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Abstract
Aims: Lactobacillus species are used widely as various food and supplements to im-
prove health. Previous studies have shown that heat-killed Lactobacillus brevis 
SBC8803 induces serotonin release from intestinal cells and affects sleep rhythm and 
the autonomic nervous system. However, the effect of SBC8803 on cognitive func-
tion remains unknown. Here, we examined the effects of dietary heat-killed SBC8803 
on hippocampus-dependent memory and adult hippocampal neurogenesis.
Methods: Hippocampus-dependent memory performance was assessed in mice fed 
heat-killed SBC8803 using social recognition and contextual fear conditioning tasks. 
Adult hippocampal neurogenesis was evaluated before, during, and after feeding 
heat-killed SBC8803 by measuring the number of 5-bromo-2-deoxyuridine (BrdU)-
positive cells following systemic injections of BrdU using immunohistochemistry.
Results: Mice fed a heat-killed SBC8803 diet showed an improvement of hippocampus-
dependent social recognition and contextual fear memories and enhanced adult hip-
pocampal neurogenesis by increasing the survival, but not proliferation, of newborn 
neurons.
Conclusion: Dietary heat-killed SBC8803 functions as memory and neurogenesis 
enhancers.
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1  | INTRODUC TION

There is increasing evidence that intestinal microbiota improves human 
health including brain function.1 Lactobacillus species are used widely 
as various food and supplements to improve health through modula-
tion of the immune system, enhance intestinal functions, lower blood 
lipid levels and reduce diet-induced obesity.2–5 Interestingly, heat-killed 
Lactobacillus brevis SBC8803 induces serotonin release from intestinal 
cells6 and affects sleep rhythm and the autonomic nervous system in an-
imal experiments.7,8 Importantly, human trials with heat-killed SBC8803 
raise the possibility of a beneficial effect on sleep.9,10 Thus, SBC8803 
may have impacts on brain function. However, the effect of SBC8803 
on cognitive function, especially learning and memory, still remains un-
known. In this study, we examined the effects of dietary SBC8803 on 
memory performance and adult hippocampal neurogenesis.

2  | METHODS

2.1 | Animals

All experiments were conducted according to the Guide for the Care 
and Use of Laboratory Animals of the Japan Neuroscience Society and the 

Guide for the Tokyo University of Agriculture. All animal experiments were 
approved by the Animal Care and Use Committee of Tokyo University 
of Agriculture. Male C57BL/6N mice were obtained from Charles River 
(Yokohama, Japan). The mice were housed in cages of 4, maintained on 
a 12 hour light/dark cycle, and allowed ad libitum access to pellet food 
and water. The mice were at least 8 weeks of age at the start of the ex-
periments, and all behavioral procedures were conducted during the light 
phase of the cycle. All experiments were conducted blind to the treatment 
condition. Animal behavior was recorded using a video camera (Figure 1).

2.2 | Preparation of the SBC8803 diet

Lactobacillus brevis SBC8803 was propagated for 24 hours at 33°C in 
broth. Bacterial cells were collected by membrane concentration and 
washed with deionized water. Concentrated bacterial cells were heat-
killed at 115°C for 15 minutes and lyophilized. The bacterial powder 
was mixed thoroughly with CRF-1 (mouse chow; ORIENTAL YEAST 
CO., LTD., Kyoto, Japan) to a final ratio of 0.5% and pelletized.

2.3 | Social recognition task

Adult mice were placed into individual plastic cages, identical to 
those in which they were normally housed (30 × 17 × 12 cm), in 

F IGURE  1 Effects of dietary SBC8803 on memory performance. A, Experimental procedure (top). Rate of body weight gain during 
SBC8803 feeding (bottom, control [Con], n = 24; SBC8803, n = 24). B, Social recognition task (Con, n = 8; SBC8803, n = 9). Investigation time 
(left, *P < 0.05, compared with the first exposure) and recognition index (right, *P < 0.05, compared with the Con group). C, Contextual fear 
conditioning task (Con, n = 12; SBC8803, n = 12). *P < 0.05. D, Open field test (Con, n = 24; SBC8803, n = 24). Error bars, SEM
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the experimental room. After a period of 60 minutes, a juvenile 
mouse was placed into a cage with an adult mouse for 3 minutes 
(first exposure).11,12 The duration of the adult's social investiga-
tion behavior was quantified using a stopwatch. Social investiga-
tion was defined as described previously.13 Memory was assessed 
24 hours later by recording the length of social investigation 
time exhibited by the subject to the same juvenile (second ex-
posure) for 3 minutes. A recognition index was calculated as the 
ratio of the social investigation times during the second and first 
exposures.

2.4 | Contextual fear conditioning task

The mice were trained and tested in conditioning chambers 
(17.5 × 17.5 × 15 cm) with a stainless-steel grid floor through 
which a footshock could be delivered.10,14,15 Training consisted 
of placing the mice in the chamber and delivering an unsignaled 
footshock (2 seconds duration, 0.4 mA) after 148 seconds, and 
the mice were returned to their home cage at 30 seconds after 
the footshock (training). Memory was assessed at 24 hours later 
by calculating the percentage of time spent freezing during 
5 minutes when replaced in the training context (test). Freezing 
behavior (defined as a complete lack of movement, except for 
respiration) was measured automatically as described previously 
(O'Hara & Co., Ltd., Tokyo, Japan).16

2.5 | Open field test

The mice were placed into the center of a square open field cham-
ber (50 × 50 × 40 cm) that was surrounded by white walls. The total 
length of the path traveled (total distance) was measured using an 
automatic monitoring system (O'Hara & Co., Ltd.).12

2.6 | Immunohistochemistry

Immunohistochemistry was performed as described previ-
ously.11,14 After anesthetization, all mice were perfused with 
4% paraformaldehyde containing 0.5% picric acid. The brains 
were removed, fixed overnight, transferred to 30% sucrose, and 
stored at 4°C. Coronal sections (14 μm) were generated using a 
cryostat. Consecutive sections were boiled in citrate buffer solu-
tion for 5 minutes and incubated with 2N HCl at 37°C for 30 min-
utes, followed by incubation in a blocking solution. The sections 
were incubated overnight with a monoclonal rat anti-5-bromo-2-
deoxyuridine (BrdU) primary antibody (1:5000; Novus Biologicals, 
Littleton, CO) and a monoclonal mouse anti-NeuN primary anti-
body (1:500; Millipore, Hayward, CA) in the blocking solution. 
Subsequently, the sections were incubated for 2 hours with Alexa 
Fluor 594-conjugated goat antirat IgG (1:500; Invitrogen, Grand 
Island, NY) and Alexa Fluor 488-conjugated goat antimouse IgG 
(1:500; Invitrogen).11,14

2.7 | Quantification

All fluorescence images were acquired using a confocal micro-
scope (TCS SP8; Leica, Wetzlar, Germany). Equal cutoff thresh-
olds were applied to all slices using LAS X software (Leica). 
BrdU-positive cells throughout the rostro-caudal extent of the 
dentate gyrus (DG) were counted in every eighth section, and the 
total number of BrdU-positive cells was calculated by multiplying 
the count in each section by 8 and then totaling the values.11,14 
BrdU-positive cells were colocalized with NeuN, a marker of 
mature neurons, and the number of these cells was measured in 
Figure 2A,B, whereas all BrdU-positive cells were measured in 
Figure 2C.

F IGURE  2 Effects of SBC8803 on adult hippocampal neurogenesis. A, Experimental procedure (top). Quantification of 5-bromo-
2-deoxyuridine (BrdU)-positive cells (bottom, control [Con], n = 4; SBC8803, n = 4). *P < 0.05. B, Experimental procedure to assess the 
survival of newborn neurons (top). Quantification of BrdU-positive cells (bottom left; Con, n = 4; SBC8803, n = 4). *P < 0.05. Representative 
immunofluorescent staining of BrdU-positive cells (red) and NeuN-positive cells (green; bottom right). Scale bar, 100 μm. C, Experimental 
procedure to assess the proliferation of newborn neurons (top). Quantification of BrdU-positive cells (bottom; Con, n = 4; SBC8803, n = 4). 
Error bars, SEM
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2.8 | Data analysis

Two-way repeated analysis of variance (ANOVA) was used to ana-
lyze the effects of SBC8803 and time. Student's t test was used to 
analyze differences in social investigation time, recognition index, 
freezing levels, locomotor activity, and the number of BrdU-positive 
cells within each group.

3  | RESULTS

In this study, the mice were fed CRF-1 mixed with or without heat-
killed SBC8803 for at least 4 weeks (SBC group and control group, 
respectively, Figure 1A). Consistent with previous observation,7 
the SBC8803 and control groups showed comparable body weight 
gain (two-way repeated ANOVA; diet, F1,46 = 0.06, P > 0.05; time, 
F4,184 = 204, P < 0.05; interaction, F4,184 = 0.3, P > 0.05; Figure 1A).

To examine the effect of dietary heat-killed SBC8803 on mem-
ory performance, we first performed a social recognition task. In this 
task, the mice form a hippocampus-dependent nonaversive social 
memory.11,12,17 Mice were exposed to a juvenile male mouse twice 
for 3 minutes at an interval of 24 hours (first and second exposures). 
Both groups showed significant decreases in social investigation time 
at the second exposure compared with the first exposure (Ps < 0.05; 
Figure 1B), suggesting that they formed a social recognition memory. 
Importantly, the SBC8803 group showed a significantly lower recog-
nition index compared with control group, confirming that SBC8803 
group shows an improved memory (Figure 1B). This result indicated 
that dietary SBC8803 improved social recognition memory.

We next performed a contextual fear conditioning task to ex-
amine the ability to form a hippocampus-dependent aversive 
memory.18 The mice were trained with a single footshock (0.4 mA, 
training) and 24 hours later, behavioral freezing was assessed (test). 
SBC8803 group showed significantly more freezing compared with 
control group during test (P < 0.05; Figure 1C). Consistently with the 
results shown in Figure 1B, this result suggests that SBC8803 mice 
showed improved contextual fear memory.

Importantly, the SBC8803 group showed normal locomotor ac-
tivity in an open field test compared with the control group (P > 0.05; 
Figure 1D), suggesting that the memory enhancement observed in 
the SBC8803 group was not attributable to abnormal locomotor 
activity.

Previous studies have suggested that hippocampus-dependent 
memory performance is improved by increased adult hippocampal 
neurogenesis.11,19,20 Therefore, the effect of SBC8803 on adult hip-
pocampal neurogenesis was examined. Mice with or without heat-
killed SBC8803 received systemic injections of BrdU (50 mg/kg bw) 
to label proliferating cells once a week for 4 weeks after the onset 
of SBC8803 supplementation. Then, the number of BrdU-positive 
cells in DG was quantified using immunohistochemistry (Figure 2A). 
Interestingly, the SBC8803 group showed significantly more BrdU-
positive cells than the control group (P < 0.05; Figure 2A), suggest-
ing that SBC8803 promoted adult hippocampal neurogenesis.

We next examined whether SBC8803 enhanced the survival or 
proliferation of newborn neurons in the DG. To examine the effect 
of SBC8803 on the cell survival, newborn neurons were labeled 
by systemic injections of BrdU four times at intervals of 2 hours. 
At 24 hours after the last injection, the mice were started to feed 
SBC8803 for 4 weeks. The SBC8803 group showed significantly 
more BrdU-positive cells than the control group (Figure 2B), sug-
gesting that SBC8803 promoted the survival of newborn neurons 
in the DG.

We finally examined the proliferation of newborn neurons in 
the DG of SBC8803 mice. Newborn neurons were labeled/mea-
sured using BrdU at 4 weeks after the onset of supplementation 
with SBC8803 using the same procedure of Figure 2B. In contrast to 
the data shown in Figure 2B, comparable numbers of BrdU-positive 
cells were observed in the control and SBC8803 groups when the 
cells were measured 24 hours after BrdU injections (Figure 2C), sug-
gesting that SBC8803 did not affect the proliferation of newborn 
cells in the DG. Collectively, these observations suggest that dietary 
SBC8803 enhanced adult hippocampal neurogenesis by promoting 
the survival, but not proliferation, of newborn neurons.

4  | DISCUSSION

In this study, dietary heat-killed SBC8803 improved memory per-
formance in two different hippocampus-dependent memory tasks 
and enhanced adult hippocampal neurogenesis through increases in 
survival, but not proliferation, of newborn neurons. Thus, our results 
suggest that dietary SBC8803 functions as memory and neurogene-
sis enhancers14 and that SBC8803 may be used to improve cognitive 
impairments such as deficits in learning and memory.

Young neurons (3–8 weeks old) generated through adult hip-
pocampal neurogenesis are incorporated more frequently into the 
memory trace and are more plastic compared with the other gener-
ations of neurons, thereby improving memory performance.11,21,22 
Therefore, it is possible that the young neurons generated by 
feeding the SBC8803 diet contribute greatly to improved memory 
performance. Further studies are required to investigate the rela-
tionship between memory performance and increased neurogenesis 
following SBC8803-feeding.

SBC8803 improved memory and adult hippocampal neurogene-
sis. SBC8803 may increase adult hippocampal neurogenesis through 
the gut-brain axis or the autonomic nervous system, thereby im-
proving memory performance, although further investigations are 
required to examine these possibilities. Moreover, it is important 
to examine the requirement of the gut-brain axis and/or autonomic 
nervous system for the enhancement of memory performances in 
SBC8803 mice by inhibiting/disrupting these systems.

Previous findings showed that SBC8803 displays positive im-
pacts on biological rhythms and the quality of sleep,7 and that 
SBC8803 induces serotonin release from intestinal cells and af-
fects the autonomic nervous system.6,8 Therefore, in addition to 
the possibility discussed above, the improved quality of sleep may 
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contribute to enhanced memory formation since sleep plays critical 
roles in memory performance.23,24 It is important to examine these 
possibilities to understand the mechanisms underlying the improve-
ment of memory performance by dietary SBC8803.
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