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Abstract

This study investigated the feasibility of using hyperspectral imaging technique for

nondestructive measurement of color components (DL*, Da* and Db*) and classify

tea leaves during different drying periods. Hyperspectral images of tea leaves at

five drying periods were acquired in the spectral region of 380–1030 nm. The three

color features were measured by the colorimeter. Different preprocessing

algorithms were applied to select the best one in accordance with the prediction

results of partial least squares regression (PLSR) models. Competitive adaptive

reweighted sampling (CARS) and successive projections algorithm (SPA) were

used to identify the effective wavelengths, respectively. Different models (least

squares-support vector machine [LS-SVM], PLSR, principal components

regression [PCR] and multiple linear regression [MLR]) were established to predict

the three color components, respectively. SPA-LS-SVM model performed

excellently with the correlation coefficient (rp) of 0.929 for DL*, 0.849 for Da*and

0.917 for Db*, respectively. LS-SVM model was built for the classification of

different tea leaves. The correct classification rates (CCRs) ranged from 89.29% to

100% in the calibration set and from 71.43% to 100% in the prediction set,

respectively. The total classification results were 96.43% in the calibration set and

85.71% in the prediction set. The result showed that hyperspectral imaging

technique could be used as an objective and nondestructive method to determine

color features and classify tea leaves at different drying periods.
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Introduction

Tea is welcome by many people because of its healthy function. For example, it

can prevent cancer and cardiovascular disease and cure chronic gastritis [1], [2].

Tea processing procedure, which is composed of a series of physical and chemical

reactions, can affect tea’s quality directly [3]. However, the change of color values

(DL*, Da* and Db*) of tea leaves play significant roles in tea processing procedure.

Therefore, studying color parameters of tea leaves during drying periods can

finally improve tea’s quality.

Hyperspectral imaging technique, which integrates both spectral and imaging

techniques, has been widely applied in many fields [4], [5], [6]. A spatial picture

can be generated when the sample is scanned by the hyperspectral imaging system.

The spatial picture (hyperspectral cube) consists of a series of images at different

wavelength, and each pixel has both spectroscopic and spatial information. The

schematic hyperspectral imaging system can be seen in Fig. 1. In accordance with

the previous studies, hyperspectral imaging technique is very efficient for knowing

the process when the samples changes with time [7], [8].

Hyperspectral technique has many advantages, such as nondestructive, rapid

and simple operation, accurate, low cost, and can be applied in on-line detection.

At present, hyperspectral technique has already been used to detect color

parameters in many studies [9], [10], [11], [12], [13]. The change of color

parameters of tea leaves is very important in the tea processing procedure.

However, to measure the color parameters of tea leaves at different drying periods

using hyperspectral imaging technique has not been found.

The goals of this work were: (1) to find the quantitative relationships between

the spectral reflectance information and color parameters of tea leaves at different

drying periods; (2) to obtain effective wavelengths which are useful for the

determination of color values; (3) to compare the predictive ability of different

calibration models; (4) to develop an algorithm for the determination of color

values of tea leaves.

Materials and Methods

Hyperspectral imaging system

A visible and near infrared (VIS-NIR) hyperspectral imaging system covering the

spectral wavelengths of 380–1030 nm was used in this study (as shown in Fig. 2).

The system includes a lens (OLE-23), an imaging spectrograph (V10E-QE,

Specim, Finland), a CCD camera (C8484-05, Hamamatsu City, Japan), two light

sources (Oriel Instruments, Irvine, USA) provided by two 150W quartz tungsten

halogen lamps, a conveyer belt operated by a stepper motor (IRCP0076, Isuzu

Optics Corp., Taiwan, China), and a computer operating the spectral image

system V10E software (Isuzu Optics Corp., Taiwan, China). The area CCD array

detector of the camera has 6726512 (spatial 6 spectral) pixels, and the spectral

resolution is 2.8 nm. The system scans the samples line by line, and the reflected

light was dispersed by the spectrograph and captured by the area CCD array
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Fig. 1. Hyperspectral imaging.

doi:10.1371/journal.pone.0113422.g001
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detector in spatial-spectral(x6l) axes. The ENVI 4.7 (Research system Inc.,

Boulder, Co., USA), Unscrambler V9.7 (CAMO Process AS, Oslo, Norway) and

Matlab R2009a (The Math Works, Inc., Natick, MA, USA) software were used in

this study.

Samples preparation and flow chart

Three different cultivars of tea leaves including Biyun, Longjing-43 and

Zhongcha-302 were used in this study. All of them were very famous tea in China.

The number of each cultivar was fourteen. All leaves were picked from the green

house, which is located at Zhejiang University, Hangzhou (120.2E, 30.3N), China.

First of all, hyperspectral images of forty-two fresh tea leaves were acquired, and

then three color parameters (DL*, Da* and Db*) of these fresh tea leaves were

measured using the colorimeter (Konica Minolta, SC-80C, Japan). These leaves

were then dried in a drying oven (GHD-9070A, JingHong, Shanghai, China) at

80 C̊ for four minutes. After being cooled in a glass desiccator, they were imaged

and color measured again. The same operation was run three more times with the

same drying temperature (the third operation for six minutes, the fourth

operation for eight minutes and the fifth operation for ten minutes).

The main steps of this study are illustrated in Fig. 3. All raw hyperspectral

images were acquired by the hyperspectral imaging system in the wavelengths of

380 to 1030 nm. Simultaneously, color values were determined by the

Fig. 2. Schematic diagram of the hyperspectral imaging system.

doi:10.1371/journal.pone.0113422.g002
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colorimeter. The raw hyperspectral images were then corrected by the dark and

white reference images. Spectral reflectance values of all pixels from the ROI

(30630 pixels) of each sample were extracted and averaged as one variable. Thus,

a total of 210 X variables were obtained and used to represent the spectral data of

all samples. Then, these samples were divided into two sets at a ratio of 2:1 (2/3

for calibration and 1/3 for prediction). Nine different pre-processing methods

were used to improve the predictive ability. In order to optimize calibration

model, two effective wavelengths selection methods including competitive

adaptive reweighted sampling (CARS) and successive projections algorithm (SPA)

were used to select the key wavelengths. The optimal calibration model was

determined according to the values of rc, rp, RMSEC and RMSEP.

Image acquisition and correction

The exposure time was 0.07 s, the moving speed was 2.6 mm/sec, and the vertical

distance between the lens and sample was 36.0 cm. Each leaf was then placed on

Fig. 3. Main steps of this study.

doi:10.1371/journal.pone.0113422.g003
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the conveyer belt to be scanned using the hyperspectral imaging system. Then, one

hyperspectral image (hyperspectral cube) for each sample was obtained covering

the spectral wavelengths of 380 to 1030 nm. The dimensions of the hyperspectral

cube were 512 bands in the l dimension and 672 pixels in the y dimension. When

raw hyperspectral images were created, they should be corrected with dark and

white reference images based on equation (1). The dark reference image with the

reflectance factor of about 0% was obtained by covering the lens with the cap and

turning off the light. The white reference image with the reflectance factor of

about 99% was obtained from a white Teflon board (CAL-tile200, 200 mm625

mm610 mm).

Rcal~
Iraw{Idark

Iwhite{Idark
ð1Þ

Where Rcal is the corrected hyperspectral image, Iraw is the raw hyperspectral

image, Idark is the dark reference image, and Iwhite is the white reference image.

Models and evaluation index

Partial least squares (PLS) is an effective method which has been widely used for

establishing calibration models in many spectral studies [14], [15], [16], [17],

[18]. This algorithm is very efficient when predicting many different measured

variables that are collinear. The spectral information is projected onto a small

number of latent variables (LVs) for compressing the original spectral data [19].

The predicted result is achieved by extracting a set of orthogonal factors which

carry most of the useful information for predicting [20]. Principal components

regression (PCR), which can not only compress the high dimension of the raw

variables effectively but also speed up the calculation by ignoring the minor

components, has also been widely applied in many studies [21], [22]. The PCR

algorithm can effectively overcome multi-collinearity problem which may result

in instability for the predicted result. Multiple linear regression (MLR) is a

common method used to establish models due to its features, such as being simple

and easy interpretation. Though it has been used in many studies [23], [24], it

fails when the number of the sample is fewer than that of the input variables [25].

In this study, the number of the samples in calibration set was fewer than that of

the full spectral variables. Thus, MLR model was only established based on the

selected wavelengths suggested by CARS and SPA, respectively. PLS, PCR and

MLR models were operated by Unscrambler V9.7 software for the determination

of the three color parameters. Least Squares-Support Vector Machine (LS-SVM),

which is a simplification of traditional Support Vector Machine (SVM), is capable

of handle both linear and nonlinear multivariate problems in a fast way [26]. The

advantage of this algorithm is that a linear set of equations instead of a quadratic

programming (QP) problem were used to obtain support vectors (SV). This

method has also been widely used in many fields [27], [28]. In this study, LS-SVM

was used to build model for predicting color parameters and classify tea leaves
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during different drying periods. The calculation was carried out by the free LS-

SVM toolbox (LS-SVM v1.5, Suykens, Leuven, Belgium) in Matlab R2009a.

The performance of the models was evaluated in accordance with the values of

the correlation coefficient (rc and rp), root mean square error of calibration

(RMSEC) and root mean square error of prediction (RMSEP) [29]. A good model

should be of high values of rc and rp, low values of RMSEC and RMSEP, and small

difference between RMSEC and RMSEP. A large difference between the values of

RMSEC and RMSEP indicates that the model is over-fitting [30].

Key wavelengths selection

For the purpose of improving the performance of the predictive ability and

reducing the influence of redundant information between contiguous wavelengths

in the whole spectrum, selection of effective wavelengths is a very significant

operation in spectral studies [31]. According to the previous studies, the selected

wavelengths can be equally or even more effective than the whole spectral

wavelengths [32]. The CARS was firstly used to select effective wavelengths from

the full spectral wavelengths in this study. The CARS selects the key wavelengths

based on the principle of ‘‘survival of the fittest’’ [33]. It abandons the

wavelengths which are of small regression coefficients by exponentially decreasing

function (EDF). The main procedures of each sampling run can be described as

follows: (a) model sampling based on Monte Carlo (MC) principle; (b)

wavelengths selection using EDF; (c) competitive wavelengths selection based on

adaptive reweighted sampling (ARS); (d) evaluation of the subset by cross

validation. Finally, those wavelengths which contain little or no useful

information are eliminated while effective wavelengths are retained [34], [35]. The

SPA, which is also a robust method for the selection of key wavelengths, was then

used to select effective wavelengths. This algorithm can solve the collinear

problem by selecting optimal wavelengths with minimal redundancy, and use a

projection operation in a vector space for selecting key wavelengths [36], [37].

Both of the two wavelengths selection algorithms were operated in Matlab

R2009a. Finally, the raw spectral data were consequently reduced into a matrix

with a dimension of m6n (m was the number of the samples, and n was the

number of the selected wavelengths).

Measurement of color values (DL*, Da* and Db*)
In tea processing procedure, color parameters of tea leaves play vital roles for the

reason that they can not only directly determine tea’s quality, but also reflect the

quality. Therefore, it is crucial to acquire the color parameters of tea leaves at

different drying periods. In this study, three color parameters (DL*, Da* and Db*)

were measured using the colorimeter. Before color measurement, the colorimeter

should be firstly calibrated by a standard white calibration plate. The parameter

DL* is the lightness or luminance component. The other two parameters (Da* and

Db*), which range from 2120 to 120, are the two chromatic components. The
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parameters DL*, Da* and Db* represent color changes from dark to brightness,

green to red and blue to yellow, respectively.

Results and Discussion

Statistics of color parameters

A total of 210 tea leaves at five different drying periods (fresh, drying for 4 min,

drying for 6 min, drying for 8 min and drying for 10 min) were studied. They

were divided into the calibration set and the prediction set at a ratio of 2:1. That is

one sample was picked out from every three ones consecutively, which resulted in

140 samples for the calibration set (Biyun: 46, Longjing-43: 47, Zhongcha-302: 47)

and 70 ones for the prediction set (Biyun: 24, Longjing-43: 23, Zhongcha-302: 23).

The detailed statistical values of each set are shown in Table 1.

Preprocessing results

In order to obtain useful spectral information and improve the predictive ability,

wavelengths at the beginning with some noise were rejected, resulting in the

wavelengths of 400 to 1030 nm were studied. Then, nine different preprocessing

algorithms were used to evaluate the optimal one in terms of the values of rc, rp,

RMSEC and RMSEP of PLS model. The results can be seen in Table 2. Based on

the evaluation standards, raw data performed best with the highest values of rp

(0.925 for DL* and 0.930 for Db*, respectively). Though the PLS model based on

MSC preprocessing method obtained the result with the highest values of rc

(0.949) and rp (0.799) for Da*, the lowest value of RMSEC (0.611) and the second

lowest value of RMSEP (1.276), it did not performed well due to the big gap

between the values of rc and rp. Thus, raw data was used for further study.

Effective wavelengths

In order to obtain the optimal model with the robust predictive ability and a small

number of input variable, two wavelengths selection methods (CARS and SPA)

were conducted to determine the most effective wavelengths in this study,

respectively. As a result, forty-eight (DL*), thirty-four (Da*) and twenty-six (Db*)

wavelengths were identified by CARS, respectively; seven (DL*), six (Da*) and

eleven (Db*) wavelengths were selected by SPA, respectively. Compared with the

number of full spectral wavebands, those of the selected wavelengths

recommended by CARS only account for 9.68%, 6.85% and 5.24%, respectively.

The numbers of effective wavelengths suggested by SPA were only 1.41%, 1.21%

and 2.22% of that of the full wavebands, respectively. These selected wavelengths

(as shown in Table 3) were then used to replace the whole spectral wavelengths for

the determination of color values. A total of four different calibration models (LS-

SVM, PLSR, PCR and MLR) were established based on the selected wavelengths,

respectively. These selected wavelengths not only simplify the calibration model

Color Measurement

PLOS ONE | DOI:10.1371/journal.pone.0113422 December 29, 2014 8 / 15



and speed up the calculation but also improve the accuracy and robustness of the

predictive ability.

Predicted results

The predicted results can be seen in Table 4. On the basis of the evaluation index,

CARS-MLR model performed perfectly with a satisfying result for DL* (rc50.963,

rp50.931, RMSEC50.838 and RMSEP51.160). For Da*, CARS-LS-SVM model

obtained the best result with the rc of 0.968, rp of 0.842, RMSEC of 0.492 and

RMSEP of 1.164, respectively. For Db*, it was also the CARS-LS-SVM model that

performed excellently with the rc of 0.965, rp of 0.944, RMSEC of 1.381 and

RMSEP of 1.762, respectively. The number of input variables for these three

models was 48, 34 and 26, respectively. Among the four models established based

on SPA, SPA-LS-SVM model performed best with the highest values of rc (0.933

for DL*, 0.893 for Da* and 0.916 for Db*, respectively) and rp (0.929 for DL*,

0.849 for Da* and 0.917 for Db*, respectively), the lowest values of RMSEC (1.116

for DL*, 0.877 for Da* and 2.133 for Db*, respectively) and RMSEP (1.178 for

DL*, 1.146 for Da* and 2.142 for Db*, respectively). From the results, it could be

seen that LS-SVM model based on the selected wavelengths performed better than

other models. Though there was a little decrement of the values of rc and rp,

increment of the values of RMSEC and RMSEP for those models established based

on SPA, the input variables were fewer compared with the models which were

established based on CARS, respectively. The fewer input variables demonstrated

that CARS and SPA can improve the performance of the predicted ability for the

determination of color parameters. Thus, these selected wavelengths were more

efficient than the whole wavelengths. It may because that the whole spectral

wavelengths contained more redundant information which affects the perfor-

mance of the predicted results. The predicted results of CARS-LS-SVM and SPA-

LS-SVM models were shown in Fig. 4 (a–f), respectively. It could be found that

the plots in calibration and prediction sets were distributed near the ideal lines,

indicating that the performance of these models were good. It demonstrated that

hyperspectral imaging technique could be used to determine the color parameters

of tea leaves, and both CARS and SPA methods could remove uninformative

wavelengths and improve the predicted ability of models.

Table 1. Reference values of color (DL*, Da* and Db*) of tea leaves in calibration and prediction sets.

Statistics Calibration Prediction

DL* Da* Db* DL* Da* Db*

Minimum 269.78 29.66 7.56 269.96 29.27 8.87

Maximum 255.59 1.81 30.43 256.35 2.11 31.84

Mean 262.77 25.85 16.85 262.78 25.74 17.05

Standard Deviation 3.13 1.95 5.33 3.20 2.14 5.40

doi:10.1371/journal.pone.0113422.t001
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Classification of different samples

The correct classification rates (CCRs) of samples at five different drying periods

based on LS-SVM model were shown in Table 5. The results covered from 89.29%

to 100% in the calibration set and from 71.43% to 100% in the prediction set,

respectively. The total CCRs were 96.43% in the calibration set and 85.71% in the

prediction set, respectively. From the results, it can be seen that type (6 min) and

type (8 min) were identified badly (both were 71.43%), other three types were

classified excellently with high values of CCRs (from 92.86% to 100%). There

were three samples in type (6 min) were identified as type (8 min), and four ones

in type (8 min) were identified as type (6 min). This might because of the short

interval of drying time, which caused tiny change of color parameters of tea leaves.

Table 3. Effective wavelengths recommended by CARS and SPA, respectively.

Methods Type Number Effected wavelengths/nm

CARS DL* 48 410, 413, 416, 420, 425, 429, 444, 448, 531, 539, 543, 544, 545, 638, 639, 677, 767, 869, 874, 884, 892,
922, 925, 929, 934, 937, 945, 958, 965, 969, 971, 973, 975, 977, 978, 981, 982, 985, 987, 998, 999,
1001, 1006, 1007, 1013, 1015, 1018, 1027

CARS Da* 34 407, 428, 429, 515, 517, 518, 519, 540, 543, 544, 548, 586, 588, 590, 610, 611, 613, 614, 615, 616, 676,
693, 724, 741, 922, 924, 950, 965, 971, 985, 986, 1014, 1017, 1021

CARS Db* 26 461, 462, 543, 545, 584, 585, 608, 609, 610, 700, 711, 729, 753, 846, 848, 965, 969, 974, 975, 977, 987,
989, 990, 1009, 1015, 1018

SPA DL* 7 457, 540, 649, 735, 761, 874, 1017

SPA Da* 6 540, 608, 676, 690, 985, 1017

SPA Db* 11 404, 408, 414, 416, 418, 444, 540, 648, 770, 866, 971

doi:10.1371/journal.pone.0113422.t003

Table 4. Performance of different models in calibration and prediction for predicting color (DL*, Da* and Db*).

Model Calibration Prediction Bandsa

DL* Da* Db* DL* Da* Db*

rc RMSEC rc RMSEC rc RMSEC rp RMSEP rp RMSEP rp RMSEP

LS-SVM 0.972 0.741 0.973 0.463 0.967 1.354 0.931 1.164 0.973 1.051 0.933 1.936 496/496/
496

PCR 0.908 1.302 0.799 1.169 0.915 2.134 0.927 1.188 0.762 1.375 0.921 2.083 496/496/
496

CARS-LS-SVM 0.980 0.616 0.968 0.492 0.965 1.381 0.920 1.251 0.842 1.164 0.944 1.762 48/34/26

CARS-PLS 0.955 0.930 0.874 0.944 0.944 1.752 0.924 1.219 0.806 1.257 0.925 2.036 48/34/26

CARS-PCR 0.904 1.333 0.873 0.948 0.934 1.901 0.922 1.223 0.812 1.241 0.915 2.159 48/34/26

CARS-MLR 0.963 0.838 0.907 0.820 0.951 1.648 0.931 1.160 0.807 1.256 0.931 1.958 48/34/26

SPA-LS-SVM 0.933 1.116 0.893 0.877 0.916 2.133 0.929 1.178 0.849 1.146 0.917 2.142 7/6/11

SPA-PLS 0.914 1.263 0.809 1.143 0.904 2.265 0.925 1.205 0.746 1.415 0.907 2.258 7/6/11

SPA-PCR 0.911 1.285 0.669 1.446 0.891 2.417 0.924 1.219 0.754 1.397 0.904 2.287 7/6/11

SPA-MLR 0.917 1.247 0.810 1.140 0.906 2.244 0.926 1.201 0.754 1.397 0.908 2.254 7/6/11

aNumber of input bands of DL*/Number of input bands of Da*/Number of input bands of Db*.

doi:10.1371/journal.pone.0113422.t004
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However, the total result was acceptable which demonstrated that hyperspectral

imaging technique combined with LS-SVM model could also be used to classify

tea leaves at different drying periods.

Fig. 4. Measured vs. predicted values of calibration and prediction by CARS-LS-SVM and SPA-LS-SVM models, respectively. (a): CARS-LS-SVM-
DL*; (b): CARS-LS-SVM-Da*; (c): CARS-LS-SVM-Db*; (d): SPA-LS-SVM-DL*; e): SPA-LS-SVM-Da*; (f): SPA-LS-SVM-Db*.

doi:10.1371/journal.pone.0113422.g004

Table 5. Correct classification rates based on LS-SVM.

Calibration set Prediction set

Types No. Missed CCRa/% No. Missed CCRa/%

0 min 28 0 100 14 1 92.86

4 min 28 0 100 14 0 100

6 min 28 2 92.86 14 4 71.43

8 min 28 3 89.29 14 4 71.43

10 min 28 0 100 14 1 92.86

Total 140 5 96.43 70 10 85.71

aCorrect classification rates.

doi:10.1371/journal.pone.0113422.t005
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Conclusions

This study was carried out to evaluate the feasibility of using visible and near

infrared hyperspectral imaging technique, which covers the spectral wavelengths

of 380 to 1030 nm, to determine color parameters of tea leaves during different

drying periods. Two wavelengths selection methods including CARS and SPA

were used to select effective wavelengths. Four different models (LS-SVM, PLS,

PCR and MLR) were used to predict color values. Each wavelength selection

method and each model obtained a good result. Among all models, the values of

rp ranged from 0.902 to 0.931 for DL*, from 0.618 to 0.973 for Da* and from 0.904

to 0.944 for Db*, respectively. Based on the selected wavelengths, multispectral

imaging system could be designed for nondestructive quality inspection during tea

processing industry. Moreover, the CCRs of tea leaves at five different drying

periods based on LS-SVM model covered from 89.29% to 100% in calibration set

and from 71.43% to 100% in prediction set, respectively. The result demonstrates

that this technique could to be used as an objective and nondestructive method to

determine color parameters of tea leaves and classify samples during different

drying periods. This is the first time that the visible and near infrared

hyperspectral imaging technique was applied in the color determination of tea

leaves at different drying periods. This technique can also be considered to

determine some other chemical components which are also very important for

tea’s quality.

However, this study was a preliminary work. In further studies, more samples

with different drying time should be selected to build more accurate and robust

model. More effective wavelengths with higher accuracy and fewer variables

should also be considered.
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