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Transcriptomic data derived from bulk sequencing have been applied to

delineate the tumor microenvironment (TME) and define immune subtypes

in various cancers, which may facilitate the design of immunotherapy treat-

ment strategies. We herein gathered published gene expression data from

diffuse lower-grade glioma (LGG) patients to identify immune subtypes.

Based on the immune gene profiles of 402 LGG patients from The Cancer

Genome Atlas, we performed consensus clustering to determine robust

clusters of patients, and evaluated their reproducibility in three Chinese

Glioma Genome Atlas cohorts. We further integrated immunogenomics

methods to characterize the immune environment of each subtype. Our

analysis identified and validated three immune subtypes—Im1, Im2, and

Im3—characterized by differences in lymphocyte signatures, somatic DNA

alterations, and clinical outcomes. Im1 had a higher infiltration of CD8+

T cells, Th17, and mast cells. Im2 was defined by elevated cytolytic activity,

exhausted CD8+ T cells, macrophages, higher levels of aneuploidy, and

tumor mutation burden, and these patients had worst outcome. Im3 dis-

played more prominent T helper cell and APC coinhibition signatures, with

elevated pDCs and macrophages. Each subtype was associated with distinct

somatic alterations. Moreover, we applied graph structure learning-based

dimensionality reduction to the immune landscape and revealed significant

intracluster heterogeneity with Im2 subtype. Finally, we developed and val-

idated an immune signature with better performance of prognosis predic-

tion. Our results demonstrated the immunological heterogeneity within

diffuse LGG and provided valuable stratification for the design of future

immunotherapy.

1. Introduction

Diffuse lower-grade gliomas (LGGs) consisting of

World Health Organization (WHO) grade II and III

gliomas are infiltrative brain tumors that arise from glial

or precursor cells, showing a more indolent course com-

pared with glioblastoma (GBM, grade IV) (Jiang et al.,

2016; Lapointe et al., 2018). The survival of this tumor

ranges widely (from 1 to 15 years) and varies consider-

ably when stratified by tumor type. Based on the IDH
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mutation and 1p/19q codeletion status, LGGs are classi-

fied into three diagnostic and prognostic subtypes in the

2016 WHO classification: IDH wild-type (holding the

worst outcome), IDH mutant and 1p/19q intact, and

IDH mutant and 1p/19q codeleted tumors (oligoden-

drogliomas) (Louis et al., 2016). Despite multimodal

treatment, including neurosurgical resection, radiother-

apy, and chemotherapy, tumor recurrence and malig-

nant progression are inevitable because of their highly

invasive nature and treatment resistance (Cancer Gen-

ome Atlas Research et al., 2015).

Recently, different immunotherapeutic approaches

have proved to be successful in treating many malig-

nant cancers (Del Paggio, 2018). These include

immune checkpoint blockade, cytokine therapy, cellu-

lar therapy, and therapeutic vaccines (Christofi et al.,

2019). Immune checkpoint inhibitors such as cytotoxic

T lymphocyte antigen-4 (CTLA-4), programmed cell

death protein 1 (PD-1), and PD-1 ligand (PD-L1) anti-

bodies have shown significant antitumor activity in

several human cancers (Le et al., 2015a; Reck et al.,

2016; Wolchok et al., 2013) . Two cytokines (IL-2 and

IFN-ａ) are approved by FDA as antitumor agents

against metastatic melanoma and kidney cancer (Mir-

jacic Martinovic et al., 2017). Chimeric antigen recep-

tor (CAR)-engineered T-cell therapy redirects T-cell

killing to cells that express the antibody’s cognate

tumor-associated surface antigen, and has yielded

encouraging results in hematologic cancers (Grupp

et al., 2013; Kalos et al., 2011). Preventative and thera-

peutic vaccines are also effective in several cancers,

such as human papillomavirus (Mammas et al., 2011),

hepatitis B virus vaccines (Chemin, 2010), Sipuleucel-

T, and GVAX vaccine against prostate cancer (Kant-

off et al., 2010; Le et al., 2015b). However, there is

disparity in response rates across and within tumor

types, and not all patients benefit from immunother-

apy (Christofi et al., 2019).

More than four decades of efforts with variety of

immunotherapeutic modalities yield limited successes

in glioma. Glioma imbues numerous obstacles to suc-

cessful immunotherapy, including tumor heterogeneity,

low mutational burden, T-cell dysfunction, and poor

immune access (Fecci and Sampson, 2019). Moreover,

new finding reveals that tumor-directed sequestration

of T cells in bone marrow severely restricts the access

of T cells to tumors in the CNS (Chongsathidkiet

et al., 2018). Despite successes with checkpoint block-

ade in many cancers, CTLA-4 and PD-1 inhibitors

have failed in clinical trials of glioma (Schalper et al.,

2019). CAR T cells targeting EGFRvIII, IL12Rａ and

HER2 are proved to be safe in preclinical studies of

GBM, and the clinical antitumor capabilities remain

to be seen (Ahmed et al., 2017; Brown et al., 2015;

Johnson et al., 2015). Despite excellent preclinical effi-

cacy, EGFRvIII-targeted peptide vaccine (Rin-

dopepimut) exhibits no significant improvement in

median overall survival (OS) of GBM patients in

phase III clinical trial (Weller et al., 2017).

For successful immunotherapeutic approaches, it will

require better understanding of glioma-specific immune

microenvironment. A growing number of studies have

demonstrated that the TME remains highly divergent in

different subtypes of glioma. The TME of GBM has

been delineated by the proportion and gene expression

signatures of immune cells, but the clinical implications

of these immune cells are still disputed (Berghoff et al.,

2015; Lohr et al., 2011). Michael and Luoto found that

transcriptional and mutational subtypes were character-

ized by distinct TME in high-grade gliomas and GBM,

respectively (Bockmayr et al., 2019; Luoto et al., 2018).

Reduced immune infiltrates were observed in IDH

mutant glioma (Amankulor et al., 2017), while Wang

found increased macrophage infiltration in NF1 mutant

tumors (Wang et al., 2017). However, the immune

microenvironment of diffuse LGG has not been fully

characterized.

In this study, we classified diffuse LGG into three

distinct subtypes based on consensus clustering of

immune-related gene expression profiles. We demon-

strated the stability and reproducibility of this classifi-

cation in an independent cohort. Each of the three

immune subtypes was associated with distinct molecu-

lar and cellular features, and clinical outcomes. The

identification of immune-related subtypes may facili-

tate the optimal selection of LGG patients responsive

to immunotherapy.

2. Materials and methods

2.1. Patients and datasets

This study collected 1018 diffuse LGGs from two

databases: The Cancer Genome Atlas (TCGA) and

Chinese Glioma Genome Atlas (CGGA). For the

TCGA discovery cohort (402 LGG patients; Table 1),

the RNA-seq data, somatic mutation, copy-number

alterations (CNAs), and corresponding clinical infor-

mation were obtained from TCGA database (http://ca

ncergenome.nih.gov/) (Ceccarelli et al., 2016). The

molecular and immune-related features, including

neoantigens, immune cell composition, TCR/BCR sta-

tus, and other signatures, were also retrieved (Thors-

son et al., 2018). Three CGGA validation cohorts were

involved in this study: two RNA-seq cohorts (cohort1

2082 Molecular Oncology 14 (2020) 2081–2095 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Immune subtyping in lower-grade diffuse glioma F. Wu et al.

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/


and cohort2) and a microarray cohort (cohort3)

(Table 1). The RNA-seq and microarray data, and

clinical and survival information were downloaded

from CGGA database (http://www.cgga.org.cn) (Hu

et al., 2018; Zhao et al., 2017). Patient informed con-

sent was existing in these two public datasets, and this

study was carried out in accordance with the Helsinki

Declaration and approved by the ethics committee of

Tiantan Hospital.

2.2. Identification and validation of immune

subtypes

Based on the expression of 782 immune-related genes

listed in the literature (Charoentong et al., 2017; Gen-

tles et al., 2015), we applied consensus clustering to

identify robust clusters of TCGA patients (Wilkerson

and Hayes, 2010; Wu et al., 2019a). 80% item resam-

pling, 50 resamplings and a maximum evaluated K of

10 were selected for clustering. The cumulative distri-

bution function and consensus heatmap were used to

assess the optimal K.

To validate the immune subtypes in CGGA cohort,

we first identified the immune-related genes shared by

the training and validation cohorts (751 genes). Then,

we trained a partition around medoids (PAM) classi-

fier in the discovery cohort to predict the immune sub-

type for patients in the validation cohort (package

pamr), and each sample in the validation cohort was

assigned to an immune subtype whose centroid had

the highest Pearson correlation with the sample (Tib-

shirani et al., 2002). Finally, the in-group proportion

(IGP) statistic (package clusterRepro) was performed

to evaluate the similarity and reproducibility of the

acquired immune subtypes between discovery and vali-

dation cohorts (Kapp and Tibshirani, 2007).

2.3. Computation of molecular signatures and

immune cellular fraction

ESTIMATE was performed to evaluate the immune

cell infiltration level (immune score) and stromal con-

tent (stromal score) for each sample (Yoshihara et al.,

2013). The enrichment levels of proliferation and 23

immune signatures were quantified by the single-sam-

ple gene set enrichment analysis (ssGSEA), as imple-

mented in the GSVA R package (Hanzelmann et al.,

2013; He et al., 2018). The relative fraction of 22

immune cell types in tumor tissue was estimated using

CIBERSORT algorithm (Newman et al., 2015).

2.4. Immune landscape analysis

To further uncover the intrinsic structure and distribu-

tion of individual patients, we extended a graph learn-

ing-based dimensionality reduction analysis to the

immune gene expression profiles. The discriminative

dimensionality reduction with trees (DDRTree) was

used, and the immune landscape was visualized with

the plot cell trajectory function (package monocle) (Li

et al., 2019; Trapnell et al., 2014).

2.5. Identification of an immune-related

signature

First, we applied significance analysis of microarray

(SAM) to identify differentially expressed immune

genes between subtypes. Univariate Cox regression

analysis was performed to determine the immune genes

Table 1. Clinical and molecular characteristics of patients included

in this study.

Characteristic

TCGA

cohort

(n = 402)

CGGA

cohort1

(n = 171)

CGGA

cohort2

(n = 274)

CGGA

cohort3

(n = 171)

Age

≤ 41 206 99 154 100

> 41 196 72 120 71

Gender

Male 223 104 121 99

Female 179 67 153 72

TCGA subtype

Classical 29 22 29 7

Mesenchymal 23 15 35 31

Proneural 85 65 116 65

Neural 181 69 93 68

NA 84 0 1 0

Grade

II 191 104 133 120

III 211 67 141 51

IDH

Mutant 329 126 178 110

WT 73 45 66 57

NA 0 0 30 4

MGMT promoter

Methylated 332 76 Unavailable Unavailable

Unmethylated 70 43 Unavailable Unavailable

NA 0 52 Unavailable Unavailable

TERT promoter

Mutant 115 50 Unavailable Unavailable

WT 140 90 Unavailable Unavailable

NA 147 31 Unavailable Unavailable

1p/19q

Codeleted 137 34 82 41

Non-

codeleted

265 110 160 130

NA 0 27 32 0

2083Molecular Oncology 14 (2020) 2081–2095 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

F. Wu et al. Immune subtyping in lower-grade diffuse glioma

http://www.cgga.org.cn


with prognostic significance. Then, the Cox propor-

tional hazards model, which was suitable for high-di-

mensional regression analysis, was used to construct

an optimal and prognostic gene set (package glmnet)

(Hughey and Butte, 2015; Wu et al., 2019b). The linear

combination of gene expression weighted by regression

coefficients (Coeffs) was used to calculate the risk

scores of patients.

2.6. Statistical analysis

The Kaplan–Meier with log-rank test was used to

assess survival difference between groups. The univari-

ate and multivariate Cox regression analyses were per-

formed to detect the prognostic factors. All statistical

analyses were conducted using R software, GRAPHPAD

PRISM 6.0 (GraphPad Inc, San Diego, CA, USA) and

SPSS 16.0 (IBM, CHICAGO, IL, USA). P < 0.05 was con-

sidered statistically significant.

3. Results

3.1. Immune subtypes in diffuse lower-grade

glioma

By applying consensus clustering on the gene expres-

sion profile of annotated immune-related genes

(Charoentong et al., 2017; Gentles et al., 2015) on

TCGA 402 LGGs, three resulting clusters ‘immune

subtypes’, Im1-Im3, were defined (Fig. S1). We then

calculated the centroid of each immune subtype and

identified six gene modules (GM) (Fig. 1A). Gene

ontology analysis revealed that the functions of

GMs 3 and 5 enriched in Im2 correspond to cell

division and immune response, respectively (Fig. S2).

Principal component analysis (PCA) further con-

firmed robust differences in the expression portraits

between the three immune subtypes (Fig. 2A). Of

note, Im2 was associated with the worst outcomes

among these subtypes, and contained majority of

patients with classical and mesenchymal subtype.

Tumors with grade III, IDH wild-type, and 1p/19q

non-codeletion (62/73, 85%) were enriched in this

subtype. By contrast, Im1 and Im3 had better

prognosis were mainly neural and proneural subtype.

Im1 was enriched in particular tumors with IDH

mutation and 1p/19q codeletion (130/137, 95%),

whereas Im3 had more tumors with IDH mutation

and 1p/19q non-codeletion (103/192, 54%) (Fig. 2B,

C). When it comes to the DNA methylation sub-

types across pan-glioma dataset (Ceccarelli et al.,

2016), Im1 was mainly comprised of LGm2 (67/192,

34%) and LGm3 (98/101, 97%). Tumors of LGm4

(18/19, 95%), LGm5 (33/34, 97%), and LGm6 (11/

21, 52%) were enriched in Im2 subtype, whereas

LGm2 (98/192, 51%) was prevalent in Im3 (Fig. S3).

To validate our findings in TCGA cohort, we evalu-

ated reproducibility of the immune subtypes in CGGA

cohorts. Each sample was assigned to an immune sub-

type according to the Pearson correlation of centroid

(Fig. 1B–D). IGP statistic showed high consistency

between TCGA and CGGA cohorts (Table S1). More-

over, the obtained immune subtypes displayed similar

pattern of prognostic and pathological features with

TCGA cohort (Fig. 2A–C).

3.2. Cellular and molecular characteristics of

immune subtypes

To uncover the immune heterogeneity among these

three subtypes, we resorted to several immune-related

tools. We computed stromal and immune scores based

on the ESTIMATE method (Yoshihara et al., 2013).

Compared with Im1 and Im3, tumors in Im2 had

higher immune and stromal scores but lower purity

(Fig. 3A). CIBERSORT (Newman et al., 2015) analy-

sis also revealed Im1 had an increased percentage of

lymphocytes, whereas Im2 and Im3 displayed higher

level of M2 macrophages (Fig. 3B). We also used the

ssGSEA (Hanzelmann et al., 2013) score to quantify

the enrichment levels of immune cells and functions.

Im2 subtype was associated with higher levels of

CD8+ T cell, cytolytic activity, exhausted CD8+ T

cells, macrophages, and elevated T-cell costimulation.

Most immune cells tended to be increased in Im1 and

Im3 subtypes, such as B cells, neutrophils, Treg, Th1,

and Th2. Notably, Im1 tumors showed higher enrich-

ment of CD8+ T cell, Th17, and mast cells, whereas

Im3 had relatively higher levels of T helper cells,

Fig. 1. Consensus clustering identified three immune subtypes. (A) Heatmap of three immune subtypes defined by six GM (626 genes) in

TCGA cohort. Genes are ordered based on the GM, and patients are arranged based on their immune subtypes. (B–D) Heatmaps show the

immune subtypes of CGGA cohorts (cohort1, cohort2, and cohort3) predicted by a PAM classifier trained on the TCGA cohort. Patients are

arranged based on the predicted immune subtypes. Genes are ordered according to the GM. Molecular and clinical information are also

annotated for each patient.
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pDCs, and macrophages, along with increased func-

tions of APC and T-cell coinhibition (Fig. 3C). In

addition, Im2 had higher TCR diversity and more

neoantigen load (Fig. S4). Most HLA and checkpoint

genes showed significantly higher expression levels in

Im2 subtype (Fig. S5). We next sought to dissect the

immune infiltrations of each subtype in three CGGA

cohorts and obtained consistent results (Figs 3A–C
and S5). Collectively, these results suggested that the

TME of Im2 was immune-hot but highly immune-sup-

pressive, whereas Im1 and Im3 tumors showed rela-

tively moderate immune microenvironment.

Fig. 2. Three immune subtypes show distinct pathologic features and outcome in TCGA and CGGA cohorts. (A) PCA of three immune

subtypes using 626 genes in TCGA and CGGA cohorts. (B) The Kaplan–Meier analysis of immune subtypes based on OS. P value was

calculated by the log-rank test among subtypes. (C) Bar plots show the proportion of tumors stratified by pathologic features within immune

subtypes. CL, classical; ME, mesenchymal; NE, neural; PN, proneural. A, astrocytoma; O, oligodendroglioma; OA, oligoastrocytoma. Sub1:

IDH mutant and 1p/19q codeleted, Sub2: IDH mutant and 1p/19q non-codeleted, Sub3: IDH wild-type.

Fig. 3. Tumor immune infiltrate in three immune subtypes. (A) Comparison of immune, stromal, and tumor purity scores (from ESTIMATE)

for different immune subtypes in TCGA and CGGA cohorts (t-test). (B) Comparison of lymphocyte and M2 macrophage proportion (from

CIBERSORT) for different immune subtypes in TCGA and CGGA cohorts (t-test). Lymphocytes = B cells+ T-cell CD4+ T-cell CD8+ T-cell

follicular helper+ Tregs+ T-cell gamma/delta+ NK cells+ plasma cells. Error bars show standard error of the mean, and the middle bar

represents the median level of corresponding features. (C) Hierarchical clustering of GSVA signature scores in TCGA and CGGA cohorts

(ANOVA test). *P < 0.05; **P < 0.01; ***P < 0.001.
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3.3. Prognostic associations of tumor immune

response measures

Since infiltrating immune cells have been shown to be

prognostic in many human cancers (Gentles et al.,

2015), we determined the effects of immune cell signa-

tures and functions on the outcome of diffuse LGG.

Out of these immune signatures, Th1, mast cells, neu-

trophils, and Treg were associated with better OS.

When stratified by immune subtypes, improved sur-

vival was observed in association with cytolytic activity

in Im2, and Im1 patients with high scores of neu-

trophils or Treg tended to have better outcome

(Fig. 4A,B). Likewise, we assessed the prognostic value

of major immune checkpoints, and found that high

expression of PDCD1, HAVCR2, and IDO1 implied

worse outcome (Fig. S6A,B). When stratified by IDH

and 1p/19q status, these immune signatures and check-

points showed no significant prognostic correlation

(Fig. S7). Additionally, strong correlations were

observed between cytolytic activity and T-cell costimu-

lation/inflammation-promoting, neutrophils and Treg,

T-cell coinhibition and T helper cells/pDCs/APC coin-

hibition, PDCD1 and IDO1/LAG3 (Fig. S8A,B). We

next interrogated the validation cohort and obtained

similar results (Figs 4, S6 and S8). These results sug-

gested that infiltrating immune cells might impact

patients’ outcome, and provided valuable targets of

immune treatment for diffuse LGG.

3.4. Somatic variation of immune subtypes

Recent studies have linked the tumoral genomic alter-

ations with immune infiltrate (Charoentong et al., 2017;

Fig. 4. Immune cell signatures were associated with clinical outcome of diffuse LGG. (A) Heatmaps show hazard ratios for immune

expression signature scores in relation to v within immune subtypes. Correlation of OS was assessed by Cox regression analysis.

*P < 0.05; **P < 0.01; and ***P < 0.001. (B) The Kaplan–Meier analyses of tumors stratified by Th1, mast cell, neutrophil, and Treg scores

in TCGA and CGGA cohorts. P value was calculated by the log-rank test.
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Thorsson et al., 2018). We further explored the differ-

ence in genomic alterations among these three immune

subtypes. Im2 tumors showed high aneuploidy, homolo-

gous recombination deficiency, and copy-number bur-

den scores, as well as increased tumor mutation burden

(Fig. 5A). We correlated gene mutations with immune

subtypes and found significant associations. Im1 was

enriched in IDH1, 1p/19q codeletion, CIC, FUBP1, and

NOTCH1 mutations. Im2 was enriched in mutations in

driver genes, such as PTEN, EGFR, and NF1, a finding

of note since tumors with NF1 mutation had increased

macrophage infiltration (Wang et al., 2017). Im3 was

enriched in IDH1, ATRX, and TP53 mutations

(Fig. 5B). GISTIC2.0 analysis revealed distinct CNAs

among immune subtypes. Im2 showed more frequently

deleted or amplified regions, such as CDKN2A/

CDKN2B, EGFR1, CDK4, KIT, and PDGFRA

(Fig. 5B). These findings indicated that tumors with

high immune infiltration might have higher levels of

genomic alterations.

3.5. Dimension reduction analysis identifies two

distinct subgroups in Im2

For defining the immune landscape of diffuse LGG,

we further applied the graph learning-based dimen-

sionality reduction analysis (Li et al., 2019; Trapnell

et al., 2014) to the immune gene expression profiles.

We observed that Im2 could be further divided into

two subgroups (Im2A and Im2B) based on their loca-

tion in the immune landscape (Fig. 6A,B). Interest-

ingly, the two subgroups were associated with distinct

prognosis. Compared with Im2B, Im2A had better

outcome (Fig. 6C). Of note, ssGSVA found Im2A was

associated with higher levels of immune cells and func-

tions, such as T helper cells, CD8+ T cells, cytolytic

activity, exhausted CD8+ T cells, neutrophils, macro-

phages, T-cell coinhibitions, APC costimulation, and

pDCs, suggesting a hot and suppressive immune

microenvironment in Im2A. In contrast, Im2B

showed a relatively cold immune state and enhanced

Fig. 5. Genomic alterations within immune subtypes of TCGA cohort. (A) Comparison of DNA damage measures within immune subtypes

of TCGA cohort (t-test). Error bars show standard error of the mean, and the middle bar represents the median level of corresponding

features. (B) Differential somatic mutations and copy-number variations analyses within three immune subtypes (Fisher test). *P < 0.05;

**P < 0.01; ***P < 0.001; and ****P < 0.0001.
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Fig. 6. The intracluster heterogeneity revealed by the immune landscape analysis in TCGA cohort and CGGA cohort 2. (A, B) Graph learning-

based dimensionality reduction analysis to the immune gene expression profiles with colored state and immune subtypes. Each point

represents a patient with colors corresponding to state and immune subtypes. (C) The Kaplan–Meier analysis of two Im2 subtypes based

on OS. P value was calculated by the log-rank test. (D) Hierarchical clustering of GSVA signature scores (t-test). (E) Comparison of M2

macrophage proportion (from CIBERSORT) between Im2A and Im2B (t-test). Error bars show standard error of the mean, and the middle

bar represents the median level of corresponding feature. * P < 0.05; **P < 0.01; and ***P < 0.001.
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proliferation rate (Fig. 6D). In addition, CIBERSORT

(Newman et al., 2015) analysis also revealed Im2A

had an increased percentage of M2 macrophages

(Fig. 6E). Similar results were obtained in Im2 subtype

of CGGA cohort2 (Fig. 6). There data further indi-

cated a significant intracluster heterogeneity within

immune subtypes.

3.6. Development and validation of an immune-

related signature using Cox proportional hazards

model

We obtained and validated a survival model using

elastic-net Cox proportional hazards modeling with

cross-validation. SAM analysis identified 421 differen-

tially expressed immune genes between Im2 and Im1/

m3 subtypes, wherein 359 genes were significantly cor-

related with patients’ OS in univariate Cox regression

analysis (Fig. 7A). Then, Cox proportional hazards

modeling was performed for identifying a model with

best prognostic value (Fig. 7B). An eight-gene immune

signature was obtained, and the scores were computed

with the regression coefficients (Fig. 7C). High scores

were enriched in tumors of Im2, classical and mes-

enchymal, grade III, or IDH wild-type (Fig. 7D). The

Kaplan–Meier analysis revealed that high scores

implied significantly poorer outcome in patients of dif-

fuse LGG or each immune subtype (Fig. 7E,F). In

addition, the acquired signature had higher area under

the curve (AUC) compared with other factors (age

and grade) (Fig. 7G). Multivariate Cox regression

analysis also confirmed the independent prognostic

value of this immune signature (Tables S2 and S3).

We further applied this signature into validation

cohorts and found consistent results (Fig. S9,

Tables S2 and S3). These data demonstrated the supe-

rior performance of immune signature for prognosis

prediction, highlighting the importance of the immune

TME in determining survival.

4. Discussion

Recently, early studies from clinical practice or ongo-

ing trials with immunotherapies show limited effective-

ness in treatment of glioma (Ahmed et al., 2017;

Schalper et al., 2019; Weller et al., 2017). A better

understanding of the tumor immune microenvironment

is critical for improving the efficacy of current

immunotherapies. Here, we presented a comprehensive

characterization of immunological profile of lower-

grade diffuse glioma. Our results showed that diffuse

LGG could be classified into three stable subtypes,

and the reproducibility of this classification was

demonstrated in validation cohort. Each of the

immune subtypes was associated with distinct immune

cell fractions, functions (from deconvolution of gene

expression), somatic alterations, and clinical outcomes.

Our works deepened the understanding of immune

microenvironment of diffuse LGG, and provided valu-

able information for personalized immunotherapy.

Im2 subtype conferred the worst outcome on their

constituent tumors and showed composite signatures

reflecting a high lymphocytic infiltrate, with high M2

macrophage content and checkpoint gene expression,

indicating an immune-hot but immune-suppressive

TME. Im1 had favorable prognosis and demonstrated

the most pronounced Th17 signature, consistent with a

recent study suggesting that Th17 expression is associ-

ated with improved survival (Punt et al., 2015). Im3 was

T helper cell-dominant and showed a better survival

despite having high M2 macrophage content. Given that

the discrete subtype information did not provide the

intrinsic structure and distribution of individual

patients, we further applied the graph learning-based

dimensionality reduction analysis to the immune gene

expression profiles (Trapnell et al., 2014). We revealed

that Im2 subtype could be further divided into two sub-

groups, which had significant difference in immune infil-

tration and prognosis. Compared with Im2A, Im2B

displayed lower lymphocytic infiltrate and worse out-

come, in agreement with a cold TME for which a poor

outcome would be expected. These implied the complex-

ity of immune landscape of diffuse LGG.

Recently, Amankulor and colleagues reported that

the IDH1 mutation is associated with a decreased

number of immune cells in the glioma tumor microen-

vironment (Amankulor et al., 2017). Consistently, we

showed that Im1 and Im2, which were enriched in

IDH1 mutation, had lower immune infiltrate. We also

observed that Im2, which was enriched in NF1 muta-

tion, was characterized by high macrophages, in agree-

ment with the finding that tumors with NF1 mutation

had increased macrophage infiltration in glioma (Wang

et al., 2017). These indicated that the somatic alter-

ations might shape the immune subset composition,

and further work is needed to determine the functional

aspects of these correlations.

Tumor neoantigens are associated with improved

survival and thought to be key targets of antitumor

immunity in many tumors (Brown et al., 2014). As

expected, Im2 subtype, which had more mutation bur-

den, was associated with increased neoantigen load.

However, we observed conflicting result that Im2 sub-

type showed worse prognosis, suggesting that the role

of neoantigens might vary in LGG, or inaccurate

method for neoantigen identification.
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When we associated immune subtype with IDH or

1p/19q status in TCGA cohort, 95% (130/137) of IDH

mutant and 1p/19q codeleted LGG were enriched in

Im1. 85% (62/72) IDH wild-type LGG were enriched

in Im2. 23% (45/192), 23% (44/192), and 54% (103/

192) of IDH mutant and 1p/19q non-codeleted LGG

were enriched in Im1, Im2, and Im3, respectively.

These indicated that immune gene expression profiles

could partially reproduced the WHO LGG

classification based on IDH mutation and 1p/19q

codeletion status. This consistency was meaningful for

advancing our view of genomic and immune land-

scapes in LGG.

Considering the insufficiency of univariate Cox

model for variable selection, we adopted an elastic-net

regression Cox modeling (Thorsson et al., 2018) to

develop an immune signature that had better perfor-

mance for prognosis prediction in diffuse LGG. Three

Fig. 7. Identification of an immune signature by Cox proportional hazards model. (A) Venn diagram shows prognosis-related immune genes,

which are differentially expressed between Im2 and Im1/m3 subtypes. (B) Cross-validation for tuning parameter selection in the proportional

hazards model. (C) Heatmap shows the expression levels of signature genes. (D) Distribution of immune scores in cases stratified by

immune subtype, grade, TCGA, and WHO subtype. CL, classical; ME, mesenchymal; NE, neural; PN, proneural. Sub1: IDH mutant and 1p/

19q codeleted, Sub2: IDH mutant and 1p/19q non-codeleted, Sub3: IDH wild-type. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

(E, F) Survival analysis of the immune signature in diffuse LGG or immune subtypes. P value was calculated by the log-rank test. (G) ROC

curve analysis of age, grade, and immune score.
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hundred and fifty-nine differentially expressed immune

genes between Im2 and Im1/m3 subtypes were

employed to develop a prognostic indictor. Low- and

high-score tumors displayed significant survival differ-

ences in both cohorts, with good prediction accuracy.

However, more prospective studies were needed for

further validation of this immune signature.

5. .Conclusions

In summary, three stable and reproducible immune

subtypes were identified in lower-grade diffuse glioma.

These subtypes were associated with prognosis,

genetic, molecular, and cellular characteristics that

may shape the specific immune environment we have

observed. The definition of the immune subtype of dif-

fuse LGG may play a critical role in predicting clinical

outcome, as well as rational design of immunotherapy.

Acknowledgements

The authors conducting this work represent the Chi-

nese Glioma Cooperative Group (CGCG).

This study was supported by the National Natural

Science Foundation of China (NSFC)/Research Grants

Council (RGC) Joint Research Scheme (81761168038),

National Key Research and Development Plan

(2016YFC0902500), and National Natural Science

Foundation of China (81672479).

Conflict of interest

The authors declare no conflict of interest.

Data accessibility

All data supporting this study were openly available

from TCGA database (http://cancergemome.nih.gov/)

and CGGA database (http:// www.cgga.org.cn/).

Author contributions

WZ and ZZ conceived and designed the study. FW,

ZW, KW, and GL performed most of analysis with

assistance from RC, YL, HJ, YZ, and YF.

References

Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M

and Landi D (2017) HER2-specific chimeric antigen

receptor-modified virus-specific T cells for progressive

glioblastoma: a phase 1 dose-escalation trial. JAMA

Oncol 3, 1094–1101.

Amankulor NM, Kim Y, Arora S, Kargl J, Szulzewsky F

and Hanke M (2017) Mutant IDH1 regulates the

tumor-associated immune system in gliomas. Genes Dev

31, 774–786.
Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G

and Wohrer A (2015) Programmed death ligand 1

expression and tumor-infiltrating lymphocytes in

glioblastoma. Neuro Oncol 17, 1064–1075.
Bockmayr M, Klauschen F, Maire CL, Rutkowski S,

Westphal M and Lamszus K (2019) Immunologic

profiling of mutational and transcriptional subgroups

in pediatric and adult high-grade gliomas. Cancer

Immunol Res 7, 1401–1411.
Brown CE, Badie B, Barish ME, Weng L, Ostberg JR and

Chang WC (2015) Bioactivity and safety of

IL13Ralpha2-redirected chimeric antigen receptor

CD8+ T cells in patients with recurrent glioblastoma.

Clin Cancer Res 21, 4062–4072.
Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ

and Nelson BH (2014) Neo-antigens predicted by

tumor genome meta-analysis correlate with increased

patient survival. Genome Res 24, 743–750.
Cancer Genome Atlas Research Network, Brat DJ, Verhaak

RG, Aldape KD, Yung WK and Salama SR (2015)

Comprehensive, integrative genomic analysis of diffuse

lower-grade gliomas. N Engl J Med 372, 2481–2498.
Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama

SR and Murray BA (2016) Molecular profiling reveals

biologically discrete subsets and pathways of

progression in diffuse glioma. Cell 164, 550–563.
Charoentong P, Finotello F, Angelova M, Mayer C,

Efremova M and Rieder D (2017) Pan-cancer

immunogenomic analyses reveal genotype-

immunophenotype relationships and predictors of

response to checkpoint blockade. Cell Rep 18, 248–262.
Chemin I (2010) Evaluation of a hepatitis B vaccination

program in Taiwan: impact on hepatocellular

carcinoma development. Future Oncol 6, 21–23.
Chongsathidkiet P, Jackson C, Koyama S, Loebel F, Cui

X and Farber SH (2018) Sequestration of T cells in

bone marrow in the setting of glioblastoma and other

intracranial tumors. Nat Med 24, 1459–1468.
Christofi T, Baritaki S, Falzone L, Libra M and Zaravinos

A (2019) Current perspectives in cancer

immunotherapy. Cancers 11,1472

Del Paggio JC (2018) Immunotherapy: cancer

immunotherapy and the value of cure. Nat Rev Clin

Oncol 15, 268–270.
Fecci PE and Sampson JH (2019) The current state of

immunotherapy for gliomas: an eye toward the future.

J Neurosurg 131, 657–666.
Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W

and Kim D (2015) The prognostic landscape of genes

and infiltrating immune cells across human cancers.

Nat Med 21, 938–945.

2093Molecular Oncology 14 (2020) 2081–2095 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

F. Wu et al. Immune subtyping in lower-grade diffuse glioma

http://cancergemome.nih.gov/
http://www.cgga.org.cn/


Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL and

Rheingold SR (2013) Chimeric antigen receptor-

modified T cells for acute lymphoid leukemia.

N Engl J Med 368, 1509–1518.
Hanzelmann S, Castelo R and Guinney J (2013) GSVA:

gene set variation analysis for microarray and RNA-

seq data. BMC Bioinformat 14, 7.

He Y, Jiang Z, Chen C and Wang X (2018) Classification

of triple-negative breast cancers based on

immunogenomic profiling. J Exp Clin Cancer Res 37,

327.

Hu H, Mu Q, Bao Z, Chen Y, Liu Y and Chen J (2018)

Mutational landscape of secondary glioblastoma guides

MET-targeted trial in brain tumor. Cell 175, 1665–
1678.e18

Hughey JJ and Butte AJ (2015) Robust meta-analysis of

gene expression using the elastic net. Nucleic Acids Res

43, e79.

Jiang T, Mao Y, Ma W, Mao Q, You Y and Yang X

(2016) CGCG clinical practice guidelines for the

management of adult diffuse gliomas. Cancer Lett 375,

263–273.
Johnson LA, Scholler J, Ohkuri T, Kosaka A, Patel PR

and McGettigan SE (2015) Rational development and

characterization of humanized anti-EGFR variant III

chimeric antigen receptor T cells for glioblastoma. Sci

Transl Med 7, 275ra22.

Kalos M, Levine BL, Porter DL, Katz S, Grupp SA and

Bagg A (2011) T cells with chimeric antigen receptors

have potent antitumor effects and can establish

memory in patients with advanced leukemia. Sci Transl

Med 3, 95ra73.

Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ

and Penson DF (2010) Sipuleucel-T immunotherapy

for castration-resistant prostate cancer. N Engl J Med

363, 411–422.
Kapp AV and Tibshirani R (2007) Are clusters found in

one dataset present in another dataset? Biostatistics 8,

9–31.
Lapointe S, Perry A and Butowski NA (2018) Primary

brain tumours in adults. Lancet 392, 432–446.
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H

and Eyring AD (2015a) PD-1 blockade in tumors

with mismatch-repair deficiency. N Engl J Med 372,

2509–2520.
Le DT, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T

and Springett G (2015b) Safety and survival with

GVAX pancreas prime and Listeria Monocytogenes-

expressing mesothelin (CRS-207) boost vaccines for

metastatic pancreatic cancer. J Clin Oncol 33,

1325–1333.
Li B, Cui Y, Nambiar DK, Sunwoo JB and Li R (2019)

The immune subtypes and landscape of squamous cell

carcinoma. Clin Cancer Res 25, 3528–3537.

Lohr J, Ratliff T, Huppertz A, Ge Y, Dictus C and

Ahmadi R (2011) Effector T-cell infiltration positively

impacts survival of glioblastoma patients and is

impaired by tumor-derived TGF-beta. Clin Cancer Res

17, 4296–4308.
Louis DN, Perry A, Reifenberger G, von Deimling A,

Figarella-Branger D and Cavenee WK (2016) The 2016

World Health Organization classification of tumors of

the central nervous system: a summary. Acta

Neuropathol 131, 803–820.
Luoto S, Hermelo I, Vuorinen EM, Hannus P, Kesseli J

and Nykter M (2018) Computational characterization

of suppressive immune microenvironments in

glioblastoma. Cancer Res 78, 5574–5585.
Mammas IN, Sourvinos G, Zaravinos A and Spandidos

DA (2011) Vaccination against human papilloma

virus (HPV): epidemiological evidence of HPV

in non-genital cancers. Pathol Oncol Res 17,

103–119.
Mirjacic Martinovic KM, Vuletic AM, Lj Babovic N,

Dzodic RR, Konjevic GM and Jurisic VB (2017)

Attenuated in vitro effects of IFN-alpha, IL-2 and

IL-12 on functional and receptor characteristics of

peripheral blood lymphocytes in metastatic melanoma

patients. Cytokine 96, 30–40.
Newman AM, Liu CL, Green MR, Gentles AJ, Feng W

and Xu Y (2015) Robust enumeration of cell subsets

from tissue expression profiles. Nat Methods 12,

453–457.
Punt S, Langenhoff JM, Putter H, Fleuren GJ, Gorter A

and Jordanova ES (2015) The correlations between

IL-17 vs. Th17 cells and cancer patient survival: a

systematic review. Oncoimmunology 4, e984547.

Reck M, Rodriguez-Abreu D, Robinson AG, Hui R,

Csoszi T and Fulop A (2016) Pembrolizumab versus

chemotherapy for PD-L1-positive non-small-cell lung

cancer. N Engl J Med 375, 1823–1833.
Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R,

Lopez-Janeiro A, Porciuncula A and Idoate MA (2019)

Neoadjuvant nivolumab modifies the tumor immune

microenvironment in resectable glioblastoma. Nat Med

25, 470–476.
Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS

and Ou Yang TH (2018) The immune landscape of

cancer. Immunity 48, 812–830. e14.
Tibshirani R, Hastie T, Narasimhan B and Chu G (2002)

Diagnosis of multiple cancer types by shrunken

centroids of gene expression. Proc Natl Acad Sci USA

99, 6567–6572.
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S

and Morse M (2014) The dynamics and regulators of

cell fate decisions are revealed by pseudotemporal

ordering of single cells. Nat Biotechnol 32,

381–386.

2094 Molecular Oncology 14 (2020) 2081–2095 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Immune subtyping in lower-grade diffuse glioma F. Wu et al.



Wang Q, Hu B, Hu X, Kim H, Squatrito M and Scarpace

L (2017) Tumor evolution of glioma-intrinsic gene

expression subtypes associates with immunological

changes in the microenvironment. Cancer Cell 32,

42–56. e6.
Weller M, Butowski N, Tran DD, Recht LD, Lim M and

Hirte H (2017) Rindopepimut with temozolomide for

patients with newly diagnosed, EGFRvIII-expressing

glioblastoma (ACT IV): a randomised, double-blind,

international phase 3 trial. Lancet Oncol 18, 1373–
1385.

Wilkerson MD and Hayes DN (2010)

ConsensusClusterPlus: a class discovery tool with

confidence assessments and item tracking.

Bioinformatics 26, 1572–1573.
Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi

NA and Lesokhin AM (2013) Nivolumab plus

ipilimumab in advanced melanoma. N Engl J Med 369,

122–133.
Wu F, Chai RC, Wang Z, Liu YQ, Zhao Z and Li GZ

(2019a) Molecular classification of IDH-mutant

glioblastomas based on gene expression profiles.

Carcinogenesis 40, 853–860.
Wu F, Zhao Z, Chai RC, Liu YQ, Li GZ and Jiang HY

(2019b) Prognostic power of a lipid metabolism gene

panel for diffuse gliomas. J Cell Mol Med 23, 7741–
7748.

Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R,

Kim H and Torres-Garcia W (2013) Inferring tumour

purity and stromal and immune cell admixture from

expression data. Nat Commun 4, 2612.

Zhao Z, Meng F, Wang W, Wang Z, Zhang C and Jiang T

(2017) Comprehensive RNA-seq transcriptomic

profiling in the malignant progression of gliomas. Sci

Data 4, 170024.

Supporting information

Additional supporting information may be found

online in the Supporting Information section at the end

of the article.
Fig. S1. Consensus clustering based on immune gene

expression of 402 diffuse LGGs in TCGA cohort.

Fig. S2. GO analysis of GM3 and GM5.

Fig. S3. Distribution of DNA methylation clusters

within immune subtypes in TCGA cohort.

Fig. S4. Comparison of neoantigen and TCR diversity

between immune subtypes in TCGA cohort.

Fig. S5. Heatmaps show the expression levels of HLA

and checkpoint genes between immune subtypes in

TCGA and CGGA cohorts.

Fig. S6. Prognostic correlations of checkpoint gene in

TCGA and CGGA cohorts.

Fig. S7. Prognostic correlations of immune signatures

and checkpoint genes in IDH and 1p/19q stratified

patients of TCGA cohort.

Fig. S8. Correlation analysis of immune signatures and

checkpoint genes.

Fig. S9. Validation of immune signature in CGGA

cohorts.

Table S1. IGP was estimated for each immune subtype

in the validation cohorts.

Table S2. Univariate and multivariate Cox regression

analysis of clinical pathologic features in TCGA and

CGGA cohort1.

Table S3. Univariate and multivariate Cox regression

analysis of clinical pathologic features in CGGA

cohort2 and cohort3.

2095Molecular Oncology 14 (2020) 2081–2095 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

F. Wu et al. Immune subtyping in lower-grade diffuse glioma


	Outline placeholder
	mol212707-aff-0001
	mol212707-aff-0002
	mol212707-aff-0003
	mol212707-tbl-0001
	mol212707-fig-0001
	mol212707-fig-0002
	mol212707-fig-0003
	mol212707-fig-0004
	mol212707-fig-0005
	mol212707-fig-0006
	mol212707-fig-0007
	mol212707-bib-0001
	mol212707-bib-0002
	mol212707-bib-0003
	mol212707-bib-0004
	mol212707-bib-0005
	mol212707-bib-0006
	mol212707-bib-0007
	mol212707-bib-0008
	mol212707-bib-0009
	mol212707-bib-0010
	mol212707-bib-0011
	mol212707-bib-0012
	mol212707-bib-0013
	mol212707-bib-0014
	mol212707-bib-0015
	mol212707-bib-0016
	mol212707-bib-0017
	mol212707-bib-0018
	mol212707-bib-0019
	mol212707-bib-0020
	mol212707-bib-0021
	mol212707-bib-0022
	mol212707-bib-0023
	mol212707-bib-0024
	mol212707-bib-0025
	mol212707-bib-0026
	mol212707-bib-0027
	mol212707-bib-0028
	mol212707-bib-0029
	mol212707-bib-0030
	mol212707-bib-0031
	mol212707-bib-0032
	mol212707-bib-0033
	mol212707-bib-0034
	mol212707-bib-0035
	mol212707-bib-0036
	mol212707-bib-0037
	mol212707-bib-0038
	mol212707-bib-0039
	mol212707-bib-0040
	mol212707-bib-0041
	mol212707-bib-0042
	mol212707-bib-0043
	mol212707-bib-0044
	mol212707-bib-0045
	mol212707-bib-0046
	mol212707-bib-0047
	mol212707-bib-0048
	mol212707-bib-0049


