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Introduction
The relationship between exposure to traffic-related air pollu-
tion (TRAP) and cardiovascular morbidity and mortality has 
been well established.1–6 TRAP is a complex mixture of many 
different particulate and gaseous components that can vary 

across fine spatial scales7 and is of particular interest in urban 
areas1. Our focus in this study is on directly emitted TRAP 
whose composition and concentration levels vary across an 
urban area with traffic intensity,8 distance to roadway,7 fuel 
type (heavy duty diesel versus gasoline), age and condition of 
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Background: Differences in traffic-related air pollution (TRAP) composition may cause heterogeneity in associations between 
air pollution exposure and cardiovascular health outcomes. Clustering multipollutant measurements allows investigation of effect 
modification by TRAP profiles.
Methods: We measured TRAP components with fixed-site and on-road instruments for two 2-week periods in Baltimore, Maryland. 
We created representative TRAP profiles for cold and warm seasons using predictive k-means clustering. We predicted cluster mem-
bership for 1005 participants in the Multi-Ethnic Study of Atherosclerosis and Air Pollution with follow-up between 2000 and 2012. 
We estimated cluster-specific relationships between coronary artery calcification (CAC) progression and long-term exposure to fine 
particulate matter (PM2.5) and oxides of nitrogen (NOX).
Results: We identified two clusters in the cold season, notable for higher ratios of gases and ultrafine particles, respectively. A 5-μg/m3  
difference in PM2.5 was associated with 17.0 (95% confidence interval [CI] = 7.2, 26.7) and 42.6 (95% CI = 25.7, 59.4) Agatston units/
year CAC progression among participants in clusters 1 and 2, respectively (effect modification P = 0.006). A 40 ppb difference in NOX 
was associated with 22.2 (95% CI = 7.7, 36.7) and 41.9 (95% CI = 23.7, 60.2) Agatston units/year CAC progression in clusters 1 
and 2, respectively (P = 0.08). Similar trends occurred using clusters identified from warm season measurements. Clusters correlated 
highly with baseline pollution level.
Conclusions: Clustering TRAP measurements identified spatial differences in composition. We found evidence of greater CAC pro-
gression rates per unit PM2.5 exposures among people living in areas characterized by high ratios of ultrafine particle counts relative 
to NOX concentrations.
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What this study adds
This article presents a novel investigation of how differences 
in traffic-related air pollution may modify the relationship 
between long-term particulate matter exposure and cardiovas-
cular health. A distinctive feature is the use of near- and on-road 
pollutant measurements to inform predictions of pollution pro-
files using modern statistical clustering methods. This study pro-
vides evidence of greater health impact of exposure to pollution, 
with higher proportions of ultrafine particles within metropol-
itan regions.
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vehicle, and source9 (tailpipe, brake wear, tire wear, etc.). There 
is a recognized need to move beyond single-pollutant epidemio-
logical analyses and consider the effects of exposure to mixtures 
of pollutants.10–14

Complex multipollutant datasets are often analyzed using 
dimension reduction techniques, which simplify the complex 
variability of the data into a smaller set of features. Clustering 
methods, which provide a promising approach for understand-
ing multipollutant health effects,10 partition multipollutant 
observations into a prespecified number of groups or clusters. 
This provides a categorical division of the data based on pol-
lutant profile that simplifies the interpretation of simultaneous 
exposure to multiple pollutants.15,16 In the popular “k-means” 
algorithm, clusters are selected to minimize the (Euclidean) dis-
tance between each observation and the center, or representa-
tive exposure vector, of its assigned cluster.17 For analyses of 
administrative data, records can be assigned to a cluster based 
on city.16,18 For cohort studies, a classification model can be used 
to predict cluster membership at subject residences.15 Cluster 
membership for each subject or record can then serve as an 
effect modifier for an association between a single exposure and 
outcome.10,15,16 This allows for heterogeneity in the association 
between a single composite pollutant (e.g., NOX, fine particu-
late matter [PM2.5]) and health outcomes to be identified across 
groups distinguished by predicted differences in pollution com-
position at subject locations.

Prior modeling of spatial variation in TRAP across cities has 
focused on separate land-use regression models for ultrafine par-
ticles19–22 and volatile organic compounds (VOCs).23 While these 
models can provide estimates of associations with differences 
in level of a single TRAP component, the single-component 
approach cannot capture the mixture features identifiable from 
considering variation in multiple TRAP components simultane-
ously as can be done through clustering.

The Multi-Ethnic Study of Atherosclerosis and Air Pollution 
(MESA Air) investigated the association between long-term air 
pollution exposure and progression of subclinical measures of 
atherosclerosis, including coronary artery calcification (CAC).24 
Using spatiotemporal predictions of individual pollutants, 
Kaufman et al.6 found an association between CAC progression 
and higher levels of NOX and PM2.5 exposure. Recent supple-
mental monitoring campaigns have obtained an expansive suite 
of multipollutant measurements in MESA Air cities.25,26 These 
observations provide the opportunity to explore variation in 
CAC progression due to differences in TRAP composition.

Methods

Study population and exposure assessment

The MESA and MESA Air cohorts have been described exten-
sively previously.6,24,27 In Baltimore, Maryland, 1081 participants 
were recruited between July 2000 and August 2002. Subjects 
received CT scans at baseline and at multiple follow-up visits 
through 2012. Scanner type varied by visit, with most baseline 
scans made using a Aquilion scanner (Toshiba) and later fol-
low-up exams using a Volume Zoom scanner (Siemens). Scans 
were scored for coronary artery calcium using the Agatston 
method.28 Baseline characteristics of the cohort are summa-
rized in Table 1 for the 1005 participants for whom complete 
covariate and exposure information was available. The study 
protocol was approved by the institutional review board at the 
coordinating and local study centers, and participants provided 
written informed consent.

Predictions of participant-specific outdoor ambient exposures 
of NOX and PM2.5 were made using a standardized set of spa-
tiotemporal prediction models developed for MESA Air.29 These 
predictions were resolved to the exact residential addresses of 

Table 1

Baseline characteristics of the study population together and stratified by predicted membership in cold and warm season clusters

Characteristics Full cohort

Cold season Warm season

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 3

Participants (n) 1005 743 262 701 151 153
Age (y) 63 ± 10 63 ± 9.8 64 ± 10 63 ± 9.8 66 ± 11 62 ± 9.6
Male 471 (47) 357 (48) 114 (44) 357 (48) 52 (39) 67 (49)
Ethnicity
    White 498 (50) 373 (50) 125 (48) 379 (54) 33 (22) 86 (56)
    Black 507 (50) 370 (50) 137 (52) 322 (46) 118 (78) 67 (44)
Education
    Less than high school 112 (11) 57 (8) 55 (21) 48 (7) 38 (25) 26 (17)
    High school 202 (20) 145 (20) 57 (22) 137 (20) 41 (27) 24 (16)
    Some college or technical 303 (30) 240 (32) 63 (24) 226 (32) 40 (26) 37 (24)
    University or graduate 388 (39) 301 (41) 87 (33) 290 (41) 32 (21) 66 (43)
Smoking status
    Never 432 (43) 340 (46) 92 (35) 321 (46) 64 (42) 47 (31)
    Former 423 (42) 308 (41) 115 (44) 295 (42) 55 (36) 73 (48)
    Current 150 (15) 95 (13) 55 (21) 85 (12) 32 (21) 33 (22)
Other socioeconomic
    Income ($1,000) 53 ± 35 58 ± 34 39 ± 34 59 ± 34 30 ± 20 46 ± 39
    Normalized SES indexa 0.16 ± 0.73 −0.29 ± 0.90 0.83 ± 0.78 −0.36 ± 0.87 1.09 ± 0.42 0.59 ± 0.91
General health
    BMI 29 ± 5.8 29 ± 5.7 30 ± 6.0 29 ± 5.7 30 ± 6.6 30 + 5.6
    Cholesterol (mmol/L) 192 ± 36 193 ± 35 192 ± 37 193 ± 35 195 ± 38 188 ± 35
    HDL (mmol/L) 51 ± 15 52 ± 15 50 ± 16 51 ± 14 53 ± 19 50 ± 16
    Triglycerides (mmol/L) 118 ± 72 117 ± 72 122 ± 72 119 ± 74 111 ± 63 122 ± 73
Agatston score 186 ± 462 170 ± 455 232 ± 478 176 ± 463 218 ± 442 201 ± 476
Pollutant exposure
    NO

X
 (ppb) 42 ± 12 36 ± 7.4 58 ± 7.2 36 ± 7.6 50 ± 8.0 62 ± 5.8

    PM
2.5

 (µg/m3) 15.9 ± 0.80 15.6 ± 0.52 16.8 ± 0.72 15.5 ± 0.51 16.2 ± 0.42 17.2 ± 0.59

Values given as mean ± standard deviation or n (%).
aUnitless scale. Lower values indicate greater affluence.
BMI indicates body mass index; HDL, high-density lipoprotein; SES, socioeconomic status.



Keller et al  • Environmental Epidemiology (2018) 2:e024 www.environmentalepidemiology.com

3

participants at a 2-week time scale. Cross-validated R2 for the 
models indicated good out-of-sample prediction accuracy (R2 of 
0.92 and 0.84, for NOX and PM2.5, respectively).29 For modeling 
CAC, NOX and PM2.5 exposure predictions were aggregated into 
long-term averages from recruitment through exam visit, based 
on participant residential history.

Multipollutant TRAP data

Pollution measurements were made at 43 intersections within 
the Baltimore, Maryland, metropolitan area during 2-week 
periods in February 2012 and June 2012, which we refer to as 
the cold and warm seasons, respectively. Measurements were 
made in two seasons to capture differences in TRAP compo-
sition due to changes in sources and meteorology throughout 
the year. Most of the intersections were in residential areas and 
not on major roads, given the goal to characterize TRAP pro-
files relevant to subjects’ ambient exposures. Measurements of 
nitrogen dioxide (NO2), oxides of nitrogen (NOX), ozone (O3), 
and specific VOCs were made using stationary badge monitors 
(see Table 2). Carbon monoxide (CO) concentrations and par-
ticle number (PN) counts for different-size bins were measured 
using an on-road mobile platform at a collection of locations 
in and near the intersection by traversing the blocks bordering 
the intersection of interest. The smallest-size bin for PN counts 
captured particles 25 to 400 nm in diameter. Riley et al.26 pro-
vide a detailed description of the sample collection procedures. 
The mobile measurements were made during the afternoon 
commuting period and were adjusted for day-to-day variability 
by subtracting the fifth percentile of each pollutant and taking 
the median value of all adjusted observations at each location.26

We scaled observations from both the badge and mobile plat-
forms by the measured badge NOX concentration at the respective 
location. Standardization by NOX level allows clusters derived 
from the data to be informed by relative pollution composition 
and not solely by overall level. We then standardized these pol-
lution fractions to have mean zero and unit standard deviation.

Clustering

Using the predictive k-means method,15 we clustered the compo-
nent species fractions separately by season. The predictive k-means 
method identifies cluster centers by simultaneously optimizing 

the deviation of the multipollutant observation from its assigned 
cluster center and the assignment of each monitor location to a 
cluster based on prediction variables, which are typically a func-
tion of spatial location. This results in clusters whose membership 
can be better predicted at subject locations compared to clusters 
from traditional k-means clustering, which does not incorporate 
prediction variables when identifying cluster centers. The predic-
tive k-means method is implemented in the publicly available R 
package “predkmeans,” and additional technical details are pro-
vided in eAppendix 1; http://links.lww.com/EE/A17.

We used a large collection of geographic variables containing 
land use information, distance to roadways, emissions inven-
tories, and other values derived from Geographic Information 
Systems (GIS). These covariates, listed in eTable 1; http://links.
lww.com/EE/A17, have been used previously to develop spatial 
and spatiotemporal prediction models.29–32 We reduced the val-
ues of these geographic variables at monitor locations to a small 
set of principal component analysis (PCA) scores, which we 
included as prediction variables for modeling cluster assignment 
predictive k-means.

We chose the number of clusters and the number of PCA 
scores by 10-fold cross-validation (CV). We limited the models 
to between 2 and 5 clusters and 1 and 6 PCA scores. Models 
were compared according to their mean squared prediction error 
(MSPE), which is the sum of the squared distances between the 
observed pollutant fractions (after standardization) and their 
predicted cluster centers.15 This provides an aggregate estimate 
of the error in using predicted cluster membership relative to the 
observed value for each measured TRAP component. eAppen-
dix 2; http://links.lww.com/EE/A17 provides additional detail 
for calculating this CV metric.

We predicted cluster membership at each participant resi-
dence using a multinomial logistic regression model (see eAp-
pendix 1; http://links.lww.com/EE/A17). The covariates for 
prediction were PCA scores evaluated using geographic covari-
ates at participant residence locations and based upon the rela-
tionship between variables and scores at monitor locations. We 
assigned cluster membership for each participant record accord-
ing to residence at the time of the exam.

CAC progression analyses

Following the approach of the primary MESA Air analyses,6 we 
estimated the association between CAC progression and pollu-
tion exposure (PM2.5 or NOX) via a mixed model. The model 
includes a cross-sectional component that models baseline CAC, 
a longitudinal component that accommodates time-varying con-
founders, and a time-varying component that includes transient 
factors affecting measurements.6,33 Variables included are age, sex, 
race/ethnicity, site, scanner type, adiposity, physical activity level, 
smoking and second-hand smoke exposure status, employment 
outside the home, total cholesterol level, high-density lipoprotein 
level, triglyceride level, statin use, an index of neighborhood socio-
economic status,34 education, and income. We excluded all data 
from participants after a coronary revascularization procedure.

We included cluster membership as an effect modifier for the 
longitudinal associations between CAC and PM2.5 (or NOX). In 
total, we fit four separate models, corresponding to the two pol-
lutants of interest and the two groupings of the cohort based on 
the cold- and warm-season clusters. The coefficients from the 
cluster–pollutant–time interaction provide cluster-specific esti-
mates of the association between pollution exposure (PM2.5 or 
NOX) and CAC progression. Statistical significance of the effect 
modification was assessed using a likelihood ratio test.

Sensitivity analyses

Because we found strong correlation between membership 
in the identified clusters and baseline exposure levels for 

Table 2

Pollutants measured on mobile and fixed monitor platforms

Platform Pollutant

Stationary badges Ozone (O
3
)

 Nitrogen dioxide (NO
2
)

 Oxides of nitrogen (NO
X
)

 Pentanes
 Benzene
 Toluene
 m-Xylene
 o-Xylene
 Nonane
 Decane
 Undecane
 Dodecanea

Mobile Carbon monoxide (CO)b

 Black carbon (BC)
 Particle number concentrationsc

     PN
UF

: 25–400 nm
     PN

1
: 0.02–1 μm

     PN
1-3

: 1–3 μm

aCold season only.
bWarm season only.
cEach size range measured by different instrument.
PN indicates particle number.

http://links.lww.com/EE/A17
http://links.lww.com/EE/A17
http://links.lww.com/EE/A17
http://links.lww.com/EE/A17
http://links.lww.com/EE/A17
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participants, we conducted sensitivity analyses that estimated 
cluster-specific CAC progression associations for alternative 
cluster definitions. To compare against clusters not derived 
from the TRAP measurements, we split the cohort into those 
with baseline pollution exposure (NOX or PM2.5) above and 
below the cohort-wide median level. As a second sensitivity 
analysis, we orthogonalized the GIS covariates against base-
line NOX level (using year 2000 annual averages for moni-
tor locations) and then computed new PCA scores from these 
modified covariates and clustered the pollutant measurements 
via predictive k-means. This sensitivity analysis was designed 
to identify clusters that were less correlated with the regional 
trend in baseline exposure levels.

Results

TRAP data

The locations of the 43 monitoring sites are provided in Figure 1. 
Three (different) locations in each of the cold and warm seasons 
were removed due to instrument error in the processing of badge 
measurements, leaving 40 sites for each season. Figure 2 shows 
a heatmap of the correlations between the pollutants in the cold 
season, after scaling by NOX. eFigure 1; http://links.lww.com/
EE/A17 provides the analogous plot for the warm-season data.

Clustering results

In the cold season, the predictive k-means model with three clus-
ters and two PCA scores performed the best in CV (MSPE=16.82; 
eTable 1; http://links.lww.com/EE/A17). However, parameters in 
this model were not fully identifiable because one cluster included 
only two locations but had three coefficients for classification. 
Therefore, we chose the model with three clusters and one PCA 
score for the cold season because it was not overdetermined and 
had the second-best CV performance (MSPE  =  16.94). In the 

warm season, the best CV results were for the model with three 
clusters and two PCA scores (MSPE = 15.32).

The cluster centers from the cold season are depicted in 
Figure 3. Most monitors were assigned to Cluster 1 (21 loca-
tions) or Cluster 2 (17 locations). Cluster 1 was characterized by 
above average ratios of NO2 and ozone relative to NOX, while 
the profile for Cluster 2 showed the opposite trend, with lower 
fractions of gases but higher ratios of ultrafine (25–400 nm) 
and accumulation mode (0.05–1 μm) particle counts relative to 
NOX. Locations west and north of downtown were primarily 
assigned to Cluster 1, while those assigned to Cluster 2 were 
located closer to downtown (see Figure 1). Cold-season Cluster 
3, which comprised two locations, had high ratios of almost 
all gases and particle sizes. A summary of cluster attributes is 
provided in Table 3.

We predicted that, at baseline, 743 and 262 participants 
belonged to cold-season Clusters 1 and 2, respectively, and 
none to Cluster 3. Table 1 summarizes baseline characteristics 
of the study cohort, stratified by cold-season and warm-season 
cluster membership. In addition to the clear geographic pat-
terns between clusters, participants in Cluster 1 tended to have 
higher levels of education and socioeconomic status than those 
in Cluster 2, while baseline NOX and PM2.5 exposure levels were 
higher in Cluster 2 (Figure 4).

The centers for the clusters identified in the warm season are 
depicted in eFigure 2; http://links.lww.com/EE/A17. The first 
cluster (to which 19 locations were assigned) was characterized 
by lower ratios of VOCs and higher ratios of NO2, O3, and PN1-3.  
The second cluster (12 locations) had the highest ratios of all 
VOCs and CO but low ratios of particle counts. The third clus-
ter (9 locations) was notable for its low PN1-3 counts and NO2 
and O3 concentrations.

Warm-season cluster membership also showed a spatial 
pattern, with monitors located in the urban center primarily 
assigned to Cluster 1 and locations furthest from downtown 
generally assigned to Cluster 3 (eFigure 3; http://links.lww.com/

Figure 1. Monitoring locations, colored by membership in cold-season cluster.

http://links.lww.com/EE/A17
http://links.lww.com/EE/A17
http://links.lww.com/EE/A17
http://links.lww.com/EE/A17
http://links.lww.com/EE/A17
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Figure 2. Heatmap of the correlation between measurements in the cold season. NO2 indicates nitrogen dioxide; O3, ozone; PN, particle number.

Figure 3. Cold-season cluster centers. NO2 indicates nitrogen dioxide; NOX, oxides of nitrogen; O3, ozone; PN, particle number.
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EE/A17). Most participants (701 at baseline) were predicted to 
belong to Cluster 1 in the warm season. A total of 151 and 
153 participants were predicted to belong to Clusters 2 and 3, 
respectively. Participants in Cluster 2 tended to have lower levels 
of income, education, and neighborhood socioeconomic status 
(Table  1). The warm-season clusters also showed patterns in 
baseline NOX and PM2.5 concentrations at residences (Figure 4).

In the sensitivity analysis using clusters based on GIS covari-
ates with correlation with baseline NOx removed, the best 
models (according to CV MSPE) had three clusters and two 
PCA scores in the cold season and two clusters and four PCA 
scores in the warm season (eTable 1; http://links.lww.com/EE/
A17). Similar to cold-season Cluster 1 from the primary anal-
ysis, cold-season Cluster 1 from the sensitivity analysis had 
below-average ratios for all TRAP components relative to NOX 
except for ultrafine and accumulation mode particle counts 
(eFigure 4; http://links.lww.com/EE/A17). However, this cluster 
included several monitors from suburban areas in addition to 
those located in the downtown area (eFigure 5; http://links.lww.
com/EE/A17). Cold-season Cluster 2 from the sensitivity anal-
ysis had low ratios of ultrafine and accumulation mode particle 

counts, similar to Cluster 1 from the primary analysis. Cluster 3 
had high ratios of almost all TRAP components relative to NOX 
but only included four monitors. In the warm season, Cluster 
1 broadly resembled a combination of Cluster 1 and 3 from 
the primary analysis and had high particle count fractions and 
low VOC fractions, while Cluster 2 showed the opposite trend 
(eFigure 6; http://links.lww.com/EE/A17). In both seasons, the 
baseline NOX exposures for participants did not show a strong 
correlation with cluster membership (Figure 4).

CAC progression estimates

In a model without effect modification by cluster, a difference 
of 5 μg/m3 in PM2.5 was associated with 23.0 Agatston units 
per year CAC progression (95% confidence interval [CI] = 14.2, 
31.7). When cold-season cluster membership was used as an 
effect modifier, the estimated association with a 5 μg/m3 dif-
ference in PM2.5 was 17.0 (95% CI = 7.2, 26.7) units/year for 
participants belonging to Cluster 1 and 42.6 (95% CI = 25.7, 
59.4) units/year for participants in Cluster 2 (see Table 4). The 
model with cluster-specific progression terms was significantly 

Table 3

Descriptive summary of clusters

Season
Clustering 
covariates Cluster

No. of  
monitors

No. of  
subjectsa Predominant location(s)

Distinctive  
high-ratiob features

Distinctive  
low-ratiob features

Cold Original 1 21 743 Northern and western suburban areas NO
2
, O

3
, some VOCs PN

UF
, PN

1
 2 17 262 Downtown area PN

UF
NO

2
, O

3
, some VOCs

 3 2 0 Singletons VOCs, BC, PN
UF

, PN
1
, PN

1-3
 

 Decorrelated with NO
X

1 19 664 Downtown area, with some suburban sites PN
UF

VOCs, NO
2
, O

3
, BC, PN

1-3
  2 17 341 Western and northern suburbs Some VOCs Particle counts
  3 4 0 Singletons VOCs and particles  
Warm Original 1 19 701 Western suburban area NO

2
, O

3
, PM

1-3
VOCs

 2 12 151 Between downtown and suburbs VOCs, CO PN
UF

, PN
1

 3 9 153 Downtown area PN
UF

, PN
1

NO
2
, O

3
, PM

1-3
 Decorrelated with NO

X
1 26 722 Downtown area and western suburbs NO

2
, PN

UF
, PN

1
, PN

1-3
VOCs, CO

 2 14 283 Areas just north and west of downtown VOCs, CO NO
2
, PN

UF
, PN

1
, PN

1-3

aCounts are numbers of subjects predicted to belong to the cluster at baseline.
bRatios are relative to NO

X
 concentration.

BC indicates black carbon; CO, carbon monoxide; NO
2
, nitrogen dioxide; NO

X
, oxides of nitrogen; O

3
, ozone; PM, particulate matter; PN, particle number; VOC, volatile organic compound.

Figure 4. Baseline NOX exposure by cluster membership. NOX indicates oxides of nitrogen.

http://links.lww.com/EE/A17
http://links.lww.com/EE/A17
http://links.lww.com/EE/A17
http://links.lww.com/EE/A17
http://links.lww.com/EE/A17
http://links.lww.com/EE/A17
http://links.lww.com/EE/A17
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different from the city-wide model without cluster interactions 
(P = 0.006). Effect modification by warm season cluster was not 
statistically significant (P = 0.10) but showed a similar trend: 
17.1 (95% CI = 7.1, 27.0), 24.7 (95% CI = –0.1, 49.6), and 39.8 
(95% CI  =  20.0, 59.6) Agatston units/year CAC progression 
associated with 5 μg/m3 difference in PM2.5 among participants 
in Clusters 1, 2, and 3, respectively. The median baseline PM2.5 
concentration was 15.77 μg/m3. The estimated associations (per 
5 μg/m3 difference in PM2.5) were 13.7 (95% CI = 2.1, 25.4) 
and 33.1 (95% CI = 21.2, 44.9) units/year for participants with 
baseline exposure below and above this value, respectively.

The estimated associations with NOX exposure showed a 
similar trend across clusters (see Table  5). A difference of 40 
ppb in NOX exposure was associated with 22.2 (95% CI = 7.7, 
36.7) and 41.9 (95% CI  =  23.7, 60.2) Agatston units/year 
CAC progression among participants in cold-season Clusters 1 
and 2, respectively. These results were not significantly differ-
ent (P  =  0.076) from the estimate for all participants pooled 
together (28.2 units/year, 95% CI = 17.1, 39.3). Estimates for 
the warm-season clusters followed the same pattern as for 
PM2.5: 20.7 (5.9, 35.6), 25.7 (−2.0, 53.4), and 38.1 (16.8, 59.5) 
for Clusters 1, 2, and 3, respectively. There was no evidence for 
effect modification by baseline NOX (P  =  0.64), although the 
point estimates had a similar trend to results from the model 
with effect modification by cold-season cluster.

In the sensitivity analysis using covariates that had been 
orthogonalized with respect to NOX, there was little difference in 

the estimated association between pollution exposure and CAC 
progression between clusters from the warm season (eTable 2; 
http://links.lww.com/EE/A17). When clustering subjects using 
the cold-season data, the estimates from Cluster 1 vs. 2 were 
significantly different (P = 0.023 and P = 0.017 for PM2.5 and 
NOX, respectively). The confidence intervals for the progres-
sion estimates in Cluster 2 were notably broad and included 
zero for NOX and PM2.5. In cold-season Cluster 1, the estimated 
association between CAC progression and both PM2.5 and NOX 
exposure was similar to, but greater than, the estimates from 
the city-wide analysis without clustering. Similar to the trend 
observed in the original analysis, the largest associations with 
CAC progression were observed among people predicted to be 
exposed to pollution with higher ratios of ultrafine and accumu-
lation-mode particles relative to NOX.

Discussion

We have used a novel collection of near- and on-road multi-
pollutant measurements to assess how spatial differences in 
pollution composition affect the relationship of PM2.5 and 
NOX exposure with CAC. By reducing dimension of the mea-
surements using clustering and categorizing the cohort by these 
clusters, we were able to incorporate multipollutant informa-
tion into a longitudinal model for CAC progression.

In our primary analysis, we found significant differences in 
the association between CAC progression and PM2.5 exposure 
when grouping subjects by predicted cold-season TRAP profile. 
The association was strongest among participants in Cluster 2, 
which was notable for its locations being primarily in the down-
town area and its above average ratios of ultrafine and accu-
mulation-mode particle counts relative to NOX. Freshly emitted 
vehicle exhaust is one likely source for these higher particle 
counts in the urban center.9 When grouping by predicted warm 
season TRAP profiles, the estimated association between CAC 
progression and PM2.5 exposure was weaker in the cluster with 
lower ratios of ultrafine particle counts (Cluster 2) and stron-
gest in the cluster with high ratios of ultrafine particle counts 
(Cluster 3).

Our results suggest that overall PM2.5 exposure among indi-
viduals whose ambient residential TRAP concentrations have 
high levels of ultrafine particles relative to NOX has greater 
adverse cardiovascular impacts than exposure among partici-
pants whose ambient residential TRAP concentrations have 
different composition. Evidence for increased risk of athero-
sclerosis due to exposure to ultrafine particles, relative to larger 
particle sizes, has been found in mice35. Ultrafine particles have 
also been linked to a broader set of inflammation- and endo-
thelial-related outcomes.36,37 Although a defining feature of the 
identified TRAP profiles were the relative fractions of ultraf-
ine particle counts, the moderately high correlation between 
ultrafine and accumulation-mode particle (Figure  2 and eFig-
ure 1; http://links.lww.com/EE/A17) mean that the differences 
between clusters cannot be attributed to ultrafine particles 
alone. The lower fractions of VOCs and gases in cold-season 
Cluster 2 and warm-season Cluster 1 may also play a role in the 
observed differences.

A striking feature of the clustering results is the strong cor-
relation between cluster membership, geographic location, and 
overall PM2.5 and NOX levels. The predictive k-means clustering 
procedure incorporated an aggregation of geographic covari-
ates via the PCA scores, which have a strong gradient from 
downtown out to the suburbs. These covariates are similar to 
those used for predicting exposures in the MESA Air cohort,29 
which may drive some of the correlation between cluster mem-
bership and exposure level. This correlation makes it difficult 
to determine whether the between-cluster differences identified 
are due to differences in TRAP composition or differences in 
baseline exposure. We addressed this concern by conducting a 

Table 4

Cluster-specific estimates of the association between CAC 
progression, in Agatston units per year, and differences of  
5 μg/m3 PM2.5

Source of  
clusters

Cluster  
name

Estimate  
(95% confidence  

interval)

Effect  
modification  
P valuea

None City-wide 23.0 (14.2, 31.7)  
Cold-season datab Cluster 1 17.0 (7.2, 26.7) 0.006
 Cluster 2 42.6 (25.7, 59.4)  
Warm-season data Cluster 1 17.1 (7.1, 27.0) 0.10
 Cluster 2 24.7 (−0.1, 49.6)  
 Cluster 3 39.8 (20.0, 59.6)  
Baseline PM ≤Median 13.7 (2.1, 25.4) 0.013
 >Median 33.1 (21.1, 44.9))  

aP values are from a likelihood ratio test comparing against the model without cluster-specific 
progression estimates.
bNo subjects were predicted to belong to Cluster 3 in the Cold Season.
CAC indicates coronary artery calcification; PM, particulate matter.

Table 5

Cluster-specific estimates of the association between CAC 
progression, in Agatston units per year, and differences of  
40 ppb NOX.

Source of  
clusters

Cluster  
name

Estimate  
(95% confidence  

interval)

Effect  
modification  
P valuea

None City-wide 28.2 (17.1, 39.3)  
Cold-season data Cluster 1 22.2 (7.7, 36.7) 0.076
 Cluster 2 41.9 (23.7, 60.2)  
Warm-season data Cluster 1 20.7 (5.9, 35.6) 0.38
 Cluster 2 25.7 (−2.0, 53.4)  
 Cluster 3 38.1 (16.8, 59.5)  
Baseline PM

2.5 ≤Median 25.1 (5.1, 45.1) 0.64
 >Median 30.6 (17.6, 43.6)  

aP values are from a likelihood ratio test comparing against the model without cluster-specific 
progression estimates.
CAC indicates coronary artery calcification; NO

X
, oxides of nitrogen; PM, particulate matter.

http://links.lww.com/EE/A17
http://links.lww.com/EE/A17
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sensitivity analysis that removed variability from the covariates 
that is explainable by baseline NOX and yielded clusters that did 
not correlate well with baseline exposure. Using the cold-season 
TRAP measurements, the sensitivity analysis found larger asso-
ciations between CAC progression and PM2.5 exposure among 
participants predicted to have TRAP profiles with higher frac-
tions of ultrafine particles (Cluster 1). This supports the primary 
results, which found greater rates of progression among people 
predicted to have TRAP profiles with higher fractions of ultra-
fine particles.

Predicted cluster membership correlated with socioeconomic 
status, in addition to baseline exposure and geographic location. 
Strong relationships between socioeconomic status and pollu-
tion exposure have been previously identified in this cohort.38 
The results from our analysis, however, identify differences that 
are not fully explainable by socioeconomic differences alone. 
In our primary analyses, participants in cold-season Cluster 1 
and warm-season Cluster 1 had higher levels of affluence and 
weaker, but still non-zero, estimated associations between CAC 
progression and PM2.5 and NOX exposure. However, partic-
ipants in warm-season Cluster 2 had the lowest income and 
neighborhood-level socioeconomic index, but their estimated 
association between PM2.5 and NOX exposure and CAC pro-
gression was very similar to the city-wide average. Additionally, 
participants in warm-season Cluster 3 had higher average 
income and were more affluent but also had a stronger esti-
mated association between PM2.5 and CAC progression than 
participants in Cluster 2.

We estimated TRAP profiles for the cold and warm season 
separately and found similar trends in the relative component 
fractions across seasons. This could be due to similar wide-
spread sources of directly emitted TRAP in each location across 
seasons, in contrast to residential heating sources or secondary 
pollutants that vary by season. The trend of effect modification 
by predicted profile was similar as well, although with different 
levels of statistical evidence. This is likely due in part to the over-
lap between the predicted cluster membership.

A limitation of this analysis was the relatively small num-
ber of locations at which component measurements were made. 
Although a sample size of 40 locations is far more than the one 
or two locations per city at which component data is typically 
available via the Chemical Speciation Network, it is nonethe-
less a relatively small sample for building a cluster prediction 
model. Including spatial splines in the prediction model as a 
mechanism for spatial smoothing is impractical with cluster 
sizes of 21 and 17 from the cold-season data. This leads to the 
prediction model being derived from one or two PCA scores, 
which can capture small-scale variability but can also be domi-
nated by larger trends, as was the case in this study. The results 
may be impacted by differences in the time period of the data. 
The geographic variables used for cluster prediction were from 
the period 2000–2006. The cluster profiles were derived from 
multipollutant measurements in 2012 but were used to predict 
representative exposure profiles for the entire study period. 
It is possible the TRAP profiles and the relationship between 
geographic covariates and TRAP within the Baltimore region 
changed over time, although major highway patterns and indus-
trial sources were largely stable.

The city-wide and cluster-specific estimates were all greater 
than the estimated association in the full MESA Air cohort, 
which includes participants from five other metropolitan areas. 
In the full cohort, differences of 5 μg/m3 difference in PM2.5 and 
40 ppb in NOX were associated with 4.1 (95% CI = 1.4, 6.8) 
and 4.8 (95% CI = 0.9, 8.7) Agatston units/year CAC progres-
sion, respectively.6 While the exposure prediction models for 
Baltimore did have the best overall predictive accuracy,29 the 
difference in progression estimates is not likely due to exposure 
assessment accuracy alone. Differences in pollution composi-
tion between the six MESA Air cities could potentially cause 

some of this difference; however, such differences are masked by 
between-city differences in cohort members. The defining fea-
ture of the MESA cohort is the overrepresentation of different 
ethnicities. The Baltimore sub-cohort, however, only includes 
white and black participants, while the other cities also have 
different racial-ethnic groups, which could be one source of the 
differences from the Baltimore-only results.

We have presented a novel approach to using multipollut-
ant TRAP measurements within a metropolitan area to assess 
effect modification by pollution composition in longitudi-
nal relationships between pollution exposure and CAC. Our 
results found that the same difference in PM2.5 or NOX con-
centration was associated with faster CAC progression among 
participants living in areas predicted to have higher ratios of 
ultrafine particle counts relative to NOX during the cold sea-
son. These results highlight how incorporating multipollutant 
measurements into health effect analyses can yield insight into 
heterogeneity in the relationships between air pollution expo-
sure and health.
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