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Abstract

A growing number of genes responsible for reproductive incompatibilities between species (bar-

rier loci) exhibit the signals of positive selection. However, the possibility that genes experiencing

positive selection diverge early in speciation and commonly cause reproductive incompatibilities

has not been systematically investigated on a genome-wide scale. Here, I outline a research pro-

gram for studying the genetic basis of speciation in broadcast spawning marine invertebrates that

uses a priori genome-wide information on a large, unbiased sample of genes tested for positive

selection. A targeted sequence capture approach is proposed that scores single-nucleotide poly-

morphisms (SNPs) in widely separated species populations at an early stage of allopatric diver-

gence. The targeted capture of both coding and non-coding sequences enables SNPs to be

characterized at known locations across the genome and at genes with known selective or neutral

histories. The neutral coding and non-coding SNPs provide robust background distributions for

identifying FST-outliers within genes that can, in principle, identify specific mutations experiencing

diversifying selection. If natural hybridization occurs between species, the neutral coding and non-

coding SNPs can provide a neutral admixture model for genomic clines analyses aimed at finding

genes exhibiting strong blocks to introgression. Strongylocentrotid sea urchins are used as a

model system to outline the approach but it can be used for any group that has a complete refer-

ence genome available.

Key words: barrier loci, Dobzhansky–Muller incompatibilities, FST-outliers, genome scan, introgression, positive selection, se-

quence capture, speciation.

Introduction

Understanding how reproductive barriers evolve between popula-

tions represents one of the most fundamental challenges in evolu-

tionary biology (Coyne and Orr 2004; Gavrilets 2004). Recent

studies of genome-wide patterns of divergence between closely

related species have provided new insights into the identity of genes

causing reproductive barriers (Nadeau et al. 2012; Nolte et al.

2013), the semi-permeable nature of species barriers (Rieseberg

et al. 1999; The Heliconius Genome Consortium 2012), and the

genetic architecture of species differences (Teeter et al. 2010;

Arnegard et al. 2014). Following the discovery of “genomic islands

of speciation” in Anopheles mosquitoes by Turner et al. (2005), het-

erogeneous patterns of genome-wide divergence have been described

in growing number of species pairs (reviewed by Sousa and Hey

2013; Seehausen et al. 2014). This heterogeneity was initially inter-

preted as reflecting highly variable levels of introgression across the

genome (Via and West 2008; Nosil et al. 2009). However, the con-

ditions producing genomic islands of divergence appear restrictive

(Feder et al. 2012b; Flaxman et al. 2013) and recent re-analyses sug-

gest that they might result from recent diversifying or background

selection occurring during allopatric divergence (Cruickshank and

Hahn 2014).

Many population genomic studies have embraced the concept of

“ecological speciation” where diversifying selection represents the

initial driver of speciation with, or without, ongoing gene flow

(Schluter 2009; Nosil 2012). An important feature of ecological
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speciation is the reduced fitness of intermediate phenotypes (or mi-

grants) caused by a mismatch between genotype and the environ-

ment (i.e., extrinsic postzygostic isolation). The enthusiasm for

ecological speciation has shifted attention away from investigating

how species originate in allopatry without any marked changes in

ecology, physiology, or morphology. The widespread presence of

cryptic species in both terrestrial and marine environments

(Knowlton 1993; Pfenninger and Schwenk 2007) shows that repro-

ductive barriers commonly evolve between taxa that remain unrec-

ognized until genetic identification. The evolutionary processes and

genes responsible for establishing and maintaining ecologically simi-

lar species in communities remain largely unknown. In the absence

of strong ecological divergence, it is possible that some intrinsic iso-

lation evolves from neutral or non-adaptive processes such as the

random loss or movement of duplicated genes (Lynch and Force

2000) or intragenomic conflict (Rice 1998; Crespi and Nosil 2013).

Progress toward understanding the genetic basis of speciation re-

quires identifying the genes responsible for reproductive barriers be-

tween species, the selective (or neutral) processes responsible for

their divergence and their order of appearance (particularly during

the initial stage) (Coyne and Orr 2004; The Marie Curie

SPECIATION Network 2012). A growing list of “speciation genes”

or “barrier loci” has been discovered that cause reproductive incom-

patibilities between species (Noor and Feder 2006; Presgraves 2010;

Rieseberg and Blackman 2010; Nosil and Schluter 2011). An inter-

esting pattern emerging from the characterization of barrier loci is

that they often exhibit signals of positive Darwinian selection driven

by genomic conflict (e.g., Ting et al. 1998; Phadnis and Orr 2009;

Tang and Presgraves 2009; Nolte et al. 2013). Irrespective of the

form(s) of selection involved, the possibility that barrier genes com-

monly have histories of positive selection has not been systematically

investigated on a genome-wide scale. Theory predicts that

Dobzhansky–Muller incompatibilities (DMIs; Dobzhansky 1937;

Muller 1940) should be more prevalent at genes experiencing accel-

erated rates of divergence (Navarro and Barton 2003; Coyne and

Orr 2004; Payseur and Nachman 2005). However, it is possible that

many positively selected genes (PSGs) do not contribute to repro-

ductive barriers and some may even experience adaptive introgres-

sion (e.g., Ding et al. 2014; Huerta-S�anchez et al. 2014). A powerful

approach for distinguishing between PSGs conferring strictly adap-

tive benefits and those causing reproductive incompatibilities has

been to study their patterns of introgression in hybrid zones

(Harrison 1990; Payseur 2010).

In broadcast spawning marine invertebrates, the possibility that

positive selection at gamete recognition proteins (GRPs) plays an im-

portant role in establishing reproductive barriers between species

has received considerable attention (see reviews by Swanson and

Vacquier 2002; Clark et al. 2006; Palumbi 2009; Lessios 2011;

Vacquier and Swanson 2011; Kosman and Levitan 2014). However,

the forms of selection responsible for positive selection on GRPs re-

main largely unknown and their levels of polymorphism and pat-

terns of divergence vary unpredictably among groups (Vacquier and

Swanson 2011; Kosman and Levitan 2014). The importance of di-

vergence at GRPs during the early stage of speciation is also not

clear because GRPs in allopatric species often fail to exhibit positive

selection whereas those in sympatric taxa commonly do (Palumbi

2009; Vacquier and Swanson 2011; however, see Hart et al. 2014).

Furthermore, strong asymmetrical patterns of gamete compatibility

are common between closely related species (Zigler et al. 2005) that

are incapable of providing effective barriers to introgression (Lessios

2007). For the sea urchin sperm protein bindin, gamete

compatibility between species is correlated with amino acid diver-

gence and Zigler et al. (2005) estimate that sister species can main-

tain compatibility for up to 5 million years. This is comparable to

the mean time to speciation in many marine invertebrate groups

(Coyne and Orr 2004), suggesting that more effective barriers must

evolve earlier at other unknown genes or genetic elements.

The goal of this paper is to outline a research strategy for study-

ing the genetic basis of speciation in broadcast spawning marine in-

vertebrates that is based on a priori genome-wide knowledge of

genes experiencing positive Darwinian selection. Although candi-

date gene approaches have been used to investigate genome-wide

patterns of differentiation (e.g., Andrés et al. 2013; Hebert et al.

2013; Fraı̈sse et al. 2016), none has been based on a large, unbiased

sample of genes with known selective (or neutral) histories. The ad-

vantage of this approach is that it provides testable predictions

about the identities of genes that might diverge early in the speci-

ation process and be more effectively blocked from introgressing

upon secondary contact. This avoids the post hoc characterization

of “genomic islands of divergence” that often fail to identify the pre-

sumed barrier loci due to unknown linkage associations with the se-

lected gene(s). Strongylocentrotid sea urchins will be used as a

representative group to highlight the approach, but it can be applied

to any system provided a well-annotated reference genome is

available.

The Geography of Speciation in High Gene Flow
Marine Invertebrates

The importance of geography in speciation has recently been de-

emphasized and replaced with models based on a continuum of gene

flow (e.g., Butlin et al. 2008; Fitzpatrick et al. 2009; Harrison

2012). This shift in perspective is necessary for nearshore marine in-

vertebrates whose geographic ranges have undergone dramatic and

dynamic changes over the Pleistocene caused by glacial cycles

(Jansson and Dynesius 2002; Jacobs et al. 2004; Norris and Hull

2012). In the northeast Pacific region, the fossil record shows that

nearshore species respond individualistically to changing ocean tem-

peratures and sea levels, and that community composition is in a

state of perpetual flux (reviewed by Valentine and Jablonski 1993;

Lindberg and Lipps 1996). The dynamic and complex histories of

species past distributions make it difficult to assign a strict geo-

graphic mode of speciation, to infer the selective agents causing

adaptive divergence, or to assess the role played by reinforcement.

The rapidity of environmental change over the latter part of the

Pleistocene has apparently not resulted in increased rates of speci-

ation or extinction (Jackson and Johnson 2000).

The high levels of gene flow that occur among populations of

many marine invertebrates with long-lived pelagic larvae simplify

studying some aspects of their speciation while complicating others.

The weak or non-existent population structure commonly observed

in these species renders models of “speciation-with-gene-flow”

(Feder et al. 2012a; Via 2012) unlikely because extensive gene flow

overpowers diversifying selection across most of the genome. If se-

lection does overcome gene flow and cause local adaptation

(Sanford and Kelly 2011) it is unclear whether this eventually results

in the formation of isolating barriers. The initiation of speciation in

high gene flow marine taxa must involve a period of allopatric diver-

gence following long-distance colonization across or between ocean

basins (Lindberg 1991; Vermeij 1991) or by major vicariance events

such as the rising of the Isthmus of Panama (Lessios 2008). Under

these scenarios, complications arise when attempting to identify the
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genes diverging early in the speciation continuum. Here, the chal-

lenge is to identify recently formed allopatric populations separated

by large geographic distances (i.e., different ocean basins) that have

undergone a small amount of genetic divergence. Although young

allopatric populations may not eventually form new species, they do

provide snapshots of the initial adaptive divergence following long-

distance dispersal events, which is the starting point for how many

marine species originate.

The Targeted PSGs Strategy

Here, I propose a research strategy for testing the hypotheses that

PSGs (i) diverge early among allopatric populations of a species and

(ii) commonly evolve to become barrier loci. This strategy is based

on knowing a priori the identity of genes experiencing positive selec-

tion across the genome in a group of closely related species. There

are 4 requirements for this approach to be successful. First, a well-

annotated reference genome must be available for what I call a

“focal species”. This is clearly a stringent requirement that excludes

virtually all species. However, the advantages provided by a refer-

ence genome for studying speciation are substantial (see below) and

complete annotated genomes are now available for a growing num-

ber of marine invertebrate species (see Table 1). Second, a group of

closely related species must be present whose genomes can be

sequenced using the focal species’ genome as a reference. The gener-

ation of multi-species alignments of single-copy orthologs enables

powerful and robust genome-wide tests for positive selection using

programs like PAML (Yang 2007) or HyPhy (Kosakovsky Pond

et al. 2005). A sufficient number of related taxa must be present

(>6) at an appropriate scale of divergence to provide adequate stat-

istical power (Anisimova et al. 2001). Third, conspecific populations

must exist at an early stage of divergence to allow the targeted cap-

ture and sequencing of population samples of all single-copy ortho-

logs previously tested for positive selection. This will allow the

identification of genes experiencing recent diversifying selection in

allopatry (i.e., FST-outliers) and provide insights into the overlap be-

tween historical and contemporary selection. Finally, low levels of

introgression must occur between some species that enable the iden-

tification of barrier loci that are blocked from moving between spe-

cies. Ideally, multiple hybrid zones or regions experiencing

introgression are present to test for the repeatability of introgression

or blockage (Payseur 2010). Meeting all of these requirements is ob-

viously extremely challenging. However, strongylocentrotid sea ur-

chins represent one group where all of the above conditions are met

and they will be used to illustrate some of the challenges of the ap-

proach described in this paper. Other groups with fairly well-

resolved phylogenic histories that could be studied in a similar man-

ner include the genus Octopus (Söller et al. 2000; Guzik et al. 2005)

and the genus Crassostrea (Yu and Li 2012; Trivedi et al. 2014).

Genome-Wide Screens for Positive Darwinian
Selection

Genome-wide tests for genes experiencing positive selection have

been conducted on only a limited number of groups including

Drosophila (Drosophila 12 Genomes Consortium 2007), mammals

(Kosiol et al. 2008), birds (Künstner et al. 2010), ants (Roux et al.

2014), and sea urchins (Kober KM, Pogson GH, submitted for pub-

lication). Although a number of factors affect the success of

genome-wide screens for positive selection, one of the most founda-

tional is that a set of accurate gene models must be available. The

well-annotated genome of the purple sea urchin Strongylocentrotus

purpuratus provides a good example of this necessity. The S. purpur-

atus genome contains �23,300 genes of which over 9,000 were

manually annotated by an international consortium of over 200

members (Sodergren et al. 2006). The initial gene predictions were

recently updated by Tu et al. (2012) who performed a deep tran-

scriptome analysis on pooled RNA from 10 different embryonic

stages, 6 different larval stages, and 6 adult tissues. These updates

incorporated exons missing from the original gene models, excised

Table 1. Complete genomes of marine invertebrate species with available gene modelsa

Phylum Species name Size

(Mb)

GC

(%)

Number

of genes

Reference(s)

Placozoa Trichoplax adhaerens 105.6 32.7 11,518 Srivastava et al. (2008)

Porifera Amphimedon queenslandica 166.7 37.5 13,998 Srivastava et al. (2010)

Mollusca Crassostrea gigas 557.7 35.3 32,261 Zhang et al. (2012)

Echinodermata Strongylocentrotus pupuratus 814.0 36.9 21,092 Sodergren et al. (2006), Tu et al. (2012)

Cephalochordata Branchiostoma floridae 521.9 41.2 28,627 Putnam et al. (2008)

Tunicata Oikopleura dioica 70.5 39.8 17,212 Seo et al. (2001)

Tunicata Ciona intestinalis 115.2 33.1 15,254 Dehal et al. (2002)

Brachiopoda Lingula anatina 425.5 36.9 34,000 Luo et al. (2015)

Anthozoa Nematostella vectensis 356.6 40.6 27,173 Putnam et al. (2007)

Cephalopoda Octopus bimaculoides 2,282.8 36.1 32,819 Albertin et al. (2015)

Ctenophora Mnemiopsis leidyi 155.9 38.9 16,548 Ryan et al. (2013)

Annelida Capitella teleta 333.3 40.4 31,997 Simakov et al. (2013)

Mollusca Lottia gigantea 359.5 33.3 23,827 Simakov et al. (2013)

Mollusca Aplysia californica 927.3 42.0 21,312 https://www.broadinstitute.org/scientific-community/

science/projects/mammals-models/vertebrates-

invertebrates/aplysia/aplysia-genom

Priapulida Priapulus caudatus 511.7 45.7 17,096 http://www.ncbi.nlm.nih.gov/genome/?term¼Priapulusþcaudatus

Hemichordata Saccoglossus kowalevskii 775.8 38.1 22,073 https://www.hgsc.bcm.edu/acorn-worm-genome-project

Arthropoda Limulus polyphemus 1,828.3 34.5 22,031 http://genome.wustl.edu/genomes/detail/limulus-polyphemus/

aCompiled from the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov) in December 2015.
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erroneously included exons, corrected inaccurate exon/intron boun-

daries, and removed overlapping gene models (Tu et al. 2012).

Surprisingly, over half of the original manually curated gene models

contained errors. These results highlight the need for direct experi-

mental evidence (i.e., deep transcriptome sequencing) to validate

computational gene predictions. The accuracy of the S. purpuratus

gene models are on par with those from well-studied model species

(humans, mice, Drosophila, and Caenorhabditis elegans) making sea

urchins an excellent system for genome studies.

Using the genome of S. purpuratus as a reference, the complete

genomes of 8 additional strongylocentrotid sea urchins have recently

been obtained (Kober and Bernardi 2013a; Kober KM, Pogson GH,

submitted for publication). Illumina paired-end reads (100 bp) were

aligned directly to the reference genome, producing high coverage

across single-copy protein-coding genes (mean¼58.2X). Although

gene tree topologies were heterogeneous, the species tree was clearly

resolved from 4-fold degenerate sites at 2,815 genes not experienc-

ing positive selection (see Figure 1; Kober and Bernardi 2013a).

By fitting PAML models M7 and M8 (Yang 2007) and applying a

conservative false discovery rate of 5%, 1,008 of the 6,520 single-

copy orthologs tested (15.5%) showed significant signals of positive

selection. A further 824 candidate PSGs were found to exhibit posi-

tive selection along the 9 terminal branches of each gene tree (so-

called “branch-sites” tests). Recent substitutions along these ter-

minal branches represent prime candidates for barrier loci because

of their potential negative epistatic effects (Orr 1995; Figure 2).

Consistent with the action of repeated selective sweeps, the candi-

date PSGs had 68% higher rates of nonsynonymous substitution

(dN) and 33% lower levels of heterozygosity than non-PSGs (both

groups had similar rates of synonymous substitution, dS). As ex-

pected, positive selection was observed at innate immunity genes

and reproductive proteins. However, it was also prevalent at mem-

brane receptors, cell adhesion molecules, extracellular matrix pro-

teins, and ion channels that have been implicated as targets of

pathogens in other groups (notably mammals). The PSGs represent

excellent a priori candidates that might experience diversifying selec-

tion in recently formed allopatric populations.

Caution must be exercised when interpreting genome-wide tests

for positive selection because errors in sequencing, alignment, and

annotation are known to generate significant numbers of false posi-

tives (Schneider et al. 2009; Fletcher and Yang 2010; Markova-

Raina and Petrov 2011; Jordan and Goldman 2012). Although

sequencing errors can be minimized by applying strict base quality

metrics and high coverage cut-offs, mistakes in gene annotations

and alignments are more difficult to address. To minimize annota-

tion and alignment errors, a conservative reference-based alignment

method should be used that excludes all codons not present in the

reference genome (caused by insertions) and removes all missing

codons (caused by deletions) prior to testing for positive selection.

This should largely avoid alignment errors caused by gains or losses

of amino acids. In Drosophila, Markova-Raina and Petrov (2011)

observed that alignment and annotation errors were common near

exon borders and regions with insertions or deletions of amino acids

that resulted in significant spurious signals of positive selection.

Given these results, it is essential that all genome-wide screens for

positive selection test for the possible enrichment of false positives in

these regions. In sea urchins, Kober and Pogson (submitted for pub-

lication) subjected 3, 5, and 7 amino acid windows adjacent to exon

borders and missing data regions for enrichment tests and obtained

negative results. These results are important because they eliminate

the possibility that the signals of positive selection are largely caused

by annotation or alignment errors and provide further testament to

the accuracy of the gene models.

Targeted Genome Scans for FST-Outliers

In many high gene flow marine invertebrate species inhabiting a sin-

gle geographic region, it is problematic to test for FST-outliers be-

cause of the limited population genetic structure present. However,

FST-outlier tests can be performed on marine invertebrate taxa that

have broad geographic distributions ranges that may span different

ocean basins. Here, populations often exhibit moderate levels of

genetic differentiation when sampled at large spatial scales. For ex-

ample, 2 strongylocentrotid species (Strongylocentrotus droeba-

chiensis and Strongylocentrotus pallidus) have broad arctic–boreal

distributions across the north Atlantic and north Pacific oceans

(Mortensen 1943; Jensen 1974). No population structure has been

described among populations of S. droebachiensis within the same

geographic region but moderate genetic differentiation occurs be-

tween ocean basins (Palumbi and Wilson 1990; Addison and Hart

2004, 2005). Populations of S. droebachiensis from the northeast

Pacific, northeast Atlantic, and northwest Atlantic exhibit signifi-

cant pair-wise FST-values at the mitochondrial COI locus ranging

from 0.213 to 0.325 (Addison and Hart 2005). For microsatellites,

these same populations exhibit a mean overall FST-value of 0.087

(Addison and Hart 2004). Comparable studies have not been con-

ducted on S. pallidus but its similar geographic distribution and pe-

lagic larval duration to S. droebachiensis has likely resulted in

Figure 1. Species tree of the family Strongylocentrotidae constructed from 4-fold degenerate sites from 2,815 genes not experiencing positive selection (adapted

from Kober and Bernardi 2013a). Trees reconstructed using maximum parsimony (MP), maximum likelihood (ML), and Bayesian approaches produced identical

topologies. All nodes had MP bootstrap values of 100 and Bayesian poster probabilities of 1. Abbreviations denote geographic locations of species distributions

(NEP¼Northeastern Pacific, NWP¼Northwestern Pacific; CIR¼ circumpolar).
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similar levels of population divergence. Recently, genome-wide sin-

gle-nucleotide polymorphisms (SNPs) were compared between mus-

sel populations (Mytilus trossulus and Mytilus edulis) sampled from

either side of the north Atlantic and were found to exhibit pair-wise

FST-values ranging between 0.131 and 0.362 (Fraı̈sse et al. 2016).

These results suggest that other marine invertebrates with similar

broad distributions might be amenable for FST-outlier studies aimed

at identifying recently diverged loci.

Excluding humans, the majority of genome-wide scans for

FST-outliers have used randomly located SNPs, implicitly assuming

that patterns of polymorphism across the genome reflect neutral and

demographic processes (reviewed by Oleksyk et al. 2010; Haasl and

Payseur 2016). One of the long-standing problems faced by

FST-outlier studies is the difficulty of accurately quantifying the neu-

tral FST distribution. Some have questioned whether, in some spe-

cies, a neutral background actually exists (Comeron 2014; Burri

et al. 2015). The large effective population sizes of many marine in-

vertebrates may have resulted in the pervasive influence of linked se-

lection across the genome, similar to that observed in Drosophila

(Begun et al. 2007; Langley et al. 2012; Comeron 2014). Targeting

protein-coding genes for genome scans confounds this problem be-

cause these regions have the potential to directly experience diver-

sifying selection, background selection, balancing selection, and

even weak selection on patterns of synonymous codon usage (see

Kober and Pogson 2013b).

With a reference genome and prior information on genes known

to have experienced positive selection there are several ways to esti-

mate a neutral FST distribution. One is to score SNPs at single-copy

genes that do not exhibit positive selection (non-PSGs) or exhibit ex-

tremely low rates of nonsynonymous substitution. Another

approach would be to score thousands of SNPs in non-coding, non-

repetitive intergenic regions at large distances (e.g.,>50 kb) from

any known structural gene. Here, it would be possible to avoid

highly conserved non-coding elements, transcription factor-binding

sites, and to exclude all regions containing any PSGs. It would be

worthwhile evaluating whether null distributions provided by non-

PSG SNPs or those based on non-coding SNPs provide the most ro-

bust identification of FST-outliers. Because of differences in GC con-

tent, recombination rates may differ between non-coding and

coding regions of the genome (Eyre-Walker 1993). The neutral FST

distribution based on non-PSG SNPs might thus result in a more ac-

curate detection of genes experiencing recent diversifying selection.

Irrespective of this outcome, it will also be necessary to confirm the

outlier status of SNPs using an absolute measure of divergence (such

as dXY) to avoid the spurious inflation of FST-values caused by

reduced levels of polymorphism (see Noor and Bennett 2009;

Cruickshank and Hahn 2014).

As the cost of next-generation sequencing continues to fall, it is

tempting to collect complete genome data for SNP identification and

calling. However, because protein-coding genes are the focus of this

A

B

Figure 2. The distinction between historical and recent positive selection. (A) Alignment of portion of a hypothetical protein-coding sequence with one codon

(red) showing historical positive selection and another (green) showing recent positive selection based on PAML (Yang 2007) sites tests and branch-sites tests, re-

spectively. Historical and recent selections are not mutually exclusive. However, when both operate it is difficult to produce a significant branch-site test because

the external branch needs to have a significantly elevated dN/dS ratio compared with the remainder of the tree. (B) Gene tree with locations of amino acid changes

marked. Historical selection at the red codon cannot generate incompatibilities between S. droebachiensis and S. pallidus but recent selection at the green codon

can (designated by the “X”).
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research strategy, a more cost-effective approach would be to use

high-throughput hybridization-based targeted sequence capture of

exons (reviewed by Mamanova et al. 2010). Exon capture has proven

to be a cost-effective genotype-by-sequencing method that, although

widely used in human genomics, has not been widely applied to non-

model species (see Jones and Good 2016). Many studies have shown

that sequence capture using RNA “baits” generates longer contigs,

produces higher quality SNP calls, and provides more even coverage

than other genotype-by-sequencing methods like Rad-Seq (Baird et al.

2008) or variants thereof (see Tewhey et al. 2009; Harvey et al.

2013). Although some of the SNPs scored at non-PSGs or in non-

coding regions may not be truly neutral, they are expected to provide

a conservative null distribution because linked selection will act to in-

flate their variance and make FST-outlier calls more conservative.

FST-outlier studies are susceptible to false positive signals of diver-

sifying selection due to a variety of factors including population

bottlenecks (Foll and Gaggiotti 2008), hierarchical population struc-

ture (Excoffier et al. 2009; Fourcade et al. 2013), cryptic hybrid zones

(Bierne et al. 2011), and range expansions (Hofer et al. 2009). The

proposed targeted capture of SNPs in both coding and non-coding re-

gions of the genome offers a number of advantages over standard gen-

ome scans. First, the ability to detect FST-outliers should be

significantly improved over the practice of scoring random SNPs in

unknown locations. Rather than relying on linkage disequilibrium be-

tween a randomly located SNP and a selected gene, the protein-

coding regions captured are potentially the direct targets of selection.

Second, characterization of a large number of putatively neutral SNPs

enables application of the empirical P-value approach described by

Lotterhos and Whitlock (2014) where the significance of an

FST-outlier is based on its quantile in the empirical distribution of the

neutral SNPs (Figure 3). Lotterhos and Whitlock (2014) found that

this empirical P-value approach significantly reduced false positives,

even under non-equilibrium scenarios such as recent range expan-

sions. Third, the FST-outliers in coding regions can be more easily

traced to specific mutations at genes with known selective histories

and the impact of linked selection in these regions can be examined in

detail (reviewed by Sousa and Hey 2013; Vatsiou et al. 2016). Fourth,

alleles that have introgressed between species can be identified by re-

constructing gene genealogies and by applying powerful new tests for

detecting introgression (e.g., Geneva et al. 2015; Rosenzweig et al.

2016). Discovering that genes with histories of positive selection have

successfully moved between species might provide evidence favoring

adaptive introgression (Hedrick 2013). Finally, the neutral SNPs

could provide robust insights into the species demographic histories

(Excoffier et al. 2013; Liu and Fu 2015), which can provide important

insights when interpreting the patterns of diversifying selection.

The FST-outliers detected among widely separated populations of

marine invertebrates could provide important insights into the genes

that first diverge following the colonization of new habitats by long-

distance dispersal. A broad overlap between the FST-outlier genes

and those known a priori to have experienced positive selection

would confirm that diversifying selection is ongoing and that there

is a tight coupling of historical and contemporary selection. This

might be expected for genes experiencing sexual selection or conflict

where relentless cycles of adaptation and counter-adaptation are ex-

pected. However, the link between selection at different time scales

may be weak. If so, this might suggest that novel forms of selection

are being imposed on the new allopatric population, such as that

mediated by new suites of pathogens. However, the detection of di-

versifying selection at a locus does not provide any insight into

whether it causes a genetic barrier between diverging lineages. This

can only be assessed by performing controlled crosses or by examin-

ing the patterns of naturally occurring introgression.

Genome Scans for Barrier Loci

Hybridization is common in the marine environment, occurring at

similar levels to that described in terrestrial systems (reviewed by

A

B

Figure 3. Identification of FST-outliers by the targeted sequence capture of non-coding and coding SNPs. (A) Two gene models are shown on a scaffold that are

targeted for solution-based exon capture. Two non-coding regions>10 kb from either gene are also captured (but could be much further away). (B) Hypothetical

distributions of pairwise FST-values for genome-wide coding and non-coding SNPs are presented. The arrow designates the 5% false discovery rate cut-off esti-

mated directly from the non-coding SNPs. Any genes or gene regions with FST-values beyond this threshold are candidates for recent diversifying selection. Null

distributions for FST-outlier tests could also be generated from the subset of protein-coding genes that do not exhibit histories of positive selection.
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Gardner 1997; Arnold and Fogarty 2009). In his review, Gardner

(1997) observed that only 34 of the 108 documented cases of marine

hybridization involved hybrid zones or hybrid swarms. The majority

of hybridization events in the sea thus occur in the absence of dis-

tinct hybrid zones. Many hybridizing broadcast-spawners have

broadly overlapping geographic ranges and heterospecific matings

must occur randomly when breeding coincides in space and time.

Such appears to be the case for S. droebachiensis and S. pallidus.

The reproductive barriers between the 2 taxa appear fairly well es-

tablished and F1 hybrids in nature are rare. For example, using mor-

phological characters Vasseur (1952) identified 3 hybrids in a

sample of 562 individuals (0.54%) from northern Norway.

Although these observations suggest that gene flow between the two

species is limited, even small amounts of backcrossing can result in

significant introgression (Barton 2001). Low levels of asymmetric

introgression has been recently observed from S. pallidus into

S. droebachiensis at a small number of nuclear genes in populations

from the northeastern Pacific region (Addison and Pogson 2009;

Pujolar and Pogson 2011). The prevalence and identity of genes

experiencing introgression across the genomes of this species pair is

unknown.

The genomic clines method of Gompert and Buerkle (2009,

2010) can be used to study the patterns of introgression between

diverged lineages to identify putative barrier loci. This approach

uses multinomial regression to estimate the probability of a specific

genotype at a marker given an observed level of genome-wide ad-

mixture (i.e., a hybrid index). The genomic clines method relies on

estimating a model of neutral introgression. This is done by ran-

domly permuting genotypes among loci within individuals, or by

using genetic data from populations outside of the hybrid zone to es-

timate the probability of genotypes in the admixed population (see

Gompert and Buerkle 2009). Similar to the problem faced by esti-

mating the neutral FST distribution, using SNPs from protein-coding

genes to estimate the neutral admixture model is inappropriate.

However, the random permutation of non-PSG or non-coding SNP

genotypes among markers within individuals should provide an ac-

curate characterization of the neutral pattern of admixture. This in

turn should increase the power for identifying barrier loci that ex-

hibit significantly reduced levels of introgression between species.

A growing number of hybrid zone studies have reported highly

variable degrees of hybridization and patterns of introgression in

different geographic regions (e.g., Nolte et al. 2009; Teeter et al.

2010; Mandeville et al. 2015). Interpreting heterogeneous patterns

of introgression is particularly challenging because it can result from

geographic differences in a number of pre- or post-zygotic isolating

mechanisms, changes in relative abundances, or from the presence

of population-specific barriers. Since most broadcast spawning mar-

ine invertebrates lack strong mate choice, one of the most basic

ways for patterns of introgression to vary among geographic regions

are through differences in the degree of spatial or temporal isolation.

If this information is available, it can be used to predict how intro-

gression may differ between geographic regions. For example, in the

northeast Pacific, the reproductive cycles of S. droebachiensis and

S. pallidus overlap substantially (Levitan 1998) and F1 individuals

produced from these populations in the laboratory are viable and fer-

tile (Strathmann 1981). In the northeastern Atlantic, there is greater

spawning asynchrony between S. droebachiensis and S. pallidus,

with the former spawning earlier in the year (Vasseur 1952;

Hagström and Lönning 1967). Therefore, in this system one might

predict that, all else being equal, higher levels of introgression might

occur in the northeast Pacific than the northeast Atlantic.

Another factor complicating patterns of introgression among

populations is that the distributions of closely related species may

vary geographically. Recent studies on Lake Victoria cichlids (Keller

et al. 2013), Colorado River catostomid fishes (Mandeville et al.

2015), and blue mussels belonging to the genus Mytilus (Fraı̈sse

et al. 2016) have also illustrated how hybridization and introgres-

sion often needs to be assessed from a multi-species perspective. It is

becoming increasingly clear that a geographical context is essential

for properly interpreting patterns of introgression. In strongylocen-

trotid sea urchins from the northeast and northwest Atlantic, hetero-

specific matings are only possible between S. droebachiensis and

S. pallidus. However, in the north Pacific different assemblages of

species broadly co-occur along the Asian and North American

coasts (see Figure 1). If reproductive barriers are incomplete among

other species, the patterns of introgression might vary in different

and unpredictable ways across the north Pacific.

Some Limitations

The research strategy described here for evaluating the role of posi-

tive selection in producing barrier loci faces several important limi-

tations. First, tests for positive selection based on dN/dS ratios are

known to be conservative (Anisimova et al. 2001; Gharib and

Robinson-Rechavi 2013; Lu and Guindon 2013). It is thus likely

that many genes undergoing adaptive diversification fail to exhibit

statistically significant signals of positive selection and their omis-

sion would result in an unknown number of false negatives. Less

stringent criteria could be used to classify candidate barrier genes

such as those exhibiting the highest rates of nonsynonymous substi-

tution, irrespective of positive selection per se. Second, recently

formed paralogous genes create challenges for genome assemblies

and alignments and thus will be underrepresented in the tests for

barrier loci that use conserved single-copy orthologs. The import-

ance of new genes in forming reproductive barriers between species

is largely unknown, but they appear to diverge quickly and often ac-

quire new functions (Chen et al. 2013; Long et al. 2013). Finally, al-

though candidate barrier genes may be successfully identified, the

forms of selection responsible for their divergence may be difficult

to discern and additional functional tests (and genetic crosses) are

needed to confirm their direct involvement in establishing species

barriers. In some cases, the identities of barrier loci might provide

clear insights into a specific selective agent. For example, observing

that innate immunity genes often experience positive selection and

are strongly blocked from introgressing would implicate pathogens

as the drivers of divergence. Distinguishing between pre- or post-

zygotic barriers will also be challenging, but in some cases can also

be discerned from gene identity. For example, a strong barrier at a

GRP would clearly implicate a post-mating prezygotic barrier, but

the form of selection responsible remains unknown.

Broadcast spawning marine invertebrates often possess extensive

levels of genetic polymorphism that may complicate some of the

analyses proposed here. Multi-species alignments of single-copy

genes will contain large numbers of heterozygous mutations that

must be filtered prior to testing for positive selection. This is because

many mutations represent low frequency nonsynonymous changes

(likely deleterious) that, if included, would lead to overestimation of

dN and dN/dS ratios and generate false signals of positive selection.

High levels of heterozygosity can result in the loss of considerable

data. For example, at the 6,520 single-copy genes studied by Kober

and Pogson (submitted for publication) in sea urchins, codons con-

taining 1.72 million high-quality SNPs were filtered prior to testing
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for positive selection. High levels of standing variation may also

lead to the confounding of divergence with polymorphism if only

one individual is sequenced for each species. Sequencing the tran-

scriptomes of several individuals per species might improve the iden-

tification of fixed differences and allow McDonald–Kreitman tests

(McDonald and Kreitman 1991) to be performed that would com-

plement the tests for selection based on dN/dS ratios.

Long-distance colonization events involving marine invertebrate

populations with high levels of standing variation also leads to the

prediction that soft sweeps (Hermisson and Pennings 2005;

Pritchard et al. 2010) could be more common than hard sweeps.

Since soft sweeps generate diminished signals of genetic hitchhiking,

the ability to detect FST-outliers may be challenging especially in re-

gions with high rates of recombination. Interpreting soft sweeps

may be greatly improved if the biogeographical history of the group

is known and if the beneficial alleles are still segregating in known

ancestral populations. In the case of S. droebachiensis and S. pal-

lidus, populations in across the north Atlantic are known to have

originated from the north Pacific (Durham and MacNeil 1967;

Addison and Hart 2005). It is thus possible that haplotypes experi-

encing sweeps in the north Atlantic may be identifiable in popula-

tions from the north Pacific.

Concluding Remarks

Confirming that a diverse array of genes experiencing positive selec-

tion diverge early in the speciation process and commonly result in

reproductive incompatibilities would represent an important step

forward in understanding of the genetic basis of speciation. The

power of the approach outlined here results from the targeted cap-

ture of both con-coding and coding SNPs in known locations and at

genes with known selective (or neutral) histories. The neutral coding

and non-coding SNPs provide more accurate estimations of the neu-

tral FST distribution for FST-outlier tests and neutral admixture rates

for the genomic clines analyses identifying barrier loci. It is also

worth noting that negative results would be equally important to

speciation research. Discovering that positive selection does not typ-

ically produce barrier loci would direct attention to genetic elements

in non-coding regions responsible for establishing and maintaining

species boundaries (e.g., Jones et al. 2012; Nadeau et al. 2012;

Hebert et al. 2013). Moving beyond the post hoc characterization of

genome-wide patterns of divergence to a hypothesis testing frame-

work targeting known genes offers many advantages. It can provide

direct and detailed insights into the identity of genes responsible for

establishing species boundaries and the importance of gene flow in

preventing or facilitating the adaptive divergence of lineages (Abbott

et al. 2013). Although the ability to simultaneously study early di-

vergence and patterns of introgression between young marine inver-

tebrate species is clearly challenging, the approach outlined here

might provide an exciting way forward.
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