of genome 
modification through homologous repair. These enzymes can be 
engineered to introduce a site-specific double-strand break (DSB) 
into a target genome, which can subsequently be repaired by endog-
enous DNA repair mechanisms (Figure 1). Mammalian cells pos-
sess two major DSB repair pathways: non-homologous end-joining 
(NHEJ) and homology-directed repair (HDR)37,38. NHEJ is error 
prone and leads to the creation of small insertions or deletions at 
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the DSB site. This has been used very efficiently for targeted gene 
knockout in a variety of cell types and for the generation of knock-
out animal models39–44. HDR uses a homologous DNA template to 
repair the broken strand with high fidelity. Fusion of a reporter to a 
gene of interest and gene insertion, as well as targeted gene correc-
tion, have been demonstrated using this approach45–47.

There are three different types of programmable endonucleases. 
Zinc-finger nucleases (ZFNs) and transcription activator-like effec-
tor nucleases (TALENs) are generated by the fusion of repeti-
tive arrays of specific DNA-binding amino acid motifs to a FokI 
endonuclease domain (Figure 1)48–50. Binding of a pair of ZFNs or 
TALENs on opposite DNA strands allows their FokI domains to 
dimerize and become catalytically active, introducing a DSB with 
5’ overhangs into the target site. ZFNs and TALENs both require 
complicated cloning approaches to achieve the arrangement of 

repetitive motifs, imposing penalties of time and expense upon their 
development. The recent adaptation of clustered-interspaced short 
palindromic repeats (CRISPRs) and CRISPR-associated protein 9 
(Cas9) for use in mammalian cells has greatly facilitated genome 
editing applications. The Cas9 endonuclease is targeted to a spe-
cific DNA sequence by a complementary 20-nucleotide sequence 
in a guide RNA (gRNA) bound to the Cas9 protein. New gRNAs 
can be generated quickly and at low cost using standard cloning 
techniques51,52. Due to the ease of use of the Cas9 system, its use 
has rapidly surpassed that of ZFNs and TALENs in the past years 
(Figure 2).

Similar to lentiviral gene therapy, genome editing could be used to 
correct patient HSCs ex vivo for the gene therapy of β-thalassemia. 
Ideally, scarless correction of the β-globin gene in HSCs could 
be achieved through HDR, resulting in the production of healthy 

Figure 1. Genome editing technologies. ZFNs, TALENs, and CRISPR/Cas9 are used to introduce site-specific DSBs into a target genome. 
Subsequently, cellular repair mechanisms can be harnessed to introduce precise genetic modifications. Small insertions and deletions 
generated by NHEJ can be used for gene knockout. In the presence of a homologous repair template, new sequences can be incorporated 
via HDR, allowing for gene repair, transgene insertion, and gene replacement.
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erythrocytes. Several studies have shown that the human β-globin 
locus is amenable to genome editing (Table 1)53–61. However, tech-
nical limitations and safety concerns need to be overcome for this 
novel approach to become clinically applicable.

In contrast to viral gene addition approaches, genome editing does 
not require the use of integrating vectors, as transient expression of 
a targeted endonuclease is sufficient to achieve the necessary DNA 
cleavage. This eliminates the issue of insertional mutagenesis. How-
ever, off-target cleavage at sites other than that intended is a major 
concern with genome editing approaches63–65. For the CRISPR/Cas9 
system, strategies have been developed to reduce the relatively high 
off-target cleavage associated with wild-type Cas9. A mutated Cas9 
protein that introduces a single-stranded nick rather than a DSB can 
be used to increase cleavage specificity. Consequently, two gRNAs 
designed to mediate nicking on opposite strands at the target site are 
required to form a DSB63. However, a single gRNA is still sufficient 

to introduce a DNA nick at off-target sites, which may have adverse 
effects in the target cell. Alternatively, an inactive Cas9 protein can 
be fused to FokI, which only becomes enzymatically active upon 
dimerization. With this approach, two Cas9/FokI hybrid units need 
to be brought together by specific gRNAs to allow cleavage at the 
target site66,67. The target specificity of Cas9 can be further increased 
through the use of a truncated guide sequence of 17 instead of 20 
nucleotides68. However, off-target activity of any nuclease type still 
varies between different genomic targets and cell types69,70. There-
fore, as with all gene therapy strategies, careful vector design and 
thorough evaluation of risks is necessary.

Off-target site prediction tools that rank potential unintended cleav-
age sites based on similarity scores were developed to facilitate the 
evaluation of cleavage stringency for different nuclease platforms. It 
remains to be determined if the targeted analysis of selected putative 
off-target sites is sufficient for the determination of nuclease-associated  

Figure 2. Publications on genome editing between 2005 and 2014. Data obtained from Medline trend using the search terms “CRISPR 
Cas9”, “Zinc-finger nuclease”, and “TALEN” show an increase in the use of programmable endonucleases during this period99.

Table 1. Recent studies employing novel strategies for therapeutic genome editing at the 
human β-globin locus. (iPSCs: induced pluripotent stem cells).

Strategy Cell type Platform Reference

Correction of β-thalassemia mutations Patient iPSCs CRISPR/Cas9 Xie et al., 201455

Patient iPSCs TALENS Ma et al., 201357

Correction of sickle-cell mutation Patient iPSCs TALENs Sun et al., 201462

Patient iPSCs TALENs Ramalingam et al., 201458

Patient iPSCs CRISPR/Cas9 Huang et al., 201554

HSCs ZFNs Hoban et al., 201560

Gene insertion of β-globin cDNA K562 TALENs Voit et al., 201453

γ-globin reactivation MEL TALENs Wienert et al., 201559

Page 5 of 10

F1000Research 2015, 4(F1000 Faculty Rev):1431 Last updated: 15 FEB 2016



risks. Further validation of the reliability of these prediction tools 
via unbiased genome-wide detection of off-target cleavage is 
therefore required. Approaches taking advantage of the occasional 
capture of foreign sequences in genomic DSBs show promise to 
close this information gap71–73. Many studies report minimal to no 
detectable off-target activity across a variety of nuclease platforms 
and target sites60,66,67,74–77. A 2015 publication using ZFNs to cor-
rect the sickle-cell mutation in primary patient HSCs indicates that 
therapeutic genome editing of the β-globin gene can be achieved 
without producing deleterious unintended mutations. The only 
off-target events detected in a genome-wide analysis were located 
in the highly homologous δ-globin gene, which is non-essential60. 
Also, the first clinical phase I human genome editing trial using 
ZFNs to disrupt the CCR5 co-receptor for HIV entry in autolo-
gous CD4 T cells has not produced any adverse events that could 
be attributed to the use of ZFNs78. While further confirmation is 
still required, these findings suggest that off-target effects will not 
restrict genome editing from clinical applications.

Gene therapy trials for SCID are simplified due to the selective 
advantage of gene corrected cells over unmodified HSCs11. In the 
case of the β-hemoglobinopathies, β-globin expression does not 
convey an advantage for HSCs. Consequently, a substantial frac-
tion of HSCs needs to be modified to achieve a therapeutic effect. 
Lentiviral or retroviral delivery and nucleofection of DNA or 
mRNA can achieve transfection rates greater than 80% in primary 
human HSCs79–81. These methods are also suitable for the delivery 
of genome editing tools. A high transduction efficiency, leading to 
a high frequency of target cleavage, is essential for efficient genome 
editing. However, low HDR frequency in naïve HSCs, accompa-
nied by a background of disruptive NHEJ, currently impedes the 
generation of therapeutic levels of edited cells60,82. Although NHEJ 
is unlikely to produce adverse effects in an already non-functional 
gene, it will be crucial to increase the fraction of cells that undergo 
HDR genome editing to be successful in the clinic. Several groups 
have developed screening methods that permit simultaneous quanti-
fication of NHEJ and HDR83–87. These can be used for the identifica-
tion of conditions that favor HDR. Most notably, inhibition of DNA 
ligase 4, which is required for the NHEJ pathway, has been shown 
to not only decrease NHEJ but also increase HDR frequencies in 
cell lines and mouse embryos88,89. As the repair pathway choice in 
a cell is largely dependent on the cell cycle stage, cell synchroni-
zation and timed nuclease delivery could also bias cells towards 
HDR90. Increasing the frequency of gene correction in HSCs will be 
crucial in determining the feasibility of therapeutic genome editing 
in the hematopoietic system.

A future in the clinic
Although low HDR efficiency and safety concerns regarding off-
target effects are currently obstructing the therapeutic application 
of genome editing, strategies to resolve these limitations are rapidly 
progressing. As with all novel therapeutics, every custom genome 
editing vector will be subject to careful clinical trials. It is there-
fore crucial to design therapeutic genome editing strategies to be as 
inclusive as possible, i.e. to minimize the number of different vec-
tors required to treat the maximum number of patients. While over 
200 mutations are known to cause β-thalassemia, a relatively small 
number of mutations account for the majority of cases91. Therefore, 
a small number of Cas9/gRNA vectors could be sufficient to address 

the majority of patients. Alternatively, the introduction of two DSBs 
at either side of the β-globin gene could allow for gene replacement 
without the need for allele-specific vectors, thus placing a therapeu-
tic β-globin under the control of endogenous regulatory elements 
at the β-globin locus53,92. Like lentiviral gene therapy, genome edit-
ing can also be applied to gene addition. A single genome edit-
ing vector targeting a safe harbor site could be combined with a 
separate HDR template containing a therapeutic β-globin gene. 
This approach has the potential to provide a universally applicable 
strategy, as a single genome editing vector could be used for a large 
range of monogenic disorders by simply exchanging the HDR tem-
plate. Genome editing also has the potential to introduce mutations 
that modify the severity of β-thalassemia. It is known from individ-
uals with hereditary persistence of fetal hemoglobin that elevated 
expression of γ-globin, a developmentally silenced β-globin-like 
gene, can be protective of the pathologic effects associated with 
the absence of β-globin expression93,94. Replication of this pheno-
type through genome editing could therefore alleviate the symp-
toms in β-thalassemic patients. A recent study employed TALENs 
to introduce a single point mutation within the β-globin locus to 
increase the expression of γ-globin59. Interference with the expres-
sion of BCL11A, a major regulator of β-globin gene expression, 
has also been shown to promote the expression of γ-globin95,96. An 
erythroid-specific enhancer for BCL11A expression was recently 
identified by Bauer et al.97. Targeted elimination of this enhancer in 
patient-derived HSCs could allow the induction of γ-globin expres-
sion in erythroid cells without affecting BCL11A-dependent proc-
esses in other lineages98. This could be achieved through an NHEJ 
approach, unimpeded by the low frequency that currently limits 
strategies depending on HDR. However, in the future, the latter 
could be applied to the correction of patient-derived iPSCs, thus 
circumventing the issue of HDR efficiency, since a large number 
of cells can be generated from a few corrected clones. With this 
range of possibilities, genome editing is diversifying gene therapy 
research with the potential to greatly relieve the global health 
burden of the β-hemoglobinopathies.
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