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Wearable sensor derived decompensation index for continuous
remote monitoring of COVID-19 diagnosed patients
Dylan M. Richards1, MacKenzie J. Tweardy1, Steven R. Steinhubl 1, David W. Chestek2, Terry L. Vanden Hoek2, Karen A. Larimer 1 and
Stephan W. Wegerich 1✉

The COVID-19 pandemic has accelerated the adoption of innovative healthcare methods, including remote patient monitoring. In
the setting of limited healthcare resources, outpatient management of individuals newly diagnosed with COVID-19 was commonly
implemented, some taking advantage of various personal health technologies, but only rarely using a multi-parameter chest-patch
for continuous monitoring. Here we describe the development and validation of a COVID-19 decompensation index (CDI) model
based on chest patch-derived continuous sensor data to predict COVID-19 hospitalizations in outpatient-managed COVID-19
positive individuals, achieving an overall AUC of the ROC Curve of 0.84 on 308 event negative participants, and 22 event positive
participants, out of an overall study cohort of 400 participants. We retrospectively compare the performance of CDI to standard
of care modalities, finding that the machine learning model outperforms the standard of care modalities in terms of both numbers
of events identified and with a lower false alarm rate. While only a pilot phase study, the CDI represents a promising application of
machine learning within a continuous remote patient monitoring system.
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INTRODUCTION
To date, more than 130 million people have been infected with
SARS-CoV-2 (the virus that causes COVID-19)1. Of those infected,
approximately one in five are at risk for severe decompensation,
resulting in hospitalization2–4. While much has been learned over
the past year about the transmission of the virus, little is known
about the factors that predict a symptom-free disease course
versus an acute disease course requiring interventions like oxygen,
hospitalization and/or mechanical ventilation. Determining which
patient will decompensate (have worsening COVID-19 illness) in
order to appropriately triage to home or hospital is challenging5,6.
One approach to care delivery that has received greater focus

during the pandemic is remote patient monitoring (RPM)7–9.
Driving the uptake of this technology is the necessity to minimize
in-person patient interactions as well as the need to leverage
acute care facilities for the sickest patients and manage patients at
home if possible10. The goal of RPM in the COVID-19 use-case is to
keep healthcare professionals safe and optimize patient care11–13.
For the most part, RPM in the context of COVID-19 has included
intermittent monitoring (point measurements while the patient is
awake) to assess oxygen saturation (pulse oximeter) and
temperature (thermometer)14,15. Patients are then instructed to
call their healthcare professional if the values for these measure-
ments are outside the parameters established by the healthcare
team. Interestingly, these clinical parameters, for both oxygen
saturation and body temperature, have all demonstrated a
likelihood of decompensation at a range of thresholds, making
their clinical value equivocal2,16–22.
While commonly used and believed helpful for alerting

physiologic decompensation8, intermittent active monitoring of
SpO2 and body temperature are not without their challenges in a
disease that manifests with a wide variety of signs and
symptoms23. Pulse oximeters often do not provide accurate
readings of oxygen saturations below 90% and have inconsistent
repeated measurements24,25. Additionally, as SpO2 measurements

rely on photoplethysmography technology, readings are sensitive
to skin pigmentation and highly susceptible to motion artifact26,27.
Therefore, people with darker skin tones may not be able to
obtain accurate readings as well as patients with Parkinson’s or
essential tremor. Though less sensitive to the irregularities of SpO2,
fever has only been identified as a clinical symptom for less than a
third of all hospitalizations for COVID-1928,29. Additionally, clinical
definitions for fever and SpO2 are varied. Fever definitions range
between prolonged elevation above 38 °C for at least 24 h22 to any
temperature above 37.3 °C 30 or 39 °C21, while thresholds for low
SpO2 levels could be as high as 95%17 to anything below 90%20,31.
These varying definitions contribute to inconsistent findings when
characterizing the case definition of COVID-19.
While both intermittent temperature and SpO2 monitoring may

be incrementally beneficial, measuring other physiological fea-
tures such as heart rate or respiration rate, particularly combined
with patient ambulation, may provide greater insight into
physiologic changes. Davis et al. found lead times for variations
in physiological features following infection of non-human
primates, finding significant heart rate increase approximately
two days prior to a fever32. Other studies have found that
respiratory rate changes may precede decreases in oxygen
saturation33–35 and abnormalities of respiration have been
identified as one the most important indications of clinical
deterioration36.
In order to acquire and clinically manage a larger set of

physiologic variables, like heart rate and respiratory rate, passive
continuous remote patient monitoring (CRPM) could be advanta-
geous to intermittent self-spot checking. Additionally, the
continuous monitoring captures both ambulatory and resting
physiological data. Numerous studies have identified the benefits
of a steady data stream over spot-checking toward more timely
alerting of patient degradation. Benefits include earlier interven-
tions, better personnel allocation, shorter hospital stays, and
decreased chance of hospital readmission37–41. Focusing on just
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intermittent monitoring of oxygen saturation and temperature
rather than early changes in overall cardiorespiratory status
through heart rate, respiratory rate, and other derived indices, it
is likely that early warning signs of COVID-19 decompensation are
being missed42.
Detection of early indicators of decompensation could be

optimized through machine learning with continuous data
streams. Numerous models have been trained and validated for
predicting decompensation and diagnosis of COVID-19. Decom-
pensation models have included predicting clinical outcomes,
critical events, mortality, and hospitalization in the setting of
COVID-19. However, each of these models relied on collection of
laboratory panels, chest radiographs, patient reported symptoms,
and/or computerized tomography scans43–48. To our knowledge,
there have been no multivariate models developed using only
non-invasive CRPM to predict decompensation due to COVID-19.
Therefore, we propose a model using only data collected

continuously from a non-invasive wearable device, to create a
COVID-19 decompensation index (CDI), which accurately predicts
COVID-19 clinical deterioration, resulting in hospitalization. Con-
tinuous minute signals were windowed using a moving 24 h
window, with a 1 h step size, timestamped to the end of the 24 h.
The windowed signals were processed to create a feature vector
on a once per hour cadence, using only the information in the
past 24 h. Each hourly feature vector formed the input to the CDI
model (see Fig. 6). To collect training data for the CDI, a clinical
team leveraged CRPM as part of their standard of care, requiring
participants to wear a biosensor to collect electrocardiogram and
accelerometer data continuously for 28 days. If a clinical team
member observed a participant’s physiology deteriorating
(decompensation), participants were encouraged to return to
seek care. Using this labeled data as the ground truth for
decompensation, various features were engineered related to
participants’ activity and cardiovascular system to predict a
decompensation event. CDI, a gradient boosted model, was
developed and outperformed current standard of care alerting
systems of oxygen saturation and temperature monitoring. The
study protocol from which this work was derived was the
“Personalized Analytics and Wearable Biosensor Platform for Early
Detection of COVID-19 Decompensation Study" or DeCODe:
Detection of COVID-19 Decompensation)49.

RESULTS
Participant Information
Four hundred COVID-19 positive participants were enrolled from
University of Illinois Health System (UIH). Participants were adult
patients (>18 years of age), and were recruited from two sources:
(1) patients testing positive for COVID-19 in the outpatient setting
and (2) patients who were admitted to the hospital with a
diagnosis of COVID-19 and subsequently discharged to home
convalescence. The cohort had a high percentage of individuals
from traditionally underserved communities, including 46.2%
Hispanic and 36.8% Non-Hispanic Black (see Table 1). The average
age was 46 years old (±15.4), 67.2% female, with an average body
mass index of 33.7 (±9.4). The most common co-morbidities were
obesity (58.8%), hypertension (32.0%), and diabetes (26.2%).
Participants were recruited from point of care testing centers,
clinics, or the emergency department (360); however, 40
participants were enrolled post hospital discharge for COVID-19.
Participants were expected to complete a total of 28 days of
CRPM; however, averaged 22.2 ± 8.6 days of continuous data
collection. Throughout monitoring, 25 participants were hospita-
lized due to complications of COVID-19. Eleven of the hospitalized
participants reported to the emergency department (ED) inde-
pendently while 14 were prompted to visit the ED by the study
team. Treatments during hospitalization were varied, but primarily

consisted of supplementary oxygen (15) and/or steroids (15). One
participant required mechanical ventilation and one participant
died after completing the study. After filtering for minimum data
requirements, 308 participants were used to form the COVID-19
decompensation negative group, and 22 participants formed the
COVID-19 decompensation positive group (“Methods”). Each
COVID-19 decompensation event was scored using the WHO
ordinal score50, where decompensation scores ranged from 3
(hospitalized, no oxygen therapy) to 8 (death).

Validation and modality comparisons
The CDI model was trained using K-Fold cross validation. The
overall area under the curve (AUC) of the receiver operating
characteristic (ROC) of CDI was 0.84 (mean AUC across all folds was
0.85, 95% confidence interval (CI) 0.77–0.94), with an overall AUC
of the precision-recall (PR) Curve of 0.43 (mean AUC across all
folds was 0.48, 95% CI 0.33–0.62). All results were weighted for
equal participant contribution to the ROC and PR curves. An
operating threshold with a false positive rate of 7% was chosen to
match the false positive rate of SpO2 at rest at a 93% O2

discrimination threshold. As seen in Fig. 1, the corresponding true
positive rate at the 7% false positive rate is 55.7%, compared to
33.9% for SpO2 at rest. To understand CDI performance in the
context of other types of data typically analyzed in a clinical
setting, we compared CDI to several univariate features and
alternative models. The best univariate features were determined
by the largest ROC-AUC among the feature categories of
temperature, respiration rate, and heart rate. Additional models
of the CDI features with SpO2 and demographics were trained
identically to the primary CDI model. Both CDI models produce
the best overall ROC and PR curves, although the addition of SpO2

measurements into CDI improves the positive predictive value
(PPV) of the model. We find the model built on demographic
features of age, sex, race, height, weight, and body mass index to
be less predictive of decompensation events than any model built
on biosensor derived data. In general, the univariate features and
model built from demographic data perform worse than the CDI
models. However, maximum temperature while asleep does

Table 1. Demographics and co-mordibities of the participants in the
DeCODe phase 1 study.

Overall (400) Negative (308) Positive (22)

Age 46.0 (15.4) 45.2 (15.1) 55.3 (14.4)

BMI 33.7 (9.4) 33.6 (9.3) 35.6 (9.7)

Female 67.2% 65.3% 77.3%

Hispanic 46.2% 47.4% 50.0%

Non-Hispanic Black 36.8% 34.1% 36.4%

Non-Hispanic White 9.5% 9.7% 9.1%

Obese 58.8% 57.8% 72.7%

Diabetes 26.2% 26.9% 31.8%

Hypertension 32.0% 31.2% 50.0%

Serious heart condition 4.5% 3.6% 9.1%

COPD 1.8% 1.6% 4.5%

Smoking history 12.2% 12.0% 13.6%

Cancer history 3.2% 2.6% 4.5%

Moderate to
severe asthma

16.5% 14.3% 27.3%

The negative and positive columns provide the information of participants
used in the CDI K-fold validation. Age and BMI are listed as mean (standard
deviation).
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provide strong predictive value in the lower true positive rate
(TPR) region of the ROC curve.
The performance of models built of various feature combina-

tions are listed in Table 2. Only models utilizing features derived
from the combination of biosensor derived features (ECG and
acceleromety) achieve a ROC-AUC of greater than 0.8. Models
utilizing features derived only from heart rate, respiration rate,
actigraphy, and heart rate variability achieve ROC-AUC values from
0.69 to 0.71.
Tree based models like gradient boosted trees allow for more

interpretable indications of what features were important for the
model to reach its decisions. One way of measuring feature
importance is Shapley additive explanations, or SHAP scores51.
SHAP scores for the top 25 features are plotted in Fig. 2. We find
low activity, high respiration rate, reduced heart rate variability, and
high skin temperatures as important features for hospitalization
prediction. Among the top 25 features, 20 were filtered statistical
features, of which 9 were “while sleeping”, 2 were “while not
sleeping”, 5 were “while walking”, and 5 were “while not walking”.
We also find the interaction feature “the slope of delta heart rate to
delta step count” as the most important individual feature.
Intuitively, this feature can be understood as how dynamically
one’s cardiorespiratory system can react to the physical demands of
a given activity, where faster responses to the changes of physical
demands may be indicative of better cardiorespiratory health. This
feature has only mediocre discriminative value by itself, with a
univariate ROC-AUC value of 0.62, compared to the second most
important feature, the interquartile range of gross activity, which
has a ROC-AUC of 0.77. We hypothesize that the slope of delta
heart rate to delta step count is a feature indicative of overall
cardiorespiratory function and helps the model contextualize the
other features, thereby acting as a hospitalization risk factor, but
individually is only slightly predictive of hospitalization.
While we did not have true external validation data in this

phase 1 study, we perform two additional case study analyses
using two datasets not used during training to test model
performance. The first dataset was composed of previously
collected data from participants who did not have COVID-19.
The dataset was from 161 participants, representing almost
200,000 h of continuous biosensor data. This dataset was used
to confirm the false positive rates of the K-Fold models, and that it
matched the false positive rate of the overall CDI model. The false

Fig. 1 ROC and PR curves for selected models and univariate signals. The PR and ROC curves are weighted for equal participant
contribution. The operating threshold for CDI and the 93% O2 threshold are marked as points on the curves.

Table 2. Performance of univariate features and multivariate models.

TPR PPV ROC-AUC

Bio+ SpO2 57.0% 36.8% 0.85

CDI (Bio+ Temperature)+ SpO2 58.2% 37.2% 0.85

Bio+ Feeling+ SpO2 56.1% 36.4% 0.84

CDI (Bio+ Temperature) 55.7% 36.4% 0.84

Bio+ Feeling+ SpO2+Demographics 55.9% 36.4% 0.83

Bio+ Feeling 48.4% 33.1% 0.82

Bio 50.9% 34.2% 0.82

Bio+ Feeling+ SpO2+ Temperature 44.9% 31.4% 0.81

Bio+ Temperature+Demographics 44.9% 31.4% 0.81

Actigraphy only+Nighttime features 42.1% 30.1% 0.79

Min. respiration rate while not sleeping* 43.3% 30.6% 0.77

SpO2 at rest* 34.0% 23.8% 0.75

Min. heart rate while sleeping* 34.6% 25.6% 0.74

Max. Skin temperature while sleeping* 47.4% 31.5% 0.72

SpO2 after walking* 43.6% 31.0% 0.72

Nighttime features 22.7% 18.8% 0.72

HRV only 26.2% 21.2% 0.71

Actigraphy only 25.7% 20.8% 0.71

RR only 29.8% 23.3% 0.69

HR only 31.9% 24.6% 0.69

Feeling+ SpO2 27.0% 21.6% 0.68

Temperature+ SpO2 40.7% 29.3% 0.68

Demographics+ Feeling+ SpO2 14.7% 13.9% 0.67

Demographics 18.2% 15.4% 0.66

All statistics are weighted for equal participant contribution. TPR and
PPV are given at 7% FPR threshold. All univariate features are marked
with an asterisk (*). Bio refers to the top 50 features ultimately derived
from ECG or Accelerometery signals, Feeling refers to the overall
symptom survey response. Other feature groups represent models
created using only the top 50 features from that particular source (i.e.,
the Actigraphy Only model uses only the top 50 actigraphy based
features).
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positive rate was set to 7% for the COVID-19 decompensation task,
and the final model achieved a 7.4% FPR on the COVID-19
negative task, compared with a mean FPR of the 22-fold models of
6.8% (95% CI 5.8–7.8%).
On the second dataset, two participants who were hospitalized

but were unable to be officially adjudicated and given a WHO
score were analyzed as decompensation events with unknown
WHO score (though likely ≥WHO 3). Using the overall trained CDI
model, the overall true positive rate for both participants was an
average of 87.5%, with a true positive rate during the last two days
before hospitalization of 96.0%. Adding these two participants to
the overall positive dataset, the overall TPR increases from 55.7
to 58.3%.

Comparison to standard of care and remote patient
monitoring
The detection capabilities of CDI were compared to a simulated
standard of care, where standard of care was defined as
thresholded SpO2 and thresholded skin temperature values (oral
temperature unavailable), as defined in the “Methods”. The
comparison between CDI and simulated standard of care leading
up to each analyzed hospitalization event is shown in Fig. 3. In the
2 days leading up to hospitalization, CDI alerts for 19 out of 22
participants, contrasted to 10 of 22 for simulated standard of care
alerts. Four participants did not take any SpO2 measurements
during the two days before hospitalization; all four participants
had CDI alerts during the same time period. Only one participant
had a standard of care alerts without also having a CDI alert in the
last 2 days before hospitalization, and two participants had no
alerts of either kind. As can also be seen in Fig. 3, CDI alerted far
more frequently for participants with WHO scores of four or
greater than those with WHO scores of 3. Participants with WHO
scores of 3 had an average time in the hospital of 2 days, and
those with WHO scores of 4 or higher had an average
hospitalization time of 6.3 days. Temperature alerts were rarely
triggered, despite the good predictive value of the daily maximum
temperature, the temperature taken at an arbitrary patient-
selected time point during the day seems to have low sensitivity.
To further examine the potential benefits of using a machine

learning model like CDI, we compared the detection capabilities of

Fig. 2 Shapley additive explanations (SHAP) scores of the most important 25 features, plotted as a beeswarm plot. Each point represents
one datapoint in the training set, colored based on the relative value of the feature, where red is a high feature value, and blue is a low feature
value. Points contributing to a positive (for hospitalization) decision have positive values, while those contributing to a negative (no
hospitalization) decision have negative values. The mean absolute value of the SHAP scores is listed next to each feature name.

Fig. 3 Comparison of simulated standard of care alerts to CDI
alerts. Along the right edge is each participant’s WHO score and
study ID (as a subscript), along with the number of days hospitalized
in blue. Each SpO2 and temperature reading is shown as empty gray
triangular indicators, each measurement above the alert indication
(less than or equal to 93 O2, and greater than 36.11 °C) is colored.
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CDI to a CRPM system set to alert on conventional clinical rules.
These CRPM alerts are non-specific to COVID-19, with every hour
considered an alert if any of the underlying CRPM rules are met
(“Methods”). The CRPM alerts compared to CDI based alerts can be
seen in Fig. 4. Both CRPM and CDI alerts show relatively high true
positive rates leading up to the events, although CDI does have a
consistently higher TPR in the two days before hospitalization. The
true positive rate of CDI gradually rises starting 2 days before the
events, going from around a 40% TPR to a 70% TPR on the day of
the event. However, the largest difference between CRPM and CDI
alerts occur in the reduction in false positive rates among negative
participants. In comparison to CDI, the simulated CRPM system
alerted more frequently and across more individual participants.

DISCUSSION
While the majority of individuals infected by SARS-CoV-2 will
ultimately not require hospitalization, up to 20% will2. The time
from symptom onset to the need for hospitalization can extend
beyond 10 days52, and the severity of an individual’s clinical
course is rarely clear at the time of diagnosis. Accordingly,
effective CRPM capabilities are critical to assuring patient safety
while conserving scarce resources of both hospital beds and
health care professionals. We show that through the use of a
multi-parameter sensor patch in the outpatient setting that we
were able to develop a machine learning based CDI model that
has the potential to significantly improve the lead time and
accuracy of identifying individuals requiring hospitalization due to
progressive COVID-19, relative to what is routinely done in current
remote monitoring programs.
The CDI model moves well beyond the current standard of care

that depends on one or two population-based cut-offs (e.g.,
oxygen saturation <93%, or temperature >38 °C), captured only 2-
to 3-times a day. Instead, using 17 source signals sampled every
minute, which are further processed to create 361 features each
hour, earlier signals of decompensation are detectable. While the
continuous physiologic data available through a wireless patch
sensor adds considerable value to intermittent spot checks, we
have shown that the CDI model improved overall performance
with a large reduction in false positive alerts relative to the sensor
data alone. It is telling that the model features of greatest value
were based on the interactions between individual features. For
example, the relationship between heart rate during a given
amount of activity may better track overall cardiorespiratory

performance and characterize the impact of progressive COVID-
19 on it.
The CDI model inherits the best attributes of the underlying

features used to build the model. Features derived from
respiration and temperature tend to show good discriminatory
values in the low false positive region, as very high respiration
rates and temperatures are quite predictive of decompensation
events. Features derived from actigraphy signals are not able to
predict decompensation events well, as those with COVID-19
already generally have low levels of activity, but those with high
levels of activity can be ruled out for COVID-19 decompensation.
The CDI model shows an improvement over the standard of

care patient initiated SpO2 and temperature checks (Fig. 3),
particularly for participants with decompensation events of WHO
≥4, as 15 out of 16 participants had at least one CDI alert in the
2 days before their hospitalization. Four participants did not take
any SpO2 measurements in the 2 days leading to their
hospitalization, and eight participants did not take any SpO2

measurements during the 24 h before their hospitalization. This
illustrates the importance of a monitoring system that does not
require the participants to take action precisely at the time they
are likely to feel the worst, but during which time their compliance
is most critical. A CRPM system that passively collects biosensor
data and can alert clinicians to potentially dangerous situations
without the need for patient action could be an improvement
over a system only utilizing SpO2 and temperature checks.
Though, as seen in Fig. 4, simply using typical clinical rules based
on remote monitoring data is likely to lead to alarm fatigue due to
the high false positive rate. While simple thresholds on standard
vital signs can provide decent COVID-19 decompensation detec-
tion, it is at the cost of a high false alert burden across many
individual participants. Using a CDI model within a remote
monitoring system could allow for the best of both worlds,
achieving high detection capabilities, but with a suppressed false
alarm rate over simpler clinical rules. However, while early
detection of patient deterioration is an extremely important
dimension of an effective CRPM approach, there are other
dimensions that are just as important. For a CRPM platform to
be adopted by clinicians it needs to be highly reliable, cost
effective, easy to use, and enable clinicians to more efficiently
manage a patient population. CRPM solutions that do not address
all these dimensions are unlikely to become part of patient
management clinical workflow. In addition, while we believe that
digital health solutions have the potential to improve equity in
healthcare, unless socioeconomic and educational barriers are

Fig. 4 Comparison of a continuous remote monitoring system with clinical alerting rules to CDI. a The daily count of non-hospitalized
participants with any false alerts. b The hourly count of alerts generated for hospitalized participants in the 5 days before hospitalization. In
both a, b the light gray background denotes the number of participants with data at each timepoint. c The daily false positive rate of CDI and
the component alerts. d The hourly true positive rate of CDI and the component alerts five days before hospitalization.
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proactively addressed, they could actually contribute to increasing
inequity53.
Our work adds to a growing body of literature addressing

remote monitoring in COVID-19. A recent systematic review
identified 17 examples of published remote home monitoring
models54. Virtually all incorporated some aspect of symptom
tracking, most included some form of daily temperature checks,
and 11 of the 17 included pulse oximetry. The methods of each
model and outcomes tracked were too heterogeneous to allow for
any meaningful conclusions regarding the efficacy and safety of
any of these models but do help inform the scope of the problem.
Looking at the totality of data from remote COVID-19 patient
monitoring studies, the incidence rate of decompensation requir-
ing at least an emergency department visit varied from as high as
36% to as low as 2.6%55,56. In one well-characterized study
involving 2348 people enrolled in a twice-daily text messaging
symptom tracker study, 23% required some escalation of care, with
8.6% returning to the emergency department and 42% of those
individuals requiring hospitalization57. For COVID-19 positive
individuals in whom deterioration is recognized earlier, proven
therapies such as monoclonal antibody cocktails that have been
shown to decrease hospitalization and death by 70%, can be
initiated sooner in those most likely to benefit the greatest58. A CDI
model used within a CRPM system may provide valuable lead time
before hospitalization, leading to better patient outcomes.
The pandemic has also served to accelerate the utilization of digital

health technologies in order to better care for individuals without the
typical requirement of a visit to a brick-and-mortar healthcare facility.
Smartphone apps, and SMS-based messaging programs allow people
to enter their overall health and any symptoms on a daily basis that
can be monitored and acted upon by healthcare professionals is one
such method57,59. Symptom tracking alone is subjective and will be
inconsistent between people, and would also miss individuals with
“silent hypoxia,” a phenomenon described in COVID-1960. As noted
earlier, most remote monitoring programs incorporate temperature
checks, but a fever has turned out to not be the hallmark for COVID-
19 infection-initially thought with some case series finding a fever at
the time of initial hospitalization in less than one-third of patients, and
only just over a quarter of COVID-19 positive nursing home
residents28,29. Some programs have also incorporated home pulse
oximetry, which has been found in one study of 77 COVID-19
outpatients to be helpful in prompting a return to the emergency
department for an asymptomatic decrease in oxygen saturation and
to reassure others that they did not need to return to the emergency
department when their oxygen saturation was unchanged29. How-
ever, beyond the inherent limitations of intermittent self-testing with
a pulse oximeter, there remain many practical issues around their
reliability in large populations including their accuracy at lower
oxygen levels, in settings of low pulsatile flow, and most especially
racial bias leading to higher levels of unrecognized hypoxemia in
Black relative to White populations24,61. Our work specifically sought
to recruit from traditionally underserved communities of color to
avoid such racial bias, with the study cohort consisting of 46.2%
Hispanic and 36.8% Non-Hispanic Black participants.
This work has several limitations. Perhaps the largest limitation

is the relatively small number of decompensation events. Because
of the small number of decompensation events, we could not use
a true holdout test set, and although we took several precautions
against overfitting, given the small size of the positive dataset, we
cannot entirely guard against it. However, this was only the phase
I pilot part of the study, and we expect additional model validation
to occur during the larger phase II part of the study. An additional
limitation to the predictive performance of the CDI model is that
we had no information about participants’ healthy, pre-COVID-19
baselines. For example, prior research has found significant inter-
individual variability in “normal" resting heart rates62. With up to a
70-BPM difference between individuals’ average resting heart
rates, any non-individualized heart rate-based features will lack

the precision truly possible. Other limitations include: the
temperature sensor used in the biosensor device was a skin
temperature measurement and not a true oral temperature, and
that the study cohort skewed mostly female.
We show a multivariate COVID-19 Decompensation Index

capable of outperforming several standard clinical monitoring
modalities using only data collected from wearable biosensors.
CDI shows promise as a means of extending continuous remote
patient monitoring capabilities, particularly above the use of
intermittent, patient driven univariate monitoring. While cross-
validation and hundreds of thousands of hours of data were used
to minimize the likelihood of overfitting, a larger sample size is
necessary to further validate the accuracy of the model. Future
validation work is currently in progress as part of the phase 2
DeCODe study where CDI will be evaluated extensively to
continue optimizing the use of CRPM49.

METHODS
Data collection
Data were collected to develop and test a COVID-19 Decompensation
Index from participants during the phase I portion of the Detection of
COVID-19 Decompensation (DeCODe) study63. DeCODe was supported by
the NIH National Cancer Institute (NCT04575532). The DeCODe study is a
prospective, non-randomized, open-label study, with the primary outcome
to develop a machine learning model to predict COVID-19 decompensa-
tion events, with secondary outcomes evaluating the feasibility of the
pinpointIQ™ continuous remote patient monitoring system. Participants
were adult patients (≥18 years of age) in the University of Illinois Health
System. Patients were recruited from two sources: (1) patients testing
positive for COVID-19 in the outpatient setting and (2) patients who were
admitted to the hospital with a diagnosis of COVID-19 and subsequently
discharged to home convalescence. The enrollment target was 400
participants for the phase I study. Participants were monitored for 28 days
using the physIQ pinpointIQ™ platform to capture continuous biosensor
data from the VitalConnect VitalPatch® chest patch biosensor. The
biosensor is an FDA cleared device that acquires 5–7 days of continuous
raw 125 Hz ECG, 50 Hz triaxial accelerometer, and 0.25 Hz skin temperature
data from which physiological features are derived by the pinpointIQ™
platform. These derived features drove the development of the CDI model.
Participants responded to symptom questionnaires and performed

manual finger pulse oximetry measurements. The finger pulse oximeter
sensor provided was the Proactive, Protekt® Finger Pulse Oximeter 20110.
Results of both were captured by the pinpointIQ™ smartphone app.
Prompts to respond to the symptom questionnaire and to perform pulse
oximeter measurements were pushed to the study smartphone twice daily.
Each pulse oximetry measurement prompt included two measurements.
The prompts for the symptom questionnaire and pulse oximetry
measurements are shown below.

1. Symptom questionnaire:

● How are you feeling since the last time you completed the
survey?

OPTIONS: “Better”; “Worse”; “No Change”.

2. SpO2 measurements:

● Record your SpO2 at rest:

Options: “100%”; “99%”; “98%”; “97%”; “96%”; “95%”; “94%”; “93%”; “92% or
Below”.

● Record your SpO2 while walking:

Options: “100%”; “99%”; “98%”; “97%”; “96%”; “95%”; “94%”; “93%”; “92% or
Below”.

Once enrolled, participants were provided with a study kit containing a
smartphone, finger pulse oximeter, a supply of biosensors, and instructions
on the study procedures to follow and how to uses the devices.
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Exclusion criteria
Individuals were excluded with known allergic reactions to components of
the biosensor hydrocolloid gel adhesives; or with cognitive or physical
limitations that could have limited their ability to fully follow study
procedures. Individuals that did not speak or read English or Spanish were
also excluded.

Ethical approval
This study was approved by the University of Illinois, Chicago Institutional
Review Board. All participants provided written informed consent prior to
enrolment in the study.

COVID-19 decompensation event adjudication
A “clinical event” was defined as an escalation of care from home-based
remote monitoring to a higher level of care. For example, if during
monitoring the clinical user identifies that the patient is worsening and
they need acute care, this is defined as a clinical event. Health record
documentation was gathered from care facilities on any clinical event and
was used for final adjudication as a COVID-19-related event. The
adjudication consisted of review of the electronic health record of the
participant experiencing the clinical event and two emergency department
physicians independently deciding on whether the event was a “COVID-19
clinical event” or “non-COVID-19 clinical event”. If the two opinions did not
agree, the case was reviewed by a third emergency department physician
and final decision was made. Finally, a COVID-19 clinical event was defined
to be a “Decompensation Event” if a hospitalized patient reached a
maximum WHO Ordinal Scale for Clinical Improvement (WHO OSCI) score
of 3 or more during their hospitalization. A WHO Score of 3 corresponds to
“Hospitalization, no oxygen therapy”50. The COVID-19 Decompensation
events served as the positive cases for the development of CDI.

Ground truth formatting and analysis methods
Clinical outcomes were formatted for scoring of a classifier by the
following steps. All participants who did not experience a COVID-19 event
of any kind based on the WHO Ordinal Scale50 and who had at least 12 h of
continuous biosensor data formed the negative group (308 participants).
The entirety of the data collected from enrollment to completion or
withdrawal from each event-negative participant was analyzed. All
participants who experienced only a COVID-19 event(s) with a WHO score
less than 3 (16 participants) were removed from analysis. WHO scores
below 3 are not hospitalized and thus are not decompensation events, but
conversely do not fit into the event negative group as many sought
medical treatment, though they were not sick enough to be admitted to
the hospital. Data from participants with WHO scores of 3 or above (25
participants) which had enough data for analysis (22 participants) were
analyzed up until their first event with a WHO score of 3 or above. Two
participants had more than one event with a WHO score of 3 or above;
these additional events occurred two days after being discharged from the
hospital from their first event and were not analyzed. We defined the
positive time window for each event as up to two weeks before their
hospitalization time, ending at the time of hospitalization. Any WHO scores
less than 3 that occurred during the positive time window were ignored.
The participant clinical flowchart can be seen in Fig. 5.
Each hour of data from participants without events and each hour of

data from the positive time window of participants with events were
treated as ground truth targets, with target values of 0 for the negative
class, and values of 1 for the positive class. Any hour of ground truth target
which did not have a corresponding CDI value (for example, during the
first 12 h of monitoring) was not considered in the CDI performance
analysis. To account for the variance in the amount of data collected by
each participant and to ensure reported performance was not skewed by
participants with more data than others, all confusion matrix calculations
were weighted so that the contribution from each participant was equal.
Weighting the confusion matrix in this manner results in a maximum true
negative of 308, and a maximum true positive of 22.

Feature extraction
The VitalConnect VitalPatch® device records raw ECG, 3-axis Accelerometer,
and skin temperature, which is processed by the physIQ platform to
produce 17 source signals at a once per minute sampling rate, listed in
Table 3. The minute level signals were further processed to create a 361-
length feature vector using a 24 h analysis windows with a 1 h slide.

Feature extraction for each window would occur if at least 12 out of the
maximum 24 h of data was available (that is, if at least 770-min samples
were available in a given 24 h period). Provided the data requirements
were met, the 17 source signals would produce 361 features at a hourly
cadence, timestamped to the end of the 24 h window. Figure 6 shows the
overall processing steps from minute signals to CDI probability. The feature
extraction steps to produce the 361 features for the CDI model are defined
below.
Two additional minute features, here named “Breaths Per Beat” and

“HRV Normalized by HR,” were created by dividing minute respiration rate
by minute heart rate, and by dividing the minute time domain heart rate
variability by heart rate, respectively. A set of six statistical operations
(median, mean, standard deviation, 1st percentile, 99th percentile, and
interquartile range) were applied to the minute signals as listed in the
Statistical Feature Group in Table 4. The 1st and 99th percentile were used
in lieu of minimum and maximum to avoid any erroneous true minimum
or maximum values. Statistical features were also calculated on a subset of
signals while filtered for certain activities. The filtered statistical features
were filtered such that the operations of median, mean, standard
deviation, 1st percentile, and 99th percentile were calculated during
periods of walking, not walking, sleeping, and not sleeping. Minutes were
classified as walking or sleeping if more than 50% of the minute was
classified as walking or sleeping.
Inspired by Mishra, et al.64, who found that the ratio of heart rate and

step count was a predictive feature of COVID-19 infection, we developed a
set of features to capture interactions between minute step counts and
vital signs. The first set of features, called the Weighted Average Features,
in Table 4 are features found by taking the weighted average of input
signals with step counts as the weighting variable, according to the
following weighting formula in Equation (1).

weightedSignal ¼
P

Signal � stepCount
P

stepCount
(1)

The second set of features, called the interaction and delta interaction
features in Table 4 are features found by calculating the slope and
intercept of a linear regression of step count against heart rate, time
domain heart rate variability (HRV), respiration rate, and breaths per beat,
with step count as the independent variable. Step counts and the
corresponding signal values when step counts were zero were not used to
calculate the linear regression parameters. Additionally, the same linear
regression procedure was repeated to calculate the linear regression slope
on the first order differences of step count and the first order difference of
the other signals.
Sleep quality and sleep apnea have been found to be correlated with

COVID-19 outcomes64,65; to capture some sleep disturbance information,
we calculated two sleep disturbance features in the CDI model. These were
calculated by determining the number of awakenings, computed by
counting the number of transitions from sleep to awake state, and the
number of awakenings per hour of sleep, where a given minute was
classified as sleeping if more than 50% of the minute was the sleep state.
One data quality feature was calculated by summing over an ECG signal

quality index to calculate the percent of good quality data with respect to
the total possible amount of data per day.
Other features not derived from biosensor data like demographics,

survey responses, and SpO2 were interpolated with zero-order interpola-
tion and timestamped to the end of each hour. Survey responses and SpO2

Fig. 5 The analysis flowchart from 400 enrolled to 330 ultimately
analyzed participants. The asterisk denotes 31 participants without
COVID-19 events who did not have enough data to analyze, and
were excluded from analysis.
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responses were interpolated for up to 24 h past the time of their original
measurement.

Model training
In this work, we chose to use gradient boosted decision trees66 as our
classifier, as gradient boosted trees achieve high levels of performance and
can provide greater insight into their decisions than other black box
machine learning models, which is a desired attribute in the medical field.
The principal difficulty in modeling COVID-19 decompensation was the
large class imbalance, and the relative rarity of pre-hospitalization data. Of

the 330 participants ultimately analyzed in this study, only 22 of them had
analyzable events. The median amount of time from enrollment to COVID-
19 decompensation event was 4 days, which was far smaller than the
median number of days (26 days) of data collected by each negative
participant. As a result, the total positive data was 1.4% of the total data.
Given the small amount of positive data available, we were concerned with
the possibility of overfitting on the dataset and took several steps to
safeguard against overfitting and check that it did not occur.
We separated our modeling steps into (1) feature and hyperparameter

selection, (2) K-Fold training of the CDI model, and (3) validation of K-Fold
trained models on additional datasets. To help avoid overfitting on the

Fig. 6 Processing steps from wearable features to CDI outputs. The source minute features (3 of 17 shown above) are windowed using a
moving 24 h window with a 1 h step size. Each windowed set of minute features are processed to produce a feature vector, and timestamped
to the end of the 24 h window. Each feature vector is independently passed to the CDI model to produce a decompensation probability at a
cadence of once per hour. The positive detection window is defined as up to 14 days before the time of hospitalization and is evaluated at
corresponding CDI decisions.

Table 3. Minute signals used as the source signals for feature extraction in the CDI model.

Signal name Signal description

Heart rate 10% Trim mean average of beat to beat heart rate values

Time domain heart rate variability 10% Trim mean average of time domain heart rate variability

Respiration rate 10% Trim mean average of respiration rate

Count of magnitude Average of activity count using the 3-axis accelerometer vector magnitude

Gross activity Average of root mean squared of 3-axis accelerometer signal

Magnitude of uni counts Average of vector magnitude of 3-axis univariate accelerometer activity counts

A-Fib percent Percent of time classified as exhibiting atrial fibrillation or atrial flutter

Sleep Percent of time classified as sleeping

Step count Number of steps

Tilt 10% Trim mean of tilt angle of the torso (where 90 degrees is upright)

Trailing activity Average of gross activity after application of a 3minute moving average filter

Walk percent Percent of time classified as ambulation (inclusive of walking and running)

Skin temperature Median skin temperature, in degrees celcius

Activity residual 10% Trim mean average of trailing activity residual

Heart rate residual 10% Trim mean average of heart rate residual

Respiration rate residual 10% Trim mean average of respiration rate residual

MCI 10% TrIm Mean Average of MCI (multivariate change index)[?]

The minute source signals are generated by the pinpointIQ™ platform.
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decompensation detection task, we performed hyperparameter selection
using a related but easier task of differentiating participants with a COVID-
19 diagnosis from those without a COVID-19 diagnosis, using a previously
collected dataset of roughly equal size to the DeCODe study, with the
hypothesis that similar features and hyperparameters for the COVID-19 vs
non-COVID-19 task would transfer to the task of COVID-19 decompensa-
tion detection. After selection of the hyperparameters, we used K-Fold
model training and validation to produce performance estimates for
decompensation classification, then trained a single model on all the
training data. Finally, to validate the model we turned back to the non-
COVID-19 data used in step 1, and though that data only contained
examples negative for COVID-19 decompensation, it allows for confirma-
tion that the false positive rates match the expected false positive rates
found in the K-Fold model validation procedure.
To reduce the likelihood of overfitting on the COVID-19 decompensation

detection task, we performed feature selection and XGBoost hyperpara-
meter selection on the related task of classifying COVID-19 positive vs
COVID-19 negative participants. The COVID-19 positive dataset was the
entirety of the DeCODe Phase 1 dataset, and the COVID-19 negative
dataset was a dataset of previously collected data from 161 participants,
consisting of almost 200,000 h of continuous biosensor data. Feature
selection was performed by training an XGBoost model and ranking the
features by SHAP importance51. We selected the top 50 features based on
SHAP importance and selected the rest of the model hyperparameters
using a 5-fold grid search, based on the number of participants.
We applied a modified K-Fold validation approach, with K equal to the

number of positive participants (22), such that each fold had one positive
participant, and 1/22nd of the negative participants. On each iteration, 21 out
of the 22 folds were used to train the model, with the remaining fold used for
validation. For each training iteration, 2 days of data before events from
participants with only WHO scores of two were added to the positive training
data to help provide additional data. All features were z-scored based on the
mean and standard deviation parameters calculated for each training iteration.
To help combat class imbalance, samples during training were weighted with

increasing importance leading up to the date of the COVID-19 decompensa-
tion. This weighting was done based on the hypothesis that in each positive
window, the certainty that the COVID-19 event is happening grows as the time
of actual event grows closer. Conversely, negative participants’ data were
weighted with importance as decreasing from the date of enrollment, as we
wanted the model to focus more on time periods where their disease severity
is likely worse than toward the end of their data collection, when they likely
would have largely recovered from the disease. The final model was trained
using all 22 folds.
In an effort to further guard against overfitting, we performed an

additional validation of the false positive rate of the K-Fold models and the
final model trained on all the training data on the COVID-19 negative
dataset used to select the model hyperparameters. Using this procedure
allows verification that firstly the false positive rate of the final model is
consistent with the false positive rates produced by each of the 22 models
trained in the K-Fold validation, and secondly that the false positive rate on
the COVID-19 negative dataset is consistent with the false positive rate
achieved on the COVID-19 decompensation task.
Furthermore, we used two hospitalized participants data as an additional

small positive dataset. These two participants could not be adjudicated and
given a WHO score, as their medical records were inaccessible to the UIH
medical system, but were likely hospitalized as a result of COVID-19.

Experiments
We conducted several additional experiments to compare the CDI model
to available standard and care and remote patient monitoring without
using machine learning.
Comparisons to the CDI model were done in one of two ways, either a

comparison to a univariate feature analysis, or in a multivariate feature
analysis by building a new XGBoost model. The univariate feature
comparison was created by using the feature of interest directly in the
ROC analysis.

Table 4. Feature extraction transforms from 17 source signals to 361 features.

Feature Group Number of
Features

Input Signals Description

Statistical 102 Count of magnitude, gross activity, heart rate, time
domain heart rate variability, magnitude of Uni
counts, A-Fib percent, sleep, respiration rate, step
count, tilt, trailing activity, walk percent, skin
temperature, heart rate residual, activity residual,
respiration rate residual, MCI

The following statistical operations applied to each of the
input signals: median, mean, standard deviation, 99th
percentile, 1st percentile, interquartile range

Filtered statistical 240 Gross activity, heart rate, time domain heart rate
variability, respiration rate, step count*, tilt*, skin
temperature, breaths per beat, HRV normalized by
HR, heart rate residual, activity residual, respiration
rate residual, MCI

Applies the statistical functions median, mean, standard
deviation, 99th percentile, 1st percentile to each of the
input signals when filtered by the following conditions: (1)
while walking, (2) while not walking, (3) while sleeping, (4)
while not sleeping. Signals marked with * indicate features
only used in conditions 1 and 2.

Weighted average 4 Step count, heart rate, time domain heart rate
variability, respiration rate, breaths per beat

Weighted average of input signal using the corresponding
step count as the signal weight.

Interaction 8 Step count, heart rate, time domain heart rate
variability, respiration rate, breaths per beat

Slope and intercept of linear regression fit to step count
against the other input signals, with step count as the
dependant variable. Minutes with step count values of
zero are removed before fitting the linear regression.

Delta interaction 4 Step count, heart rate, time domain heart rate
variability, respiration rate, breaths per beat

Slope of linear regression fit to first order difference of
step counts against the first order difference of the other
input signals. Minutes with 0 step count first order
difference are removed before fitting the linear
regression.

Sleep 2 Sleep Number of awakenings (count of transitions between
asleep and awake state), and number of awakenings per
hour of sleep.

Data quality 1 ECG Signal quality index Amount of high quality ECG data per window

Total features 361

Each feature group is listed along with the input signals and a description of transformations to yield the resultant features. All features are calculated over a
24 h time window with a 1 h step between each window, yielding a 361-length feature vector every hour.
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The multivariate feature analyses follow the same modeling steps as
described above in “Model training”. However, instead of using the 50 best
features without restriction, the model would use the 50 best with certain
types of features removed. For example, a model only using actigraphy
features would select the top 50 actigraphy features from the full list of
ranked features used for CDI. The same hyperparameters used for the CDI
model were used in all other multivariate model comparisons.
Simulated standard of care was defined as patient initiated SpO2 and

temperature readings, which would alert if either are above typical clinical
thresholds. An SpO2 alert was considered triggered if the measured SpO2

value at rest was less than or equal to 93%. Patient initiated temperature
alerts were simulated by thresholding the skin temperature value
occurring at the same time as the SpO2 measurement. Since skin
temperature is lower overall than oral or core body temperature, standard
clinical oral temperature thresholds were not valid thresholds. Instead, we
considered a skin temperature reading to be an alert if the value was
greater 36.11 °C, which is the 90th percentile of the temperature readings
in the study.
We wanted to compare CDI to continuous remote patient monitoring to

better understand the differences between a machine learning model
derived from the same information, compared to a set of clinical rules. The
CRPM rules were computed each hour, and an alert was considered
triggered if any of the following conditions were met:

● Tachypnea rule: alert if the average respiration rate while not walking
is greater than 26 breaths per minute.

● Tachycardia rule: alert if heart rate is greater than 100 beats per minute
while not walking for more than 40min per hour

● Atrial fibrillation rule: alert if AFib is detected for more than 40min
per hour.

● Bradycardia rule: alert if heart rate is lower than 45 beats per minute
for more than 48min per hour or if heart rate is lower than 52 beats
per minute for more than 48min per hour while awake.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available from the Digital Health
Technologies Data Hub as well as the NIH RADx data hub (https://rapier.ll.mit.edu/
studies). Users will be required to electronically sign a data use agreement. Each
dataset will have its own DOI. Data will be available for general research use.
Aggregate data analyzed in this study are available from the corresponding author
on reasonable request.

CODE AVAILABILITY
The code used to train and validate the model, as well as perform the analyses, are
available at the Digital Health Technologies Data Hub. They are also available from
the corresponding author on reasonable request. All analyses were performed using
Python 3.8, with xgboost==1.2.1, and shap==0.37.0.
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