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A B S T R A C T   

The cervicovaginal microbiome (CVM) is a dynamic continuous microenvironment that can be clustered in 
microbial community state types (CSTs) and is associated with women’s cervical health. Lactobacillus-depleted 
communities particularly associate with an increased susceptibility for persistence of high-risk human papillo-
mavirus (hrHPV) infections and progression of disease, but the long-term ecological dynamics of CSTs after 
hrHPV infection diagnosis remain poorly understood. To determine such dynamics, we examined the CVM of our 
longitudinal cohort of 141 women diagnosed with hrHPV infection at baseline with collected cervical smears at 
two timepoints six-months apart. Here we describe that the long-term microbiome dissimilarity has a positive 
correlation with microbial diversity at both visits and that women with high abundance and dominance for 
Lactobacillus iners at baseline exhibit more similar microbiome composition at second visit than women with 
Lactobacillus-depleted communities at baseline. We further show that the species Lactobacillus acidophilus and 
Megasphaera genomosp type 1 associate with CST changes between both visits. Lastly, we also observe that 
Gardnerella vaginalis is associated with the stability of Lactobacillus-depleted communities while L. iners is 
associated with the instability of Megasphaera genomosp type 1-dominated communities. Our data suggest dy-
namic patterns of cervicovaginal CSTs during hrHPV infection, which could be potentially used to develop 
microbiome-based therapies against infection progression towards disease.   

1. Introduction 

Microbiomes interact with their hosts and form symbiotic ecosys-
tems that are associated with the host’s health and with disease [1,2]. In 
women, the cervicovaginal microbiome (CVM) has been classified into 
microbial communities or community state types (CSTs) according to 
their microbial composition [3–5]. In healthy women, the CVM consists 
predominantly of Lactobacillus species that protect the cervical epithe-
lium from microbial pathogens such as Gardnerella vaginalis, high-risk 
human papillomavirus (hrHPV), and HIV [3, 4, 6]. Lactobacillus-domi-
nated (LDO) CSTs such as I, II, and V, dominated by Lactobacillus crisp-
atus, Lactobacillus gasseri, and Lactobacillus jensenii, respectively, have 

been associated with protection against cervicovaginal diseases. In 
contrast, CST III (dominated by Lactobacillus iners) and Lactoba-
cillus-depleted (LDE) CST IV have been associated with a higher sus-
ceptibility to infections and hrHPV-induced neoplasia [7–10]. These 
associations have been mostly described in cross-sectional studies, and 
longitudinal analyses are still needed to fully assess the relationship 
between these communities and cervical health. 

CSTs are dynamic and transitions between them occur regularly 
depending on cervical hygiene and the microenvironment conditions 
[3]. It was previously established that LDO microbiomes are more stable 
than LDE microbiomes in women who tested negative for hrHPV 
[11–13]. The dynamics of CSTs during hrHPV infection, however, 
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remain poorly described. Research into the weekly dynamics of the CVM 
in hrHPV-positive women has revealed that CST IV exhibits high tran-
sition rates to other CSTs [14]. Nevertheless, in most women, hrHPV 
infections are cleared by the host immune system and assessing 
short-term CST dynamics might not provide sufficient information on 
the association between CSTs and hrHPV infection. In a longitudinal 
study, our group recently evaluated the association of the CVM with 
hrHPV infection progression in a six-month period and observed that the 
CVM composition correlated with the infection outcomes [15]. Yet, we 
did not explore the long-term dynamics of CSTs during infection inde-
pendently of progression and neither investigated the species associated 
with the stability of CSTs. A detailed assessment into this high-resolution 
microbiome data might provide valuable insights into the CVM and 
hrHPV infections. 

Microbiomes represent promising targets for the development of 
therapies against human diseases [16,17]. Fecal microbiota transplants 
have been successfully applied in the treatment of recurrent Clostridium 
difficile infections in the gut [18,19], demonstrating that 
microbiome-based therapies can be useful against dysbiosis and in-
fections. Recent studies are focusing on the development of probiotics 
and vaginal microbiome transplants to treat bacterial vaginosis (BV), 
hrHPV infections, and cervical disease [3, 20, 21]. In terms of hrHPV 
infections, the use of probiotics aims to restore Lactobacillus dominance 
in the microbiome (CSTs I, II, or V) to promote viral clearance and 
disease regression [20]. The efficacy of those treatments will rely on the 
adequate selection of bacterial species for probiotics, long-lasting clin-
ical response, and the ecological dynamics of the microbiome [22–24]. 
Thus, there is an unmet need to identify microbial species that can be 
potentially used to create an anti-hrHPV environment and restore a 
healthy CVM. 

Subgroups of CSTs I, III, and IV have been recently identified and 
their composition suggests potential dynamics between communities 
and the continuity of the CVM [3, 5, 25]. CSTs I and III are classified into 
subgroups A and B, with both B subgroups characterized by colonization 
of Lactobacillus acidophilus and high abundance of L. jensenii relative to 
the A subgroups [25]. CST I-B has been associated with hrHPV negative 
conditions, while CST III-B is observed in hrHPV infections and cervical 
neoplastic lesions [25,26]. These Lactobacillus acidophilus-containing 
CSTs (LAC-CSTs, I-B and III-B) have been suggested to be transitional 
CSTs between LDO microbiomes (I, II, III, V) and between LDO (I, III) 
and LDE (IV) microbiomes, however, longitudinal studies on the dy-
namics of these CST subgroups have not been performed to date [25]. 
Furthermore, CST IV has been classified into subgroups A, B, and C [4, 
5]. CST IV subgroups A and C are dominated by a wide range of species, 
which suggests a dynamic ecosystem [3,25]. CST IV subgroup B is 
dominated by Megasphaera genomosp type 1 and has been associated with 
hrHPV-induced cervical intraepithelial neoplasia (CIN2 +) [25,26]. 
Interestingly, hrHPV infections have been associated with microbiome 
shifts and the occurrence of CST IV, which may indicate certain CST 
dynamics occurring during infection [27]. Amplicon-based sequencing 
technologies struggle with the identification of these microbial species 
and communities due to the high level of sequence identity of the small 
subunit rRNA of these relevant species with other similar species in the 
CVM [28,29]. Nonetheless, sequencing techniques such as shotgun 
metagenomics and circularizing probes-based RNA sequencing (ciR-
NAseq) can provide in-depth insights into the CVM composition and can 
be applied to study the dynamics of CSTs in health and disease and 
identify potential microbiome-based therapies against hrHPV-induced 
carcinogenesis [26, 30, 31]. 

In this study, we investigate the temporal stability of CSTs in women 
with a hrHPV-positive diagnosis at baseline and an initially negative 
cytology in the Dutch population-based cervical cancer screening pro-
gram and define their long-term dynamics over a six-months period. We 
describe the dynamics of the CVM and define distinctive associations 
with the temporal changes of the microbiome. 

2. Material and methods 

2.1. Study subjects and inclusion criteria 

A total of 141 women participating in the Dutch population-based 
cervical cancer screening program and diagnosed with hrHPV infec-
tion were enrolled in the study [15]. Women participating in the 
screening program were informed that residual material could be used 
for anonymous research and had the opportunity to opt out. Only re-
sidual material from women who did not opt-out was included. At first 
visit (V1, time = 0 months), 141 cervical smears in PreservCyt were 
collected, processed, and sequenced for microbiome profiling [26]. At 
second visit (V2, time = 6 months), all 141 women returned for sample 
collection, and their cervical smears in PreservCyt were also processed 
for microbiome profiling [26]. Five milliliters of each cervical cell sus-
pension were centrifuged for 5 min at 2500g, and the pellet dissolved in 
1 ml of Trizol reagent (Thermo Scientific). RNA was isolated through 
standard procedures and dissolved in 20 μl nuclease-free water. We 
routinely processed a maximum of 2 μg of RNA for DNase treatment and 
cDNA generation, using SuperscriptII (Thermo). 

2.2. HrHPV identification and genotyping 

HrHPV testing was performed with the Roche Cobas 4800 test, ac-
cording to the manufacturer’s recommendations in the Department of 
Medical Microbiology at Radboudumc [32]. 

2.3. CiRNAseq microbiome profiling and output analyses 

High-resolution microbiome profiling was performed on ~ 50 ng of 
cDNA/DNA using the ciRNAseq technology [25, 26, 33]. 
Single-molecule molecular inversion probes (smMIPs) designed to bind 
to VRs in the 16 S and 18 S rRNA genes of microbial species in the CVM 
were mixed with cDNA in a capture hybridization reaction and were 
circularized via a combined primer extension and ligation reaction. 
Circularized probes were subjected to PCR with barcoded Illumina 
primers. After purification correct-size amplicons, quality control, and 
quantification [34], a 4 nM library was sequenced on the Illumina 
Nextseq500 platform (Illumina, San Diego, CA) at the Radboudumc 
sequencing facility. Reads were mapped against reference regions of 
interest in our Cervicovaginal Microbiome Panel containing 341 mi-
crobial species using the SeqNext module of JSI Sequence Pilot version 
4.2.2 build 502 (JSI Medical Systems, Ettenheim, Germany). The set-
tings for read processing were a minimum of 50% matching bases, a 
maximum of 15% mismatches, and a minimum of 50% consecutive 
bases without a mismatch between them; for read assigning, the 
threshold was a minimum of 95% of identical bases with the ROIs. All 
identical PCR products were reduced to one consensus read (unique read 
counts, URC) using a unique molecular identifier. We set an arbitrary 
threshold of at least 1000 URC from all smMIPs combined in an indi-
vidual sample, below which we considered an output non-interpretable. 
For microbial annotation, species with two reactive smMIPs were an-
notated when 100% of the specific set of smMIPs had URC. Species with 
three or more reactive smMIPs were annotated when more than 50% of 
their specific set of smMIPs had URC [26]. 

2.4. Microbiome assessment and analyses 

CSTs designation was performed through unsupervised cluster ana-
lyses using ClustVis [25, 35, 36]. CSTs were classified into five major 
groups (I to V) and the subgroups of CSTs I, III, and IV based on 
microbiome composition [25]. 

SankeyMATIC software was used to visualize the temporal micro-
biome analysis. The microbiome variation in the six-months period 
within a woman was obtained through a Jensen-Shannon Distance (JSD) 
calculation in the philentropy R package [37]. JSD values give a 
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measure of similarity between samples (i.e., by calculating the distance 
between samples) from the same woman. Lower JSD values indicate 
more similar microbial communities and conversely, high values indi-
cate a less similar community. Correlations with JSD values were 
calculated with the lares R package [38]. The Bray-Curtis distance be-
tween microbiomes was calculated with the vegan R package [39]. 
Network analyses were performed using the CARlasso R package [40]. 
CARlasso implements the chain graph model [41] and allows to infer a 
complex network structure that represents both interactions among 
microbial taxa and the effects of a set of covariates. CARlasso estimates a 
network that represents the conditional dependence structure of a 
multivariate response (e.g., microbial abundances) while simulta-
neously estimating the conditional effect of a set of covariates that 
correlate with the network (e.g., microbiome similarity, diversity, and 
instability). 

2.5. Statistical analysis 

GraphPad Prism v9.5.1 (GraphPad Software, Inc., USA) was used to 
analyze datasets and determine Odd ratios and the Shannon’s diversity 
indices. The statistical significance of differences between groups and 
paired differences between visits were calculated using the Kruskal- 
Wallis or Mixed-model effect tests, respectively, followed by a 
Benjamini-Hochberg test correction for multiple comparisons. Paired 
data was analyzed by fitting a mixed model as implemented in GraphPad 
Prism v9.5.1. Repeated measures ANOVA cannot handle missing values. 
This mixed model uses a compound symmetry covariance matrix and is 
fitted using Restricted Maximum Likelihood (REML). In the absence of 
missing values, this method gives the same p values and multiple com-
parisons tests as repeated measures ANOVA. In the presence of missing 
values (missing completely at random), the results can be interpreted 
like repeated measures ANOVA. 

Correlations between bacterial abundances and JSD as well as the 
Odd ratios were followed by a Benjamini-Hochberg test correction for 
multiple comparisons using the MultipleTesting Tool [42]. A 
Mann-Whitney U test was performed for unpaired analyses between two 
groups. 

3. Results 

3.1. Long-term dynamics of the cervicovaginal microbiome in hrHPV 
infection 

In the Netherlands, screened women with a positive hrHPV result 
and negative cytology, are invited for a repeat cytology test after 6 
months. We first characterized the CVM composition through unsuper-
vised cluster analyses in all samples collected at first (V1) and second 
(V2) visits (n = 141) [15] and determined the dynamics of microbial 
communities between the two collection timepoints. The distribution of 
the samples over the CSTs at both visits is visualized in a Sankey diagram 
in Fig. 1a. Microbiomes with CSTs I, III, and IV mostly maintained the 
same community over the two timepoints with on average 70% staying 
in the same CST and no significant differences between CSTs (Fig. 1a). 

The Jensen-Shannon distances (JSD) between the microbiome 
composition per baseline CSTs at both visits are shown in Fig. 1b. The 
lower the JSD, the higher the similarity in microbial composition be-
tween both timepoints. Of note, baseline CSTs may not be the same at V2 
(Fig. 1a). We found that CSTs I (q < 0.0001, Kruskal-Wallis test) and III 
(q < 0.0001) had a significantly higher microbiome similarity than CST 
IV over a six-months period (Fig. 1b). When considering the CST sub-
groups, we also noticed the same observations shown in Fig. 1b in these 
CSTs (Supplementary Figure 1a). We also calculated the Shannon’s di-
versity indices for all CVM at both visits and found a significant positive 
correlation with the JSD values in both directions, i.e. from V1 to V2 and 
from V2 to V1 [Spearman r = 0.35, p < 0.0001 (V1), Spearman 
r = 0.27, p = 0.001 (V2)] (Fig. 1c and Supplementary Figure 1b), sug-
gesting that high diversity correlated with less similar microbiomes over 
a six-months period, and there is no trend towards increasing or 
decreasing diversity. 

Next, we correlated the microbial abundances of the most prevalent 
species in the CVM at V1 with the JSD to identify the species associated 
with the similarity of the microbiomes. We noticed that Atopobium 
vaginae, G. vaginalis, Dialister micraerophilus, (q < 0.001) and other CST 
IV-associated bacteria (q < 0.20) positively correlated with the JSD 
values, while L. iners (q < 0.001) and L. jensenii (q < 0.20) exhibited a 

Fig. 1. Long-term dynamics of the cervicovaginal microbiome during hrHPV infection. a. The microbial dynamics of CSTs (I, II, III, IV, and V) between both visits 
(V1, V2) and communities are displayed using a Sankey diagram. b. Analysis of the similarity of the microbiome composition between both visits through the Jensen- 
Shannon distance (JSD) between baseline CSTs. c. Spearman correlation analysis between the Shannon’s diversity indices of all CVM at V1 and the JSD between V1 
and V2. d. Spearman correlation analysis of the relative abundances for the top 14 species in the CVM at V1 with the most significant correlations with the JSD values 
(q < 0.20, after Benjamini-Hochberg correction for multiple comparisons) and the correlation analyses between the JSD and L. iners or A. vaginae abundances. 
Differences in JSD (b) were analyzed with a Kruskal-Wallis test followed by the Benjamini-Hochberg test correction. q values are shown in b. 
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negative correlation (Fig. 1d). These analyses show that the species 
composition associates with the microbiome similarity in a six-months 
period, which corroborates the associations observed at the commu-
nity-level. 

3.2. The species Lactobacillus acidophilus and Megasphaera genomosp 
type 1 associate with microbial community shifts in hrHPV infection 

Since we observed that CSTs transitioned between each other in a 
six-months period (Fig. 1a), we evaluated the odds for the CST compo-
sition at baseline of shifting to a different microbial community at sec-
ond visit (Fig. 2a). For this analysis, baseline microbiomes that 
maintained the same CST group and subgroup at V2 were designated as 
stable (n = 67) and those that shifted to a different CST group and 
subgroup were defined as unstable (n = 74). OR analyses were calcu-
lated with a Fisher’s exact test comparing all CSTs and associations with 
q < 0.20 were considered significant. This assessment revealed that 
women with Lactobacillus acidophilus-containing CSTs (LAC-CSTs, I-B 
and III-B) (OR 4.92, 95% CI 1.94–12.36, q = 0.0022, Fisher’s exact test) 
or Megasphaera genomosp type 1-dominated CST (IV-B) (OR 2.89, 95% CI 
1.00–7.60, q = 0.1172, Fisher’s exact test) at baseline were significantly 
associated with a microbial community shift at V2 when compared to 
other CSTs at V1. Alternatively, women with a baseline Lactobacillus 
iners-dominated CST (III-A) were significantly associated with a stable 
community composition in a six-month period when compared to other 
CSTs at V1 (OR 0.19, 95% CI 0.07–0.50, q = 0.0022, Fisher’s exact test) 
(Fig. 2a). 

Next, we estimated the relative abundances of L. acidophilus and 
M. genomosp type 1 within unstable (U) and stable (S) microbiomes to 
evaluate whether their abundances correlated with the stability of the 
CVM between both visits. We found that both L. acidophilus [q = 0.0621 
(V1), q = 0.1071 (V2) Kruskal Wallis test] and M. genomosp type 1 [q 
= 0.0770 (V1), q = 0.1479 (V2)] were significantly more abundant in 
unstable CVMs when compared to stable CVMs at V1 and V2 (Fig. 2b). 
The high abundance of these species at V1 in unstable microbiomes is 
consistent with the association of LAC and IV-B CSTs with community 
shifts shown in Fig. 2a. Likewise, the high abundance of these species at 
V2 (Fig. 2b) suggests that CVMs with low abundance of these species at 
V1 may also transition to LAC and IV-B CSTs at V2, reinforcing the 
hypothesis that these communities may represent transitional states 
during hrHPV infection [25]. We then performed a network analysis 
with the list of species that exhibited the highest correlations with the 
microbiome similarity index (Fig. 1d) and evaluated their relationship 
with the microbiome instability to identify additional species associated 
with microbiome shifts (Supplementary Figure 2). Here we confirmed 
the positive association of L. acidophilus and M. genomosp type 1 with 
unstable communities (Fig. 2), and observed that the species Prevotella 

amnii, G. vaginalis, and L. jensenii also exhibited a positive but weaker 
association with unstable communities. Alternatively, the species 
Sneathia amnii, D. micraerophilus, and L. crispatus showed a small nega-
tive association with unstable CSTs, indicating that they are associated 
with stable communities (Supplementary Figure 2). 

3.3. Assessing the stability of microbial communities in hrHPV infection 

The stability results at the level of the CST subgroups suggest that 
part of the reason we see transitions is that some of the CVMs are already 
more similar to the CST they transition to than the ones who do not. To 
examine this further, we analyzed baseline CVMs according to their 
community composition between timepoints. A PCA plot showed 
distinctive clusters for stable Lactobacillus-depleted microbiomes 
(LDE>LDE), stable Lactobacillus-dominated microbiomes (LDO>LDO), 
and LDE microbiomes that transitioned to LDO at V2 (LDE>LDO) 
(Supplementary Figure 3a). Further analyses consistently determined 
that all LDE>LDO samples had a significantly similar microbiome 
composition to LDO at V1 than LDE>LDE CVMs (p = 0.0035, Mann- 
Whitney U test). For the reverse, LDO>LDE transitions are less clear, 
only five LDO>LDE samples exhibited a relatively similar composition 
at baseline to LDE (Supplementary Figure 3b). 

Next, since the stability of microbial communities are associated 
with specific species (Fig. 2), we wondered whether we could identify 
the species that correlated with the stability of communities that are 
mainly associated with health and disease, such as CSTs I-A, III-A, IV-A, 
and IV-B [25,26], and therefore could be potentially used in ther-
apeutical approaches. To this purpose, we first compared the relative 
abundances of bacterial species that are typical in unstable (U) and 
stable (S) CSTs I-A (n = 32), III-A (n = 27), IV-A (n = 15), and IV-B 
(n = 19) at both visits. We did not find significant species associations 
with the stability of CSTs I-A, III-A and IV-A at V1 (Fig. 3a and Sup-
plementary Figure 4). However, we observed that unstable CSTs I-A and 
III-A were significantly associated with high abundance for 
L. acidophilus, D. micraerophilus, and G. vaginalis at V2 (Supplementary 
Figure4). 

In terms of the disease-associated CST IV subgroups, stable CST IV-A 
were associated with a significant increase in abundance for G. vaginalis 
from V1 to V2 (q = 0.0332, Mixed-effect model). Alternatively, unstable 
CST IV-A exhibited an increase in M. genomosp type 1 from V1 to V2 (q <
0.0001, Mixed-effect model) (Fig. 3a). In addition, unstable CST IV-A 
also showed low abundance for D. micraerophilus (q = 0.0609, Kruskal 
Wallis test) and high abundance for M. genomosp type 1 (q < 0.0001, 
Kruskal Wallis test) when compared to stable CST IV-A at V2 (Fig. 3a). 
Unstable CST IV-B had an increase in abundance for L. iners from V1 to 
V2 (q < 0.0001, Mixed-effect model) that was significantly higher than 
stable CST IV-B at both V1 (q = 0.0525, Kruskal Wallis test) and V2 (q =

Fig. 2. Microbial communities and species associated with the stability of microbiomes in hrHPV infection. a. Odd ratios (OR) analyses of changes in microbial 
community subgroups between V1 to V2 reveals associations of Lactobacillus acidophilus-containing CSTs (LAC-CSTs, I-B, III-B) and CST III-A (L. iners dominance and 
higher abundance than in III-B) with unstable and stable communities, respectively. b. Analysis on the relative abundances of L. acidophilus and M. genomosp type 1 in 
all CVM (n = 141) show that both species associate with unstable (U, red bars) microbiomes at V1 and V2. OR in a were analyzed through a Fisher’s exact test 
followed by the Benjamini-Hochberg test correction for multiple comparisons. *, q < 0.20; **, q < 0.01; ***, q < 0.003. Differences in relative abundances between 
groups in b were analyzed through a Kruskal-Wallis test followed by a Benjamini-Hochberg test correction. q values are shown in a and b. 
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0.0408, Kruskal Wallis test) (Fig. 3b). Overall, we determined that the 
species G. vaginalis, M. genomosp type 1, and L. iners were associated with 
the stability of CST IV subgroups in a six-months period. 

4. Discussion 

Based on high-resolution microbiome profiling of our longitudinal 
cohort of women with proven hrHPV infection at baseline, we here 
describe the ecological dynamics of CSTs and characterize their stability 
and change over a six-months period. In most hrHPV-positive women, 
CSTs can shift between each other, and represent transitional states in 
the continuous composition of the CVM [14,43]. To fully assess the 
relationship between the CVM composition with its long-term dynamics, 
we investigated these microbial associations at the species level. We 
found that L. iners was associated with a stable long-term microbiome 
composition at both community and species levels [14], while 
L. acidophilus was only associated with microbiome shifts at the com-
munity level. These differences may be explained because L. iners can 
dominate the CVM, reside in a highly diverse CST IV [4,25], and is 
associated with shifts between CST IV and LDO microbiomes as 
described in this study. Conversely, L. acidophilus has been mostly 
described as a co-resident species within CSTs I and III [25], which may 
result in shifts between LDO CSTs rather than to CST IV. Our data 
therefore corroborates proposed dynamics of cervicovaginal CSTs [25] 
and shows that Lactobacillus acidophilus-containing CSTs (LAC-CSTs, I-B 
and III-B) and Megasphaera genomosp type 1-dominated CST (IV-B) may 
represent transitional communities during hrHPV infection. 
L. acidophilus can colonize mucins-rich environments like CSTs I and III, 
which might provide better adhesion to vaginal epithelial cells and ac-
cess to nutrients [24, 44–46]. This colonization, however, may result in 
a competition for nutrient sources like glycogen [24,47] and cause a 
decrease in abundance of the dominant bacterium [3,25]. L. acidophilus 
and CST I-B have been associated with hrHPV-negative conditions [26], 
however it is currently unknown whether LAC-CSTs represent transi-
tional communities in uninfected conditions and additional longitudinal 
studies with hrHPV-negative women are needed. 

Microbiomes with CST III-A (L. iners dominance) are relatively stable 
and do not seemingly shift to a different CST over a six-months period. 
Although LDO CSTs are generally associated with cervical health [48, 
49], CST III has been the exception, and L. iners has been associated with 

hrHPV infections, viral-induced dysbiosis, and carcinogenesis [26, 50, 
51]. Therefore, long-lasting CST III-A microbiomes possess a higher risk 
for disease outcomes than do CSTs I, II, and V [14, 25, 52]. L. iners can 
adapt to changes in the cervicovaginal ecosystem due to specific 
accessory genes that are not present in other Lactobacillus species, 
thereby allowing the bacterium to prevail in adverse conditions such as 
bacterial vaginosis (BV) [51, 53, 54]. CST III-A has a low abundance of 
L. acidophilus, D. micraerophilus, and G. vaginalis and colonization of 
these species in this community is associated with microbial shifts to 
LAC-CSTs or CST IV. The high stability of CST III-A in hrHPV-infected 
women described in this study shows that this community, its domi-
nant species, and its co-resident species, might therefore represent a 
promising target for microbiome-based therapies against viral infection 
and cervical neoplasia [55,56]. Probiotics, phage therapy, or vaginal 
microbiome transplants could be used to promote a healthy shift from 
CST III-A to CSTs I, II, or V by increasing the abundance of L. crispatus, 
L. acidophilus, L. gasseri, or L. jensenii and preventing a detrimental shift 
to CST IV by inhibiting the growth of D. micraerophilus and G. vaginalis 
[3,57]. Furthermore, compared to LDO CSTs, LDE CSTs have a lower 
microbiome similarity over a six-months period, which was associated 
with its distinctive microbial diversity and Lactobacillus depletion [58]. 
CSTs IV-A and IV-B associate with hrHPV infections and CIN develop-
ment, and their stability correlates with the abundance and diversity of 
co-resident bacterial species. This is important because a microbial 
community shift to healthy CSTs could also be stimulated by an initial 
treatment with L. iners followed by an increase of L. crispatus, 
L. acidophilus, L. gasseri, or L. jensenii abundances while inhibiting the 
growth of G. vaginalis and D. micraerophilus, which then may result in a 
protective cervicovaginal microenvironment against cervical disease 
[55, 59–61]. Additional studies are needed to test these hypotheses and 
dynamics in vitro and in vivo, and clinical trials will be essential to 
evaluate potential microbiome-based therapies against hrHPV-induced 
cervical disease. 

The composition of the CVM can also transition frequently between 
communities [11], and previous longitudinal analyses have partly 
investigated the temporal dynamics of CSTs during hrHPV infection. In a 
study of hrHPV-positive women with vaginal swabs taking twice weekly 
for up to 4 months, Brotman et al. identified a high stability for CST III, 
which agrees with our findings over a six-months period [14]. However, 
we did not observe the same transition rates for CST IV, possibly due to 

Fig. 3. Compositional stability of disease-associated CSTs during hrHPV infection. Analysis on the relative abundances of bacterial species in CSTs IV-A (a, n = 15) 
and IV-B (b, n = 19) show the species that associate with stable (S, white bars) or unstable (U, red bars) microbiomes at both visits (V1, V2). Error bars represent 
standard error of the mean ± s.e.m. Differences in relative abundances between groups were analyzed through a Kruskal-Wallis test followed by the Benjamini- 
Hochberg correction for multiple comparisons. Paired differences in relative abundances between visits were analyzed through a Mixed-effect model followed by 
the Benjamini-Hochberg correction. q values < 0.20 are considered significant. 
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the longer study period in our analysis [14]. Recent research has 
determined that sampling over a long period can provide better insights 
into the cumulative long-term transition dynamics that shape the overall 
prevalence of CSTs within a population [56]. The dynamics of CSTs 
during hrHPV infection may also differ between short and long-term, 
which might be associated with early clearance of the virus. In former 
longitudinal analyses performed over a six-month period, 
hrHPV-positive women have been associated with stable CSTs III and IV, 
and hrHPV-negative women with stable LDO CSTs, particularly CST I 
[62,63]. Similarly, in this same longitudinal cohort, our group recently 
described that women with a non-progressive hrHPV infection were 
characterized by a LDO CVM, while women with a progressive hrHPV 
infection displayed a LDE CVM, particularly a CST IV-A [15]. Moreover, 
we also found that women with a stable CST I over a six-month period 
were associated with non-progression of hrHPV infections and women 
with a stable CST IV were associated with the development of cervical 
abnormalities. Interestingly, at the six-month follow-up visit, we 
observed that there were more hrHPV-negative women in the 
non-progression group than in the progression group, suggesting that 
LDO communities and stable CSTs I might be also associated with hrHPV 
clearance [15]. These dynamics, however, may differ for up to 2 years 
after infection diagnosis [43]. Mitra et al. observed that the CVM of 
hrHPV-positive women with either persistent lesions or regression was 
relatively stable irrespective of the infection outcome at 12 and 24 
months follow-up visits [43], which may indicate that cervical lesions 
that persist beyond six-months might not dictate the composition and 
stability of the CVM, and other possible mechanisms such as the 
hrHPV-induced dysbiosis [27] and changes in bacterial transcriptional 
activities [24] should be considered and studied. Furthermore, even 
though there are diverse hrHPV genotypes prevalent worldwide, the 
association of each hrHPV genotype with the microbiome dynamics is 
not clear yet. HPV16 infections has been mostly associated with a CST IV 
composition when compared to other hrHPV genotypes [8,64], how-
ever, larger study cohorts and longitudinal analysis are needed to 
confirm these observations to fully elucidate the relationship between 
hrHPV and the microbiome dynamics during disease. 

The strengths of our study are the use of the ciRNAseq technology for 
species-level microbiome profiling and the longitudinal design of 
hrHPV-positive women over a 6-months period [26]. Some potential 
limitations may include a relatively small cohort size and the absence of 
hrHPV-negative women to compare the microbial dynamics in health 
conditions. We were also unable to control for phase of the menstrual 
cycle or antibiotic use during the study, which impact on CST compo-
sition [65]. Lastly, we did not determine the pH and Nugent score of the 
cervical smears, which are known factors that correlate with CSTs [12, 
66]. 

5. Conclusions 

In summary, we have studied the long-term ecological dynamics of 
the classical CSTs and the recently defined subgroups of CSTs I, III, and 
IV in hrHPV-positive women. More studies into the long-term relation-
ship of the microbiome and hrHPV infections and the development of 
disease are required to direct future therapeutic approaches. The tem-
poral CST dynamics described in this study further support the contin-
uum concept of the CVM [67,68], which emphasizes on the 
co-occurrence of species in the CVM and the continuous dynamic in-
teractions and composition of microbial communities. Thus, our data 
promotes the use of high-resolution microbiome profiling in the study of 
the CVM in health and disease, which has been useful in the identifi-
cation of bacterial species relevant in the cervicovaginal microenvi-
ronment and the continuity of the CVM. 
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