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Abstract

HIV and related primate lentiviruses possess single-stranded RNA genomes. Multiple re-
gions of these genomes participate in critical steps in the viral replication cycle, and the
functions of many RNA elements are dependent on the formation of defined structures. The
structures of these elements are still not fully understood, and additional functional elements
likely exist that have not been identified. In this work, we compared three full-length HIV-re-
lated viral genomes: HIV-1y 4.3, SIVcpz, and SIVmac (the latter two strains are progenitors
for all HIV-1 and HIV-2 strains, respectively). Model-free RNA structure comparisons were
performed using whole-genome structure information experimentally derived from nucleo-
tide-resolution SHAPE reactivities. Consensus secondary structures were constructed for
strongly correlated regions by taking into account both SHAPE probing structural data and
nucleotide covariation information from structure-based alignments. In these consensus
models, all known functional RNA elements were recapitulated with high accuracy. In addi-
tion, we identified multiple previously unannotated structural elements in the HIV-1 genome
likely to function in translation, splicing and other replication cycle processes; these are
compelling targets for future functional analyses. The structure-informed alignment strategy
developed here will be broadly useful for efficient RNA motif discovery.

Author Summary

Human immunodeficiency virus (HIV) is a persistent and critical threat to human health.
Replication and pathogenesis of HIV is governed by information encoded in its single-
stranded RNA genome. In addition to coding for viral proteins, the HIV genomic RNA
forms base paired and higher-order structures that are critical for viral replication. It is
likely that only a subset of functional RNA motifs has been identified. Here, we interrogate
the structures of three diverse HIV-related viral genomes by nucleotide-resolution chemi-
cal probing. The three genomes include HIV-1, the virus that infects humans, and SIVcpz
and SIVmac, which are progenitors for the main branches of the two HIV evolutionary
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groups. We used a structure-informed alignment approach to generate consensus models
for base-paired secondary structures that are shared by these three HIV-related genomes.
With this approach, we were able to recapitulate all known RNA structures and, addition-
ally, discovered multiple previously undescribed structural elements that are clearly con-
served among major HIV groups. We anticipate that the methods described here will be
broadly useful for RNA structure motif discovery and, more immediately, for identifica-
tion of RNA targets in HIV that are promising sites for therapeutic intervention.

Introduction

RNA plays a direct role in most biological processes [1], and multiple examples of RNA func-
tion are found in the replication cycles of positive-strand RNA lentiviruses [2]. Viral RNA ge-
nomes function at two distinct levels: in the linear encoding of protein sequences and in
functional higher-order RNA structures. Constrained by a small genome size, these viruses
make efficient use of limited genome space in terms of both sequence allocation and densely ar-
ranged regulatory RNA structures.

RNA elements in the human immunodeficiency virus (HIV) genome play important regula-
tory roles throughout the replication cycle. During transcription of the integrated viral genome,
a stem-loop structure in the 5’ untranslated region (UTR), called TAR, binds the Tat protein to
recruit proteins involved in transcription [3, 4]. In the env gene, the Rev response element
(RRE) binds the viral Rev protein, allowing unspliced and partially spliced viral mRNA to be
exported out of the nucleus [5]. During translation, the gag-pol frameshift element modulates
the reading frame of the ribosome, tightly regulating production of the Gag-Pol polypeptide [6,
7]. Stem-loop structures in the Psi packaging element are required for efficient packaging of
viral genome into nascent virions [8]. Multiple pseudoknots modulate replicative functions [9].
Although most structural characterization of HIV-related RNA genomes has focused on the 5/
and 3’ untranslated regions, recent analyses make clear that the central coding region of HIV
genomes has extensive potential to base pair and form higher-order RNA structures [10, 11].
Although the importance of many structured RNA elements is supported by direct experimen-
tal validation, the functional significance of many other RNA structures is unknown. More
broadly, it remains difficult to rigorously identify conserved RNA structure motifs when se-
quence conservation is low without meticulous hand-alignment of annotated sequences.

SHAPE chemical probing makes possible powerful and direct experimental interrogation of
higher-order RNA structure. In the SHAPE approach, a structurally selective electrophile is
used to acylate the 2'-hydroxyl of unstructured or conformationally dynamic RNA nucleotides
[12]. The extent of modification is roughly inversely proportional to the tendency of an RNA
nucleotide to participate in an RNA base pair or other structural interaction. SHAPE has re-
cently been adapted to readout by massively parallel sequencing using mutation profiling. Mu-
tational profiling, or MaP, exploits the ability of reverse transcriptase to extend through the site
of a chemical lesion in RNA and to record the RNA modification as a sequence change in the
synthesized cDNA [9]. Chemical adduct-induced sequence changes can then be related to
SHAPE reactivities on an absolute scale. The combined approach, called SHAPE-MaP, allows
facile SHAPE-based structural characterization of complex RNA molecules and has thus far
been applied to the RNA genomes of both HIV-1 [9] and hepatitis C virus [13].

To address the functional significance of RNA structures in HIV-related genomes, we char-
acterized the conservation of structural features across the genomes of HIV-1 (strain NL4-3)
[14] and two related primate lentiviruses, SIVcpz MB897 [15] and SIVmac239 [16, 17]. Fig 1 il-
lustrates the analysis workflow. Using comprehensive SHAPE-MaP chemical probing data
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Fig 1. RNA structure-based comparative genome analysis. Sequence alignments were created through
SHAPE-dependent pairwise comparisons, which were then combined into multiple sequence alignments
[24]. Windowed linear regression analysis of SHAPE data was then used to define regions where structural
conservation is implied by correlation of SHAPE reactivities. For these regions, consensus secondary
structures were modeled using SHAPE- and sequence-dependent folding [50]. Consensus secondary
structures were found for both HIV-1/SIVcpz and three-genome alignments. Base pairs that did not disagree
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between the two consensuses and that had a pairing probability greater than 95% were used to constrain a
final model for HIV-1 using SHAPE-directed folding [29].

doi:10.1371/journal.pcbi.1004230.g001

from each of the three RNA genomes, structure-dependent sequence alignments were generat-
ed. We then identified areas in which chemical modification patterns were statistically correlat-
ed. Finally, we generated secondary structure models taking into account both SHAPE
reactivities and sequence covariation. This analysis identified multiple regions of structural
similarity across the three HIV-related strains that included all previously identified well-char-
acterized RNA elements. Strikingly, we also identified multiple previously undescribed struc-
tural elements that are clearly conserved among HIV-1 and related viruses. These elements are
compelling sites for follow-up functional studies and are potential therapeutic targets. Analysis
is fully automated, and we anticipate that our structure-based sequence comparison strategy
will see broad application as whole-transcriptome chemical probing data become available.

Results
Selection of virus strains

Viral strains were selected based on epidemiological importance and with respect to their diver-
gence from reference strain NL4-3, a member of HIV-1 group M. SIVcpz MB897 (SIVcpz) infects
chimpanzees, and the SIVcpz virus is thought to have given rise to the HIV-1 strains responsible
for the worldwide AIDS epidemic [18, 19]. SIVmac239 (SIVmac) is derived from a virus that in-
fects sooty mangabeys and is capable of infecting macaques. This strain is widely used as the refer-
ence strain for the SIVsm/HIV-2 lineage. Of the two strains studied, SIVmac is the more distantly
related to HIV-1 group M strains [20]. SIVcpz and STVmac have sequence identities of 77.4% and
54.6%, respectively, when compared to NL4-3 using standard sequence-based alignments.

Genomic SHAPE-MaP

Whole-genome SHAPE data for HIV-1 were obtained previously [9], and SHAPE data for
SIVcpz and SIVmac were generated for this work. Authentic SIVcpz and SIVmac genomic
RNAs were purified from mature virions using a non-denaturing approach [21]. To preserve
secondary and tertiary structures in the RNAs, no heating steps or chaotropic agents were used
during RNA genome purification.

Chemical modification of the viral RNAs with SHAPE reagent 1-methyl-7-nitroisatoic an-
hydride (1M7) was performed under physiological-like ion conditions [12, 22]. Following
chemical probing, the extent of SHAPE-adduct formation at each nucleotide was determined
by massively parallel sequencing using mutational profiling [9]. SHAPE reactivity values were
determined at each position by comparing mutation rates of a 1M7-modified sample relative
to background controls. SHAPE reactivity is correlated with the flexibility of a given nucleotide;
nucleotides with low SHAPE reactivity tend to participate in base pairs or other interactions,
whereas nucleotides with high SHAPE reactivity tend to be in unstructured regions of the
RNA. SHAPE reactivity measurements were made for an average of 98% of the nucleotides in
each RNA genome (Supporting Information).

SHAPE-dependent whole-genome alignments

Pairwise whole-genome alignments of HIV-1, SIVcpz, and STVmac RNAs were determined by
a SHAPE-dependent dynamic programming algorithm [23] (see preceding companion article
in this issue). From these structurally-directed pairwise alignments, we generated a single, mul-
tiple-sequence alignment [24] (Fig 2A). All regions previously shown to contain functional

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004230 May 20, 2015 4/19



@‘ PLOS COMPUTATIONAL
2 : BIOLOGY Secondary Structures Conserved across Three HIV-Related RNA Genomes

7400 7450 7500 7550
Nucleotide sequence (HIV-1 NL4-3)

o.ti: """ " ““ h " Hd " V- VV """ T N o I N -

1.0
2 0
=
©
3
= 1.0
11}
o
=
7] 0
1.0
0
7350
O ~
=
©
z5
% S 10m
o O
b2 10vo
C :
Q o1 SlVepz
E 8 00t e
1 E
E—_ <0.001 -
5 ©
oL
hOy

[ AV I (7 3 T T T T T T T T O T T T T T T O A A O IO

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
PBS/PSI gag/pol FS CPPT RRE PPT
Known RNA  |Hi } B | ¥
TAR/POLY A

elements Tar/POLY A

Protein reading
frames (NL4-3) GAG

POL

S
VBU | REV [ NEF ]

VPR TAT

Fig 2. SHAPE-structure dependent alignment. (A) SHAPE-directed alignment over one 200-nt window in the RRE. Sequences are numbered relative to
the HIV-1 RNA genome, with the transcription start site as +1. (B, C) Windowed linear regression statistics as a function of the HIV-1 (NL4-3) sequence,
computed over 200-nt windows. Correlations of SHAPE values across the three-genome sequence alignment were evaluated by F-test (results shown as p-
values; black); pairwise comparisons with HIV-1 were evaluated by t-test (results shown as p-values). The entire HIV-1 alignment is shown; RNA landmarks

are given at the bottom of the figure.

doi:10.1371/journal.pcbi.1004230.9g002
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RNA structures were aligned correctly by this fully automated approach. Aligned elements fell
in both untranslated regions (for example, 5' and 3' TAR stems and the Psi packaging element)
and coding regions (gag-pol frameshift element and the RRE). In addition, the polypurine
tracts in the pol and nef genes (cPPT and PPT, respectively) [25, 26] aligned precisely.

The fully automated pairwise HIV-1 and SIVcpz alignment is highly accurate relative to the
manually edited alignments in the Los Alamos National Laboratory (LANL) HIV database
[27]. Despite not explicitly considering codon alignment, our pairwise SHAPE-structure based
alignments have sum-of-pairs and column scores of 95.6% and 94.5%, respectively, relative to
LANL alignments (sum-of-pairs and column scores report similarity to a reference alignment
considering aligned position pairs and aligned columns, respectively). Relative to LANL align-
ments, the three-sequence SHAPE-dependent alignment considering HIV-1, SIVcpz, and SIV-
mac show sum-of-pairs and column scores of 75.5% and 56.9%, respectively. In general, areas
of disagreement between the SHAPE-structure and the LANL alignments, based on windowed
column scores, lie in regions of the HIV-1 sequence with multiple overlapping reading frames
and in regions encoding the variable loops in the env gene (S1 Fig). It is not clear which align-
ments are actually superior in these regions. In addition, RNA structure and codon alignments
may not be strongly conserved in these areas, due to the selective pressure of multiple reading
frames or to high mutation rates in the variable sequence regions.

Evaluation of correlation by multi-variable linear regression

To evaluate the relationships among SHAPE data for the three RNA genomes, multi-variable
linear regression was performed across the three-genome multiple sequence alignment over
200-nucleotide windows (Fig 2). By identifying areas with correlated SHAPE reactivities

(Fig 2A), we sought to find areas in the sequence alignment with conserved RNA structures.
SHAPE data were fit to a three-dimensional linear regression model, and the correlations
among the three HIV-related strains were evaluated using the F-test. Based upon F-statistic
measurements, p-values defining the significance of the correlation were determined for
SHAPE values over the entire alignment (see Methods). These p-values were used to identify
structural elements conserved among all three RNA genomes (Fig 2B). In addition, a t-test was
used to gauge the pairwise correlations between HIV-1 and SIVcpz or SIVmac (Fig 2C).

Multiple regions across the three-genome alignments showed significant interdependences
in SHAPE reactivities (Fig 2B; defined as F-test p-value < 0.01). Regions with statistically sig-
nificant SHAPE reactivity correlations occurred both at the 5" and 3’ ends and in internal cod-
ing regions. Without exception, all previously identified functional elements are located in
regions with correlated SHAPE reactivities. Critically, there are also multiple regions of similar-
ity where no functional RNA structures had previously been identified. These newly identified
regions lie in the gag, pol, and env genes.

Generally, regions that are statistically significant by both pairwise t-test analyses coincided
with regions that correlated across all three genomes by F-test (Fig 2C). As expected, the pair-
wise t-test analyses showed that statistically significant SHAPE reactivity correlations are more
widespread for the HIV-1 and SIVcpz comparison than for the more distantly related HIV-1
and SIVmac viruses. There are defined regions where correlations by F-test across the three-ge-
nome alignment are not recapitulated in HIV-1 and SIVmac pairwise t-test analyses, most con-
spicuously near NL4-3 residues 4400 and 7900. These are likely areas of structural
conservation between HIV-1 and SIVcpz that are not shared between HIV-1 and SIVmac.
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©PLOS

COMPUTATIONAL

BIOLOGY

Secondary Structures Conserved across Three HIV-Related RNA Genomes

Consensus secondary structures

Using the SHAPE-directed multiple sequence alignment, we developed consensus secondary
structure models based on both nucleobase identity and SHAPE reactivity data [23] (Figs 3
and 4). Secondary structure models were generated for areas with statistically significant corre-
lations (F-test p-value < 0.01). Consecutive regions with significant correlations were com-
bined into single regions for structure modeling. Based on this criterion, eleven areas were
selected from the three-genome alignment, ranging in length from 255 to 1285 nucleotides and
collectively covering 68.4% of the HIV-1 NL4-3 genome.

Consensus secondary structures of regions with structural similarity implied by correlated
SHAPE data were generated using three orthogonal inputs: RNA nearest-neighbor free energy
rules, sequence covariation, and SHAPE reactivities [28-31]. For each region, two consensus
structures were developed: one incorporating sequence alignment and SHAPE data for all
three genomes and the other using pairwise information for only HIV-1 and SIVcpz, the two
more closely related genomes. Consensus base pairs with pairing probabilities greater than
95% that did not disagree between the two consensus structures were then used to restrain a
SHAPE-directed secondary structure model for HIV-1 [28, 32]. Consensus base pairs from the
three-genome and HIV-1/SIVcpz comparisons are shown on the final constrained HIV-1
model (Figs 3 and 4). Consensus base pairs are highly over-represented in known functional el-
ements (Fig 5). Importantly, consensus base pairs are also found in multiple areas with no pre-
viously identified function. In general, consensus base pairs occur more frequently at the 5’ and
3’ ends of the genome, though regions with notable consensus base pairing also occur in the
central coding region.

Discussion
Secondary structure motifs conserved across diverse lentivirus lineages

Cellular and viral RNAs encode information in the form of higher-order RNA structures. The
structures of a vast majority of transcribed RNAs are uncharacterized, and new strategies are
needed to efficiently and rigorously search for functionally important structural elements. Here
we applied an approach that makes possible motif discovery for elements whose function is im-
plied by structural conservation; the approach is described in detail in the preceding compan-
ion manuscript [23]. First, model-free RNA structure comparisons were performed using
whole-genome structure information experimentally derived from nucleotide-resolution
SHAPE reactivities. Consensus secondary structures were then constructed for strongly corre-
lated regions by taking into account both SHAPE probing structural data and nucleotide co-
variation information from structure-based alignments. We identified 314 base pairs with
pairing probabilities greater than 95% that are shared between the two distinct consensus mod-
els developed in this work, one generated considering HIV-1, SIVcpz, and SIVmac RNA ge-
nomes and the other considering only the more closely related HIV-1 and SIVcpz sequences.
Of these base pairs about half (171 base pairs, 54.5%) are in previously described elements.
Strikingly, however, nearly as many base pairs with strong consensus support exist in regions
with no known function (143 base pairs, 45.5%). That these structures are conversed across di-
verse HIV-related strains implies critical, if currently unknown, functionality.

The structural model developed in this work accurately reflects most of what is known
about the genomic RNA structure of HIV-1 and related lentiviruses. Known functional ele-
ments are recapitulated precisely and are enriched with conserved base pairs (Fig 5). Our anal-
ysis provides additional perspective on these well-studied elements. For example, the TAR
secondary structure for SIVmac forms two similar, but distinct, stem-loops [33]. The single

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004230 May 20, 2015 7/19



@‘ PLOS | soMpuTaTioNAL
-~z BIOLOGY Secondary Structures Conserved across Three HIV-Related RNA Genomes

®

U5
stem-loop

gag-pol
frameshift
element

SHAPE
reactivity

0.7-

0.3-

0.0- I
No data [l
fi N et / Both consensus structures
/" HIVISIVepz/Sivimac only

/ HIV/SIVepz only
/ HIV only, constrained

1 2 3 4 5 6
11111 1
FIT tests: p < 0.01 I L IL 1

2 L1V T (7% ) Y O O T T T I I O T T T T I O I I O O I O

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

PBS/PSI gag/pol FS CPPT RRE PPT
KnownRNA |HI— & | = ¥
elements  1ar/POLY A TAR/POLY A
Major splice ot
sites

POL
Protein reading

frames (NL4-3) [ cac |
TAT
Fig 3. Secondary structure models for six structurally conserved elements in the 5' half of HIV-related RNA genomes. Nucleotides are colored by
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doi:10.1371/journal.pcbi.1004230.9003

stem-loop TAR elements from HIV-1 and SIVcpz align specifically with the second of the two
stem-loops in SIVmac, suggesting greater structural similarity. Structural conservation as evi-
denced by correlated SHAPE reactivities is found throughout the HIV-1 genome including in
the env and pol genes (Fig 2), consistent with studies implicating conserved RNA structure in
these regions [34, 35]. A conserved structural element in the pol gene, at the protein domain
junction between protease and reverse transcriptase, shares structural features with a previous-
ly identified structural element (Fig 3; nucleotides 2015-2121 in structure 3) [36].
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doi:10.1371/journal.pcbi.1004230.g004

This work also expands on the results of previous SHAPE-based analyses of HIV genomic
RNAs. Recently, SHAPE-MaP studies focused on HIV-1 alone were used to model the whole-
genome secondary structure [9]. Though that study and the work described here both
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doi:10.1371/journal.pcbi.1004230.9005

ultimately resulted in secondary structure models, each approach has unique advantages. The
prior work introduced the melded use of SHAPE reactivities and Shannon entropies to identify
de novo regions with well-determined stable RNA structures based on information from a sin-
gle sequence. This work uses evolutionary conserved sequence and structural alignment to
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identify regions with conserved structure and, additionally, to identify specific regions within
larger motifs that are the most conserved structurally. The SIVmac genome has also been previ-
ously analyzed by SHAPE [11], and the resulting secondary structure model was compared to a
SHAPE-directed secondary structure model for HIV-1 [10]. Model-based comparisons were
made by hand, guided by manually edited sequence alignments. From this model-based manu-
al comparison, 71 base pairs were identified as directly conserved between HIV-1 and SIVmac
[11]. These base pairs are largely recapitulated in this work, including a stem-loop structure
present at splice acceptor site one (called Al); perturbation of this structure dramatically im-
pacts splicing at this site [11]. We do not see evidence of the shifting pairing partners in the
RRE described in the prior STVmac study. Despite not explicitly considering protein sequence,
our structure-informed alignment preserves codon alignment at the RRE and accurately pre-
dicts its accepted secondary structure [11].

The strategy for structural motif discovery directed by fully automated SHAPE-based struc-
ture alignment created in this work is notably more successful than prior manual analyses,
both at recapitulating known functional structures and in discovering new elements whose
structures are conserved across diverse viral strains. This success is attributable to three fea-
tures. First, the SHAPE-MaP approach itself is fully automated and avoids systematic errors or
biases introduced by manual data processing required by prior capillary electrophoresis-based
approaches. Second, sequence comparisons performed in this work directly consider a first-
order metric of RNA structure—SHAPE reactivity—as opposed to base identity alone. Third,
the approach created in this work performs these comparisons in a model-free way, avoiding
complications arising from the complexity of large RNA secondary structure modeling.

Ultimately, the biological relevance of structure motifs identified in genome-wide studies
must be examined and validated by direct experimentation. This work strongly constrains re-
gions that merit such investigation. For example, in one recent study, four RNA hairpins were
selected for mutational studies to determine their effects on viral replication [37]. Mutations in
these four hairpins did not affect viral replication. Two of the four hairpins evaluated in the re-
cent study (termed POL1 and POL3) fall in areas of insignificant structural correlation. A third
(NEF1) has a different consensus-supported structure. The remaining hairpin (POL2) appears
in the final HIV-1 structure model; however, this hairpin is not conserved in either the three-
or two-genome consensus predictions. Thus, none of these hairpins would have been good can-
didates for mutagenesis studies and functional characterization based on the models developed
in this work. In contrast and as described below, this work identifies multiple motifs that are
compelling targets for future functional studies.

Conserved, structured RNA elements at junctions between protein-
coding domains

Proteins fold co-translationally, and RNA structural stability affects ribosomal pausing during
translation [38, 39]. Given that the extent of RNA structure formation influences pausing of
the ribosome, local RNA structure could in turn modulate protein structure and associated ac-
tivity [40]. Prior analysis of the HIV-1 genome revealed a potential relationship between highly
structured regions of the RNA genome and the junctions between protein domains in HIV-1
polyprotein precursors [10]; however, it was not then possible to identify specific RNA struc-
tures that might define the relationship between RNA structure and translation. Here we ob-
served that multiple conserved structured elements occur at or near protein-protein junctions
and at protein inter-domain boundaries. Conserved structured elements occur in gag at the
junction between p17 (matrix) and p24 (capsid) (Fig 6A, upper left), in gag-pol at the junction
between protease and reverse transcriptase (Fig 6A, lower left), and between RNase H and
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A1 splice site, described in Pollom et al., recapitulated in this work [11].

doi:10.1371/journal.pcbi.1004230.9006

integrase coding domains (Fig 6A, right). Base pairs in these regions show conservation in both
the HIV-SIVcpz comparison and in the three-genome consensuses (Fig 6). In each proposed
conserved structure element, conserved helices are present near the domain junction with a
stable conserved helix occurring 3' of the protein domain junction.

Two elements with extended conserved base pairing

Automated SHAPE-based alignment also identified structural elements that are clearly con-
served among the three HIV-related strains but for which it is currently difficult to propose
functions. Most strikingly, there are two regions that contain long helical elements with exten-
sive conservation of base pairing (Fig 6B). Including potential stacking interactions, these ele-
ments contain helical elements extending for 20 or more base pairs.
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Structural features common to polypurine tract elements

Polypurine tracts are functionally critical retroviral sequence elements that act as RNA primers
for positive-strand DNA synthesis [41]. How these elements function mechanistically is un-
known. Following first-strand DNA synthesis, the PPT RNA-DNA hybrid duplex is preserved,
and the rest of the RNA genome is degraded. Each of the retroviruses studied here has two dis-
tinct PPT sequences: the PPT sequence in the nef gene and the central polypurine tract (cPPT)
in the pol gene.

The cPPT and PPT regions were previously noted to have similar patterns of SHAPE reac-
tivity based on analysis of SHAPE probing data for HIV-1 and SIVmac [11]. Consistent with
this prior finding, we found that the polypurine sequences have a consistent SHAPE reactivity
pattern across all three genomes: Adenines show high reactivity, and the guanine nucleotides
are unreactive (Fig 7A). The RNA regions spanning the cPPT and PPT also showed strong sta-
tistical interdependencies in whole genome alignments (Fig 2). Both the cPPT and PPT, con-
tain conserved base pairs in consensus structural models (Fig 7B), and the cPPT and PPT
regions show striking structural similarities in their predicted models. The 3’ end of the G-rich
region forms a structurally conserved helix. The helix forms the boundary for a single-stranded
region containing the A-rich 5" end of the polypurine sequence. This single-stranded region
contains short helical elements that are conserved in consensus models for the PPT (Fig 7B).

This conserved structure may contribute to the known function of the PPT tract as an RNA
primer for second-strand DNA synthesis. Consensus cPPT/PPT structures are conspicuously
positioned near the RNase H cleavage site, suggesting a possible connection between RNA
structure and recognition of the PPT by the RNase H domain of reverse transcriptase. The 3’
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end of the PPT is within a helical element. RNA secondary structure has been shown to influ-
ence polymerization-dependent RNA cleavage by inducing pausing of the reverse transcriptase
[42, 43]. Although this element would not account for cleavage precisely at the 3’ end of the
PPT [41], secondary structure-dependent cleavage during reverse transcription may be a first
step in the processing of the PPT RNA primer. These conserved RNA structures may also have
additional functions.

Perspective

With advances in high-throughput chemical probing, interrogation of RNA structure at the
transcriptome level is now possible. Structured motif discovery and annotation requires rigor-
ous and accurate approaches for automated RNA structure characterization and motif discov-
ery. Using structure-based alignments derived from SHAPE reactivities, we identified
statistically correlated RNA structure motifs conserved across related viral genomes and then
modeled secondary structures for these regions based on both sequence covariation and chemi-
cal probing-derived structural information. The resulting structures recapitulated all known
functional elements in the HIV-1 RNA genome. Consensus base pairs were also discovered in
structural elements with no currently known function; these are outstanding targets for future
functional analysis. The ideas and general approaches described here provide a framework for
functional RNA structure discovery at the RNA genome and transcriptome levels.

Availability of SHAPE probing data, alignments, and structure models

All SHAPE-MaP data, alignments, and secondary structure models developed in this work are
fully available both in the Supporting Information and at the corresponding author's web page
http://www.chem.unc.edu/rna/.

Methods
Virus production and genomic RNA purification

Viruses were produced and genomic RNA purified as described [21]. Virus inocula were gener-
ated by transfection of the following plasmids into 293T cells (using TransIT 293, Mirus Bio).
HIV-1 was derived from pNL4-3 (GenBank accession no. AF324493; obtained through the
NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH, from Dr. Malcolm A. Martin)
[14]. The proviral plasmid containing STVcpz MB897 (GenBank accession no. JN835461) was
a gift from Brandon F. Keele, AIDS and Cancer Virus Program [15]. The plasmid containing
the SIVmac239 provirus (GenBank accession no. M33262) was obtained through the NIH
AIDS Reagent Program, Division of AIDS, NIAID, NIH, from Dr. Ronald C. Desrosiers) [16,
17]. During genomic RNA extraction, care was taken to avoid denaturation of RNA structure
by heat or treatment with chaotropic agents. Following lysis with SDS and proteinase K, viral
RNA was extracted three times using 25:24:1 phenol/chloroform/isoamyl alcohol, followed by
two extractions with pure chloroform. Viral RNA was precipitated in 70% (vol/vol) ethanol
with 300 mM KCl and stored at -80°C until use.

Characterization of genomic RNAs by SHAPE-MaP

Tubes containing roughly 10 pg of precipitated SIVcpz or SIVmac RNA in 70% ethanol were
spun in a microfuge at 4°C for 45 min to pellet RNA. Ethanol was removed, and the pellets in-
cubated at room temperature for 10 min to allow remaining ethanol to evaporate. The pellets
were resuspended in 20 uL genome resuspension buffer [50 mM HEPES (pH 8.0), 200 mM
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potassium acetate], and the resulting solution was characterized by absorption spectroscopy at
260 nm to determine RNA concentration.

To determine SHAPE reactivities, three experiments were performed with SIVcpz and SIV-
mac samples: M7 modification of natively-folded RNA, a no-modification background con-
trol, and 1M7 modification of denatured RNA [9]. For 1IM7 modification of natively-folded
RNA and no-modification background controls, aliquots containing 1 ug of SIVcpz or SIVmac
RNA were taken from precipitated RNA stocks. To these 1-ug aliquots, 3 uL of 100 mM MgCl,
were added, and the RNA solution was brought up to a volume of 90 pL using genome resus-
pension buffer. The RNA solution was then incubated at 37°C for 15 min before adding 10 pL
of 100 mM 1M7 in DMSO (1M7 modification of natively folded RNA) or 10 uL neat DMSO
(background control). The RNA solution was then incubated at 37°C for 3 min to allow com-
plete reaction of IM7. The RNA solution was then held on ice until purification.

For 1M7 modification of denatured RNA, an aliquot containing 1 pg of SIVcpz or SIVmac
RNA was taken from precipitated RNA stocks. To this aliquot, 25 uL of 4 denatured control
buffer was added [200 mM HEPES (pH 8.0), 16 mM EDTA], and the RNA solution was
brought to a volume of 40 uL using nuclease-free water. To this RNA solution, 50 pL of deion-
ized formamide was added. The RNA solution was held at 95°C for 1 min and then added to
10 pL 100 mM 1M7 in DMSO. The reaction was held at 95°C for 1 min before transferring the
reaction to ice. The RNA solution was held on ice until purification.

RNA was then purified by affinity binding (RNeasy Min-Elute kit; Qiagen). Following puri-
fication, sequencing libraries were generated as described [9], and sequencing output was ana-
lyzed using the SHAPE-MaP pipeline [9]. Background mutation rates were high for the first
200 nucleotides of the STVmac genome, resulting in unusual negative peaks for this region;
SHAPE values for the first 200 nucleotides of STVmac239 were therefore taken from prior
work [11].

SHAPE-structure dependent alignments of genomic RNA

SHAPE-structure dependent alignments were performed as described [23]. Pairwise sequence
alignments were generated by dynamic programming, using a SHAPE value comparison scor-
ing metric. Pairwise sequence alignments were then used to create a multiple sequence align-
ment using T-Coffee [24] by considering only the pairwise SHAPE-dependent alignments.
This approach does not use sequence identity and, instead, relies on matched sequence posi-
tions in the input alignments.

Multi-variable linear regression and statistical analysis

SHAPE data were fit using least squares, where Y represents HIV-1 SHAPE values and X; and
X, represent SIVcpz and SIVmac SHAPE values, respectively:

Y =B+ BX + X, +g

Correlations between the three HIV-related strains were evaluated using the F-test, which
evaluates the interdependency of data sets based upon a linear regression model. The F-test
evaluates the following null hypothesis by the sum of squares due to lack-of-fit for the model:

ﬂ1:ﬁ2:0

Based on the derived F-statistic measurements, p-values defining the significance of the in-
terdependence of SHAPE values were determined over the entire alignment. In addition, t-tests
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were used to evaluate pairwise correlations between HIV-1 and either SIVcpz or SIVmac. Sta-
tistical analyses were performed over 200-nt windows in the multiple sequence alignment.
Over each window, only positions with SHAPE values for each genome were considered; no
gapped positions were included. Multi-variable linear regression analyses were performed
using the NumPy, SciPy, and statsmodels Python modules [44, 45]. Multi-variable linear mod-
els were created using least squares fitting. F-tests and t-tests were performed over each win-
dow using statsmodels [45]. We note that there are regions in the whole-genome alignment
where the F-test is not significant but where one of the pairwise t-tests is significant. This dis-
agreement likely reflects, in part, correlation between the SIVcpz and SIVmac data sets
(collinearity).

Generation of reference alignment and evaluation of SHAPE-dependent
alignment

A manually edited alignment considering diverse primate lentiviruses was taken from the 2012
HIV Compendium (section “Alignment of Primate Lentivirus Complete Genomes”) [27]. A
reference multiple sequence alignment containing the NL4-3 sequence was generated by insert-
ing this sequence into the HIV Compendium alignment using MAFFT [46]. Agreement be-
tween SHAPE-dependent and reference alignments was evaluated using sum of pairs and
column score analyses [47]. Sum of pairs is the percentage of reference matched position pairs
recapitulated in an alignment, and column score is the percentage of vertical columns that are
shared with a reference alignment.

Selections of areas of interest for secondary structure prediction

Areas of interest for secondary structure modeling were selected based on F-test statistics of
multi-varjable linear regression models. If a given 200-nt window had an F-test p-value less
than 0.01, the corresponding 200-nt region was selected as an area of interest. Consecutive
areas of interest were combined in the same secondary structure element.

Consensus secondary structure prediction

Secondary structures for the reference HIV-1 sequence were generated with a two-step proce-
dure using RNAalifold and RNAfold, both of the Vienna-RNA software package [29, 32, 48].
First, consensus based pairs were generated using RNAalifold based on the SHAPE-directed se-
quence alignment. Two consensus secondary structures were predicted for each F-test-defined
element. The first consensus considered HIV-1, SIVcpz, and SIVmac sequences. The second
consensus considered (the more closely related) HIV-1 and SIVcpz sequences only. Consensus
structures were generated using the ribosum substitution matrix and a max base pairing dis-
tance of 600 nucleotides [49]. Consensus structure prediction incorporated SHAPE reactivities
using a pseudo-free energy change potential [31].

Following consensus model generation, consensus base pairs were used to constrain a sin-
gle-genome secondary structure prediction for HIV-1. Base pairs from each consensus struc-
ture with pairing probabilities greater than 95% were added to a constraint list. The constraint
list was curated such that consensus pairs were excluded if either (i) pairs with shared nucleo-
tides contradicted each other in terms of base pairing partners or (i) pairs from two consen-
suses were non-nested. HIV-1 structure predictions constrained by consensus pairs were
performed with RNAfold. Predictions were constrained such that curated consensus pairs were
maintained in the final structure. SHAPE reactivities were incorporated into secondary struc-
ture model using a pseudo-free energy potential [31]; the maximum allowed base pairing dis-
tance was 600 nucleotides.
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Supporting Information

S1 Fig. Evaluation of agreement between SHAPE-only alignment with a manually curated
reference alignment from the LANL HIV compendium [27]. The column score, the percent-
age of positions (columns) recapitulated in a given alignment, for the SHAPE-dependent align-
ment relative to the LANL alignment is shown across the entire HIV-1 genome over 200-nt
windows. HIV-1/SIVcpz and HIV-2/SIVmac reading frames and the positions of env variable
loop regions are shown as a function of NL4-3 sequence. Low levels of agreement, reflected by
low column score values, occur at regions encoding multiple protein reading frames and re-
gions encoding variable loops in env.

(EPS)

S1 Dataset. All SHAPE-MaP reactivity data, alignments, and secondary structure models
are provided in a single dataset archive.
(ZIP)
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