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Abstract
Advanced bronchoscopic lung volume reduction treatment (BLVR) is now a routine care option for treating patients with 
severe emphysema. Patterns of low attenuation clusters indicating emphysema and functional small airway disease (fSAD) 
on paired CT, which may provide additional insights to the target selection of the segmental or subsegmental lobe of the 
treatments, require further investigation. The low attenuation clusters (LACS) were segmented to identify the scalar and 
spatial distribution of the lung destructions, in terms of 10 fractions scales of low attenuation density (LAD) located in upper 
lobes and lower lobes. The LACs of functional small airway disease (fSAD) were delineated by applying the technique of 
parametric response map (PRM) on the co-registered CT image data. Both emphysematous LACs of inspiratory CT and fSAD 
LACs on expiratory CT were used to derive the coefficients of the predictive model for estimating the airflow limitation. The 
voxel-wise severity is then predicted using the regional LACs on the co-registered CT to indicate the functional localiza-
tion, namely, the bullous parametric response map (BPRM). A total of 100 subjects, 88 patients with mild to very severe 
COPD and 12 control participants with normal lung functions  (FEV1/FVC % > 70%), were evaluated. Pearson’s correlations 
between  FEV1/FVC% and LAV%HU-950 of severe emphysema are − 0.55 comparing to − 0.67 and − 0.62 of LAV%HU-856 of 
air-trapping and LAV%fSAD respectively. Pearson’s correlation between  FEV1/FVC% and  FEV1/FVC% predicted by the pro-
posed model using LAD% of HU-950 and fSAD on BPRM is 0.82 (p < 0.01). The result of the Bullous Parametric Response 
Map (BPRM) is capable of identifying the less functional area of the lung, where the BLVR treatment is aimed at removing 
from a hyperinflated area of emphysematous regions.
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Introduction

COPD is a progressive, irreversible disease characterized 
by alveolar destructions due to small airways disease and 
loss of supporting tissue due to emphysema. Currently, the 
treatment options for patients suffering from emphysema 
are limited. Various techniques of bronchoscopic lung vol-
ume reduction treatment (BLVR) are recommended by the 
international expert panel as a minimally invasive proce-
dure for improving pulmonary function, exercise capacity, 
and life quality in patients with COPD. These techniques 
include valves, coils, vapor thermal ablation, and sealant. 
Each method requires careful evaluation due to its limita-
tion in treatment. In particular, endobronchial valves (EBVs) 

improve lung volumes and allow for the expansion of lung 
tissue. However, this lobar exclusion cannot enroll patients 
who have extensive interlobar collaterals in the emphyse-
matous lung. On the other hand, endobronchial coil therapy 
which is independent of collateral ventilation improves the 
elastic recoil by the compression and redistribution of air-
flow toward healthier segments. Bronchoscopic thermal 
vapor ablation (BTVA, Uptake Medical Corporation, Seat-
tle, WA, USA) reduces lung volume by the instillation of 
heated water in the most diseased segments to provoke irre-
versible parenchymal fibrosis and scarring of emphysema-
tous tissue [1, 2]. The challenge for the treatment success is, 
nevertheless, to define the specific signatures of the “most 
diseased segments or subsegments of the lobe”[3].

Quantitative computed tomography (QCT) can sensi-
tively assess the size and spatial distribution of low attenu-
ations clusters (LACs) as the emphysematous characteris-
tics in patients with chronic obstructive pulmonary disease 
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(COPD). The radiographic assessment has been developed 
for patient inclusion using quantitative computed tomog-
raphy (QCT) as the predictors of treatment outcome, such 
as fissure integrity for evaluating the collateral ventilation 
and low attenuation clusters for evaluating emphysema 
heterogeneity. In the current paradigm of BLVR-specific 
quantitative CT imaging, emphysema lesion is segmented 
by the threshold of -950 Hounsfield units (HU) to extract 
low attenuation clusters (LACs) in the inspiratory CT data. 
Emphysema severity is then computed from the low attenu-
ation volume percentage (LAV%) as the ratio of LACs to 
whole lung volume. However, there is no consensus defini-
tion for the emphysema heterogeneity score (HS), and many 
studies have proposed methods using interlobar LAV% [3, 
4]. Recently, Lor et al. have developed a LAC-based repre-
sentation of emphysematous lesions grouped by four pro-
portional scales in upper and lower lobes. The compositions 
of categorized LACs are used to build the predictive mod-
eling of voxel-wise airflow limitation. As a result, instead of 
most “emphysema-destroyed lobe,” the most “functionally 
affected” tissue can be identified for the treatment [5].

Although previous studies mainly take emphysema het-
erogeneity on inspiratory CT into consideration, BLVR is 
expected to treat the lobe with hyperinflation, which results 
from gas being trapped during the expiratory phase of the 
breathing. As suggested in the findings of recent ex vivo 
studies using high-resolution microcomputed tomography 
(microCT), the destruction of the terminal bronchiole is 
hypothetically the primary site in the lungs of patients with 
mild and moderate COPD, but with no sign of emphysema 
[6–8]. On the other hand, other studies have shown cases 
of emphysema without obstruction on spirometry [9]. The 
discordance between the results of the pulmonary function 
test (PFT) and structural alterations in emphysema and func-
tional small airway disease only highlights partial aspects 
of the disease complexity. While the PFT provides a global 
assessment to diagnose COPD, CT imaging quantifies local 
structural and functional abnormalities, which induce the 
heterogeneity of COPD phenotypes, and further increase the 
disease complexity. As a result, both emphysema and small 
airway disease should be assessed for the COPD heterogene-
ity in the target lobe selection.

Emphysema can be obtained from LACs on inspiratory 
CT, whereas the morphology of the small airway (< 2 mm 
in diameter) is below the resolution of CT image data. Well-
accepted quantification of emphysema severity is the per-
centage of LAV segmented by the threshold of -900 ~ -950 
Hounsfield units (HU) in total lung volume on inspiratory 
CT, whereas LAV% segmented by a threshold of -856 HU 
on expiratory CT has been used as a measure of air-trapping 
due to the functional small airway disease (fSAD). While 
both emphysema and fSAD are the main components of 
the heterogeneous COPD process, the surrogate measure 

of air-trapping is partially overlapped with emphysematous 
destruction. To quantify the COPD phenotypes, Galbán et al. 
co-registered inspiratory and expiratory CT scans to distin-
guish the relative contributions of fSAD and emphysema for 
a more accurate diagnosis [10]. Here, we co-registered the 
paired inspiratory and expiratory CT to identify the emphy-
sema LACs as well as the fSAD LACs. After deriving the 
prediction model for the airflow limitation, the bullous para-
metric response map (PRM) (BPRM) is then constructed by 
accumulating the functional contributions of the regional 
low attenuation densities (LADs).

Materials and Methods

Patient and Public Involvement

The volumetric CT scans were taken at full inspiration and 
full expiration for each subject. However, the interpreta-
tion and conclusions contained in this study are those of 
the authors alone. A total of 88 subjects with symptoms of 
chronic obstructive pulmonary disease (GOLD stage 1 ~ 4) 
and 12 normal subjects was included. Subject demograph-
ics are summarized in Table 1. All subjects are evaluated 
in the correlational studies, and 80 of randomly selected 
subjects are trained in the predictive modeling for testing on 
the remaining 20 subjects as the setup for repeated fivefold 
cross-validations.

CT Image Analysis and PRM

The co-registration of expiratory and inspiratory was per-
formed in three main steps: lung mask segmentation, three-
dimensional non-rigid point set registration, and image 
deformation. CT Automated airway and lung segmentation 
were performed using in-house software. In particular, the 
method of lung segmentation affects the accuracy of LAV%. 
The lung mask was segmented by applying the adaptive 

Table 1  Subject demographics (n = 100)

BMI body mass index, FEV1 forced expiratory volume in one second, 
FVC functional vital capacity

Parameter Mean (± std) 
or count (%)

Sex male 98
Age 67.87 (9.63)
Height (cm) 166.88 (6.78)
Weight (kg) 67.22 (12.94)
BMI 24.05 (4.0)
FEV1/FVC % 54.55 (12.96)
FEV1% predicted 66.53 (22.29)
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region growing with the upper bound value of HU 200 and 
using the airway mask as the starting point. After all the dark 
regions (all voxels with HU less than 200) were segmented 
and marked as the initial lung mask, the enclosed vascular 
regions were included by morphological operations (such as 
closing and filling by dilation and erosion). The separation 
of left and right lobes was performed by erosion to detach 
the anterior borders of the lobes. Then, the completed left 
and right lobes were obtained by the dilation separately.

To minimize the contribution of the airway lumen, the 
airway was removed from the lung mask. Once the lung 
masks were extracted from the paired CT dataset, the reg-
istration of expiratory CT (floating) aligning with inspira-
tory CT (reference) takes place in the left and right lobes 
separately. The evenly distributed sparse points of the lung 
mask were used as the input of the registration algorithm. 
We applied the coherent point drift (CPD) to transform the 
floating-point set to the reference point set. The outstanding 
performance of CPD was evaluated thoroughly in the work 
of Wang et al. [11] using COPDgene dataset of DIR-lab 
(http:// www. dir- lab. com/ index. html) [12]. While preserving 
the shape context, CPD also transforms the spatial distri-
bution of the interior point set within the lung mask. The 
transformed interior-point set can be used as the landmarks 
for the image deformation, where the co-registered volume 
data is the result of interpolation within landmarks.

To furtherly investigate the impact of the regional emphy-
sema on lung functions, not only the lobes are labeled as 
left and right lobes, but also the upper and lower lobes. The 
upper lobes include the right upper lobe and the left upper 
lobe, while the lower lobes are the right middle lobe, the 
right lower lobe, and the left lower lobe. The method of 
segmenting the upper and lower lobes is derived from the 
fissures as the results of thin plate structures of the hessian 
filter. The sample points of the fissure are the control points 
of thin plate spline, TPS, which can be used to delineate the 
borders between lobes.

Measurements of Low Attenuation Volume 
Percentage

The low attenuation volume is the targeting voxel of the 
binarized image using a fixed HU threshold value on CT. 
LAV% is the percentage of targeting voxels in the whole 
lung. In this study, we include four types of targeting vox-
els: mild emphysema on inspiratory CT using the threshold 
of HU-920, severe emphysema on inspiratory CT using the 
threshold of HU-950, air-trapping on expiratory CT using 
the threshold of HU-856, and fSAD of PRM which is a result 
of air-trapping on co-registered expiratory excluding over-
lapped emphysema voxels on inspiratory. The notations are 
LAV%Emph920, LAV%Emph950, LAV%AirT, and LAV%fSAD, 
respectively.

Modeling of the Low Attenuation Cluster using 
the Local Maxima of Bulla Voxels

This study utilized an algorithm that was developed in the 
previous work to find the LACs in the binarized image using 
a fixed HU threshold value on inspiratory CT and expiratory 
CT. By applying iterative erosion to the binarized image 
data, each LAC will accumulate the number of eroded vox-
els from previous steps of erosion. The method of obtaining 
LACs is described in the works of Lor et al. [5]. The frac-
tion density of LACs or low attenuation density (LAD) is 
the total number of bulla voxels divided by the total num-
ber of parenchymal voxels. The summation of LADs is the 
same as the low attenuation volume percentage (LAV%). 
The corresponding LAD notations for each type of target-
ing voxel are LAD%Emph920, LAD%Emph950, LAD%AirT, and 
LAD%fSAD. While LACs of emphysema and air-trapping are 
segmented directly from binarized image using single-value 
thresholding, LACs of fSAD are not based on the fSAD 
of PRM. The excluding emphysematous voxels (HU < -950 
on both inspiratory CT and co-registered expiratory CT) 
destroy the completeness of bullous structures and cre-
ate more fragments than the number of visually observed 
clusters. The shortcoming of extracting LACs in the PRM 
approach can be registration algorithm dependent and thus 
lowers the reproducibility. More accountable approaches are 
referring to the classification based on the predominant ratio 
between emphysematous voxels (HU-950) and air-trapping 
voxels (HU-856). The emphysematous predominant LACs 
are excluded from co-registered expiratory CT, whereas the 
LAD%fSAD of  LACfSAD is the percentage of fSAD voxels 
determined by PRM.

Statistical Analysis

Pearson’s test was performed to report the correlations 
between LAV% and  FEV1% predicted and FEV1/FVC% 
on inspiratory CT and expiratory CT. The cluster analysis 
of LADs is performed by ckmeans.1d.dp method (which is 
based on dynamic programming for optimal one-dimension 
K-means clustering) to cluster into 10 size ranges [13]. A 
total of 5.3 million LACs from all the datasets on inspiratory 
CT and 2.8 million LACs from expiratory CT were collected 
to illustrate their relationship with lung functions.

The initial correlation study is conducted to  FEV1/FVC% 
as the predicting target. Although the GOLD classification 
proposes a COPD grading system, the categorical staging 
result has a weak correlation with LAV%. In this study, the 
full dataset was evaluated for the correlation study of the 
disease, and the predictive model derived from the training 
dataset will be used to predict the outcome of the testing 
dataset. The final model was tested with repeated fivefold 
cross-validation. The full model of multivariable linear 
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regression associated with  FEV1/FVC% was tested for CT 
emphysema and air-trapping using 40 possible predictor 
variables. We then used backward selection to reduce the 
collinearity and use only 16 predictors in the final model. 
The final model has p-value of less than 0.05 in each predic-
tor. All statistical analyses were performed in R statistical 
software (version 3.6.1; R Foundation for Statistical Com-
puting, Vienna, Austria).

Results

Subject Characteristics

The study included 100 participants with inspiratory and 
expiratory CT taken at the same time before the treatment. 
The dataset has shown the normal distribution of lung 
function. The regions of the whole lung are partitioned 
into upper and lower lobes. In contrast to the conventional 
emphysema threshold of HU-950, the proposed method uses 
single HU-930 to segment the mild emphysematous regions 
[14]. The baseline characteristics of participants are shown 
according to GOLD stages 0 through 4 in Table 2. Both 
the mean values of LAV%Emph and LAV%AirT are increased 
relative to the COPD severity graded by GOLD as expected. 
There is no significant difference in LAV% between upper 

lobes and lower lobes at each stage. While  FEV1% predicted 
is the GOLD criteria for staging severity (stage 1, mild: 
 FEV1% predicted ≥ 80%; 2, moderate: 50 ~ 70%; 3, severe: 
30 ~ 49%; 4, very severe: < 30%), the mean values of LAV% 
at each stage increase accordingly in the categorical subjects 
as shown in Fig. 1. BMI declines gradually as the COPD 
gets more severe.

Correlation Study Between Lung Functions 
and LAV%

In the past decades, Pearson’s correlations between inter-
lobar LAV% and PFT have been studied extensively, and 
Spearman’s rank analysis was used to assess the categorical 
correlation between interlobar LAV% and GOLD stage clas-
sification [15]. In contrast to previous studies, we sought to 
characterize the heterogeneity of COPD phenotypes in terms 
of contribution at different stages of development. Figure 2 
shows correlation coefficients between LAV% and PFT at 
the different GOLD stages. It can be seen that although the 
total dataset (n = 100) has significant correlation with PFT 
(r >|0.5|, p < 0.01), only patients at GOLD stage 3 (n = 22) 
have contributions with significant correlation (r >|0.5|, 
p < 0.05) with  FEV1% pred. Table 3 shows correlation coef-
ficients between various LAV% and PFT at the different 
GOLD stages. In contrast to the results of  FEV1% pred, it 

Table 2  Subject demographics 
based on GOLD categories

FEV1 forced expiratory volume in one second, FVC functional vital capacity, GOLD the global initiative 
for chronic obstructive pulmonary disease, BMI body mass index

Parameter Mean (± std) or count (%)

GOLD 0 (normal) 1 (mild) 2 (moderate) 3 (severe) 4 (very severe)

Subjects 12 16 48 22 2
Sex male 11 16 47 22 2
Age 61.67 (10.41) 68.12 (11.82) 69.69 (8.88) 67.14 (8.43) 67.50 (7.78)
LAV%Emph920 (up) 8.49 (6.46) 16.01 (6.72) 19.76 (9.54) 26.98 (6.91) 33.25 (0.62)
LAV%Emph920 (low) 7.18 (5.05) 17.79 (9.24) 19.76 (8.46) 28.91 (6.85) 37.78 (7.14)
LAV%Emph920 15.67 (11.33) 33.80 (15.34) 39.52 (16.67) 55.89 (12.80) 71.03 (7.76)
LAV%Emph950 (up) 0.57 (0.81) 2.92 (3.03) 5.99 (6.44) 10.94 (6.47) 21.12 (2.51)
LAV%Emph950 (low) 0.40 (0.55) 3.43 (3.15) 4.92 (4.04) 10.38 (5.13) 25.29 (10.70)
LAV%Emph950 0.97 (1.33) 6.35 (5.83) 10.92 (9.76) 21.33 (10.98) 46.41 (8.20)
LAV%AirT (up) 10.18 (11.97) 16.82 (10.17) 21.68 (10.44) 31.08 (7.84) 37.18 (0.01)
LAV%AirT (low) 11.68 (12.70) 16.08 (9.92) 20.80 (9.30) 31.13 (8.50) 41.08 (4.40)
LAV%AirT 21.87 (24.61) 32.89 (19.55) 42.48 (18.38) 62.16 (15.23) 78.26 (4.41)
LAV%fSAD (up) 7.29 (9.42) 12.95 (8.31) 14.07 (7.03) 19.22 (6.62) 16.25 (5.33)
LAV%fSAD (low) 8.24 (9.64) 11.66 (7.71) 13.81 (7.11) 19.85 (6.40) 16.16 (4.40)
LAV%fSAD 15.53 (18.98) 23.62 (15.80) 27.88 (13.43) 39.07 (12.48) 32.41 (0.93)
Height (cm) 164.73 (6.67) 169.19 (7.41) 167.20 (7.04) 165.99 (5.62) 163.50 (7.78)
Weight (kg) 69.58 (14.12) 70.41 (11.69) 68.32 (13.65) 61.98 (10.45) 56.00 (0.00)
BMI 25.56 (4.50) 24.51 (2.99) 24.37 (4.28) 22.45 (3.46) 21.02 (1.99)
FEV1/FVC % 74.80 (3.41) 63.45 (5.61) 54.53 (7.32) 39.31 (6.82) 30.01 (4.38)
FEV1% predicted 95.98 (18.23) 92.56 (8.55) 64.56 (7.90) 39.74 (5.33) 23.62 (0.86)
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can be seen that while severe emphysema (GOLD 3) has the 
most contribution to  FEV1/FVC% in lung function decline, 
air-trapping and other composite measurements using both 
inspiratory and expiratory CT have a better linear associa-
tion with earlier stages of COPD. Interestingly, the weaker 
correlation at stage 2 (r <|0.3|), as comparing to stage 1 and 
3 (r >|0.5| and r >|0.8|), suggested a non-linear relationship 
between LAV% and FEV1/FVC% in patients with the mild 
syndrome. The resulting correlation comparison of Table 3 
is shown in Fig. 2. While the ideal Pearson’s correlation 
coefficients are expected to be equally strong in all GOLD 
stages,  FEV1% predicted only has a moderate correlation 
with severe COPD, and  FEV1/FVC% was shown stronger 
in all stages as compared to  FEV1% precited.

Other than a simple thresholding method for quanti-
tative measurement of air-trapping, some studies aimed 
at differentiating air-trapping from those remaining in 
emphysematous regions by the commonly used ratio 
between the mean lung density at expiration and inspira-
tion (E/I) ratio [16] and more sophisticated method such 
as parametric response mapping (PRM) [10]. With the fact 
of LAV% on expiratory CT is the mixture of air-trapping 
and fraction of emphysema in mind, we studied the cor-
relation between PFT and the mixing effect of LAV%Emph 
and LAV%AirT by simple addition. The result is shown 
in the second last category of Table 3. Despite the pos-
sible introduction of collinearity, it can be seen that the 
linearity is strengthened, achieving higher correlation 
coefficients in the total dataset (n = 100). Furthermore, 
we studied the correlation between PFT and the compos-
ite effect of emphysema and functional small airway dis-
ease, two main components of COPD. In the last category, 
LAV%Emph950+fSAD has shown the strengthened correla-
tion analysis as expected for eliminating the overlapped 

area of emphysema from expiratory CT. These findings 
affirm the concept that the heterogeneity of airflow limi-
tation  (FEV1% predicted and  FEV1/FVC% in this study) 
is the result of the non-linear contribution from the low 
attenuation lesions revealed in parenchyma on inspiratory 
and expiratory CT. Another interesting result showed that 
Emph% and AirT% have a noticeable stronger correlation 
with  FEV1/FVC than  FEV1% predicted (in agreement with 
the findings of previous studies [7, 9, 15, 17, 18]). Hence, 
we use  FEV1/FVC % as the predicting target in this study.

Cluster Analysis of LAD

In the previous study [5], we have developed predictive 
modeling of FEV1/FVC using LAD distribution on 
inspiratory CT to predict the functional severities of subjects, 
differentiated in spirometry but equivalent in LAV%, as 
well as those equivalents in spirometry but differentiated in 
LAV%. In this study, we extend the concept to apply the 
cluster analysis on expiratory CT. Unlike the 4 empirical 
scales used in the previous study, the LADs were clustered 
into 10 scales by univariate K-means clustering method. 
A noticeable similarity in boxplots of 10 scalar clusters is 
illustrated in Fig. 3 A (inspiratory CT) and B (expiratory CT). 
Figure 3C, D are the boxplots showing the total FEV1/FVC 
distribution of each scalar clusters for all the data (n = 100). 
The total number of clusters obtained on inspiratory and 
expiratory CT is more than 8 million. Although the studied 
subject can be composed of LADs varied in sizes within 
lobes, the distribution shown in boxplots in Fig. 3 can be 
seen as the increased probability of having severe airflow 
limitation when the heterogenous lung destruction is 
composed of more LADs in cluster sizes 6 to 8.

Fig. 1  Distribution of LAV% at a different stage of GOLD (n = 100); low is the measurements of lower lobes and up is the measurements of 
upper lobes
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Linear Model Fitting and Derivation 
of the Predictive Model

It is well understood that the mechanism and transition 
of how low attenuation relates to disease progression 
are not yet clear. We hypothesized that the severity of 

airflow limitation can be partially attributed to the effects 
of LAD% at a different level according to the size and 
location of the LAD. To evaluate the effects of the LADs 
on the severity of lung function, we formulate the full 
model of multiple linear regression using 10 LAD scales 
from upper lobes and 10 LAD scales from lower lobes on 

Fig. 2  Pearson’s correlation between whole lung LAV% and lung function at different GOLD stage. The results of the plot A and B are based on 
the measurement given in Table 3. Plot A compares the average LAV% with FEV1% pred, whereas plot B compares with FEV1/FVC%
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inspiratory and expiratory CT. A total of 40 LAD scales 
formulate the predictors used in the full model. Substantial 
collinearity is expected because of the overlapped effect 
due to the partial  LACEmph inevitably existing within the 
 LACfSAD on expiratory CT. Backward selection is applied 
to improve the statistical significance of the model.

Prediction Performance Evaluation

In order to evaluate the robustness of the final model, we ini-
tially derived the estimated coefficients of linear models on 
the complete dataset using fivefold cross-validation repeated 
for 30 times. The Pearson’s correlation between FEV1/

Table 3  Pearson’s correlation between LAV% and lung function: r (p-value)

PFT pulmonary function test, LAV low attenuation volume, FEV1 forced expiratory volume in one second, FVC functional vital capacity, GOLD 
the global initiative for chronic obstructive pulmonary disease
a Not enough finite observations for GOLD 4

GOLD
Lobes vs PFT

0 (n = 12) 1 (n = 16) 2 (n = 48) 3 (n = 22) 4a (n = 2) All (n = 100)

LAV%Emph920 Upper FEV1% pred 0.15 (0.65) 0.37 (0.15)  − 0.16 (0.29)  − 0.48 (0.02) N/A  − 0.52 (< 0.01)
FEV1/FVC % 0.39 (0.21)  − 0.21 (0.41)  − 0.16 (0.27)  − 0.42 (0.05) N/A  − 0.58 (< 0.01)

Lower FEV1% pred 0.13 (0.67) 0.13 (0.63)  − 0.14 (0.36)  − 0.50 (0.02) N/A  − 0.56 (< 0.01)
FEV1/FVC % 0.50 (0.09)  − 0.44 (0.08)  − 0.15 (0.31)  − 0.58 (< 0.01) N/A  − 0.65 (< 0.01)

Whole FEV1% pred 0.14 (0.65) 0.24 (0.37)  − 0.16 (0.28)  − 0.53 (0.01) N/A  − 0.57 (< 0.01)
FEV1/FVC % 0.45 (0.14)  − 0.36 (0.17)  − 0.17 (0.25)  − 0.54 (< 0.01) N/A  − 0.64 (< 0.01)

LAV%AirT Upper FEV1% pred 0.17 (0.58) 0.19 (0.48)  − 0.25 (0.08)  − 0.51 (0.01) N/A  − 0.52 (< 0.01)
FEV1/FVC %  − 0.20 (0.53)  − 0.44 (0.08)  − 0.26 (0.08)  − 0.84 (< 0.01) N/A  − 0.64 (< 0.01)

Lower FEV1% pred 0.18 (0.57) 0.0 (0.97)  − 0.28 (0.05)  − 0.52 (0.01) N/A  − 0.55 (< 0.01)
FEV1/FVC %  − 0.26 (0.41)  − 0.71 (< 0.01)  − 0.23 (0.1)  − 0.80 (< 0.01) N/A  − 0.66 (< 0.01)

Whole FEV1% pred 0.18 (0.57) 0.10 (0.70)  − 0.28 (0.04)  − 0.54 (< 0.01) N/A  − 0.55 (< 0.01)
FEV1/FVC %  − 0.23 (0.47)  − 0.59 (0.01)  − 0.26 (0.07)  − 0.86 (< 0.01) N/A  − 0.67 (< 0.01)

LAV%Emph950 Upper FEV1% pred 0.22 (0.48) 0.26 (0.33)  − 0.14 (0.33)  − 0.52 (< 0.01) N/A  − 0.54 (< 0.01)
FEV1/FVC % 0.50 (< 0.1) 0.05 (0.86)  − 0.19 (0.19)  − 0.35 (0.11) N/A  − 0.56 (< 0.01)

Lower FEV1% pred 0.20 (0.52) 0.09 (0.74)  − 0.14 (0.35)  − 0.42 (0.06) N/A  − 0.60 (< 0.01)
FEV1/FVC % 0.43 (0.16)  − 0.35 (0.19) 0.0 (0.98)  − 0.41 (0.05) N/A  − 0.62 (< 0.01)

Whole FEV1% pred 0.22 (0.49) 0.18 (0.50)  − 0.15 (0.31)  − 0.50 (< 0.05) N/A  − 0.60 (< 0.01)
FEV1/FVC % 0.48 (0.11)  − 0.16 (0.54)  − 0.12 (0.40)  − 0.40 (0.06) N/A  − 0.62 (< 0.01)

LAV%fSAD Upper FEV1% pred 0.33 (0.29) 0.13 (0.61)  − 0.27 (0.06)  − 0.05 (0.81) N/A  − 0.34 (< 0.01)
FEV1/FVC %  − 0.03 (0.92)  − 0.53 (< 0.05)  − 0.27 (< 0.05)  − 0.47 (< 0.05) N/A  − 0.50 (< 0.01)

Lower FEV1% pred 0.35 (0.27) 0.03 (0.90)  − 0.33 (< 0.05)  − 0.30 (0.17) N/A  − 0.39 (< 0.01)
FEV1/FVC %  − 0.10 (0.73)  − 0.73 (< 0.01)  − 0.39 (< 0.01)  − 0.61 (< 0.01) N/A  − 0.56 (< 0.01)

Whole FEV1% pred 0.34 (0.27) 0.09 (0.75)  − 0.32 (< 0.05)  − 0.18 (< 0.42) N/A  − 0.38 (< 0.01)
FEV1/FVC %  − 0.07 (0.82)  − 0.64 (< 0.01)  − 0.35 (< 0.01)  − 0.57 (< 0.01) N/A  − 0.55 (< 0.01)

LAV%Emph920+AirT Upper FEV1% pred 0.24 (0.45) 0.30 (0.25)  − 0.23 (0.12)  − 0.56 (< 0.01) N/A  − 0.57 (< 0.01)
FEV1/FVC % 0.00 (0.98)  − 0.40 (0.11)  − 0.23 (0.11)  − 0.73 (< 0.01) N/A  − 0.67 (< 0.01)

Lower FEV1% pred 0.22(0.49) 0.07 (0.79)  − 0.26 (0.08)  − 0.56 (< 0.01) N/A  − 0.62 (< 0.01)
FEV1/FVC %  − 0.05 (0.86)  − 0.64 (< 0.01)  − 0.23 (0.05)  − 0.76 (< 0.01) N/A  − 0.73 (< 0.01)

Whole FEV1% pred 0.23 (0.47) 0.18 (0.49)  − 0.26 (0.07)  − 0.60 (< 0.01) N/A  − 0.62 (< 0.01)
FEV1/FVC %  − 0.02 (0.94)  − 0.55 (0.02)  − 0.25 (0.08)  − 0.79 (< 0.01) N/A  − 0.72 (< 0.01)

LAV%Emph950+fSAD Upper FEV1% pred 0.36 (0.26) 0.21 (0.44)  − 0.27 (0.06)  − 0.52 (< 0.01) N/A  − 0.55 (< 0.01)
FEV1/FVC % 0.01 (0.97)  − 0.47 (0.07)  − 0.30 (< 0.05)  − 0.75 (< 0.01) N/A  − 0.67 (< 0.01)

Lower FEV1% pred 0.36 (0.25) 0.05 (0.84)  − 0.32 (< 0.05)  − 0.51 (< 0.01) N/A  − 0.58 (< 0.01)
FEV1/FVC %  − 0.08 (0.79)  − 0.69 (< 0.01)  − 0.31 (< 0.05)  − 0.78 (< 0.01) N/A  − 0.71 (< 0.01)

Whole FEV1% pred 0.36 (0.25) 0.13 (0.62)  − 0.31 (0.05)  − 0.54 (< 0.01) N/A  − 0.58 (< 0.01)
FEV1/FVC %  − 0.04 (0.90)  − 0.60 (< 0.01)  − 0.33 (< 0.05)  − 0.81 (< 0.01) N/A  − 0.71 (< 0.01)
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FVC% predicted by the model and measured in spirometry 
is 0.82 (p < 0.01) as compared to Pearson’s correlations 
between  FEV1/FVC% and low attenuation volume percent-
age (LAV%HU-920) of mild emphysema and LAV%HU-950 of 
severe emphysema are − 0.64 and − 0.55 respectively. Com-
paring to inspiratory CT, Pearson’s correlations between 
 FEV1/FVC% and LAV%HU-856 of air-trapping and LAV%fSAD 
on expiratory CT are − 0.67 and − 0.62, respectively. The 
new prediction model using both  LADemph and  LADfSAD 
has shown a better result (r = 0.82) than the previous model 
(r = 0.69) in the prior work.

BPRM

In this study, the regions of the lung are subdivided into 
grids to illustrate the distribution of functional severity. In 
contrast to the lobar or whole lung prediction in the prior 
work, the predicted  FEV1/FVC% of each subdivision is the 
summation of each voxel classified by both emphysema 
LACs on inspiratory CT and the fSAD LACs at the corrected 
corresponding positions of non-rigid transformed expiratory 
CT. The bullous PRM (BPRM) is then constructed to pro-
vide complementary information when selecting the target 

segments of BLVR. The result of BPRM is shown in sub-
ject 1,003,801 of Fig. 4. This subject has moderate COPD 
of GOLD 2,  FEV1% pred: 73.87,  FEV1/FVC%: 55.03, and 
the prediction of  FEV1/FVC% is 50.97, LAV% fSAD 22.76, 
LAV% Emph950 39.9, LAV% AirT 63.99, and LAV% Emph920 
64.38. BPRM indicates that the most functionally destructed 
lesions are located in the lower lobes where the mixtures 
of air-trapping and emphysema are mainly located and sur-
rounded by vascular pruning.

Discussion

In this study, the correlation between LAV%Emph920 and PFTs 
is only statistically significant in the lungs with a severe 
GOLD stage. The result showed that LAV%Emph920 does not 
have a linear association with PFTs, and LAV%AirT corre-
lates better than LAV%Emph920 with PFTs at each GOLD 
stage. LAV%AirT encloses areas of air-trapping as well as 
emphysematous regions, which can be decomposed into 
LAV%Emph950 and LAV% fSAD as shown in Fig. 5. Access-
ing the functional distribution of low attenuation clusters 
(LACs) in different sizes, we found that giant bullous 

Fig. 3  Cluster analysis of low attenuation densities (LADs) on inspir-
atory CT and expiratory CT. Comparison of 10 scales of LAD% 
clustered by univariate K-means clustering (inspiratory CT on A, 

expiratory CT on B), and comparison of  FEV1/FVC% distributions of 
LADs (inspiratory CT on C and expiratory CT on D)
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emphysema (cluster-10) does not necessarily attribute more 
impact on the lung function when comparing to smaller bul-
lae. Weaker correlation with PFTs is therefore expected in 
the lungs consisting of giant bullous emphysema. Clinical 
studies have shown the heterogeneous functional outcome 
among the subtypes of emphysema. Larger bullae do not 
necessarily attribute to severe COPD, and smaller, evenly 
distributed bullae might be more common in the lobe with 
advanced destructive emphysema.

From the pathophysiological perspective, pursuing a lin-
ear relationship between PFTs and LAV% would be more 
challenging. The centrilobular emphysema (CLE), panlob-
ular emphysema (PLE), and paraseptal emphysema (PSE) 
are three main phenotypes of emphysematous destruction 
seen in COPD. PLE refers to diffuse emphysema across the 
lobule, whereas CLE is considered the primary lesion of 
destruction at respiratory bronchioles. Not only that each 
subtype of emphysema differs in sizes, distribution, and 
location, but they may also have different pathophysiologic 
contributions to the increase in small airway resistance in 
COPD. For example, PLE is considered less associated with 
small airway obstruction than CLE, because the alveolar 
destruction in PLE is milder than that in CLE, which at the 
later stage spreads to fuse destroyed lobules and becomes 
large bullous lesions [19, 20]. Other studies reported that 
PLE although represents more advanced emphysema has 
a weaker association with  FEV1% as compared to CLE 
[21]. Moreover, previous studies reported the confounding 
functional effect of bullous emphysema (advanced CLE) in 
patients with diffuse emphysema (PLE) [22].

Recent studies have shown that the presence of fSAD 
might be predictive of spirometry decline [18, 23]. From the 
functional perspective, the extent of hyperinflation can be 
quantified by the decline in  FEV1% as the result of increas-
ing bronchitis/bronchiolitis in small airway disease. Detec-
tion of  LACfSAD might not only provide detection of COPD 
at its early stage but also differentiate the functional severity 
among heterogenous COPD phenotype by the assessment 
of regional association with PFTs. Another study reported 
that current smoker with regional air trapping tends to have 
less emphysema and better lung function than those with-
out [16]. More studies have hypothesized that small airway 
disease might be a precursor to emphysema [7, 18, 24]. As 
a result, we extend our previous work of emphysema on 
inspiratory CT to include fSAD on expiratory CT, in order 
to provide better functional correlation. Our findings of the 
better correlation between combined LAV%Emph950+fSAD and 
FEV1/FVC% support our hypothesis that emphysema and 
air-trapping are complementary to each other in association 
with airflow limitation.

The current target lobe selection in BLVR is based on 
densitometric data on inspiratory CT scans. In the work 
of Kloth et al. [25, 26], the cluster analysis of LACs rep-
resenting connected voxels of HU values under -950 was 
conducted using Pulmo 3D software (Siemens Health-
care). Unlike the fraction of density integrated into this 
study, Kloth et al. categorized the LACs of inspiratory CT 
in four empirical volume clusters to visually differentiate 
the homogeneous and heterogeneous of the emphysema 
phenotypes. Studying the treatment response of BLVR’s 
endobronchial coiling, they found that the emphysema 
phenotypes of the target lobe had no significant impact on 

Fig. 4  First row: left is inspiratory CT, the center is the original 
expiratory CT, right is the co-registered result of expiratory CT. Sec-
ond row: left is the vascular tree rendering of inspiratory CT, and 
center is the expiratory CT. The visual inspection shows extensive 
pruning in lower left lobes and relatively mild pruning in lower right 
lobes. Third row: Red color marks the emphysema regions (HU-950), 
green color marks the normal regions, yellow marks the air-trapping 
of expiratory CT, distinguished from emphysema of inspiratory CT 
using technique of parametric response map (PRM). The fourth row 
is the result of second-row using low attenuation clusters. Fifth row: 
left is the visualization result of PRM in a three-dimensional model, 
the center is the mapping of the PRM on HU values of inspiratory 
CT, right is the result of regional functional prediction mark on the 
grids, which has blue color as the most severe candidates for the tar-
get lobes
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the outcome [26]. However, it has to be considered that 
determining the emphysema heterogeneity in our study 
is more than qualitative analysis. Lacking the objective 
image descriptor for emphysema phenotypes with patho-
physiological meaning, we pursue the regional COPD 
severity with the functional prediction from the composi-
tions of the LADs.

The proposed predicting model for airflow limitation 
using low attenuation data on respiration CT has shown a 
remarkably strong correlation with statistical significance. 
Although the emphysematous destruction might be caused 
by more than one phenotype, making it more difficult to 
identify the disease trajectory, the longitudinal changes 
using the proposed model should be studied to provide 
clinical insight and utilization.

We are aware of the limitations of this retrospective 
study. We note that the major limitation is the number of 
subjects included in the study, particularly those at GOLD 
stage 4. Secondly, the study does not include the meas-
urement of airway wall thickness, although it has been 
shown to have an association with lung function only in 
CLE [20]. Another limitation, as well as the future work of 
this study, is the co-registration of inspiratory and expira-
tory CT. The transition of LACs in respiration has been 
studied previously to assess the expansion and collapse of 
the LACs [10, 27, 28]. Future studies will extend the util-
ity of LACs localization and qualification to distinguish 
emphysema subtypes.

Conclusions

In conclusion, the pattern of lung destruction revealed 
in the low attenuation clusters (LACs) of co-registered 
CT images has a direct impact on the lung functions. The 
result of analyzing PFT and LAV% correlation, which is 
also supported by other studies, shows that LAV%AirT on 
expiratory CT has a better association than LAV%Emph 
on inspiratory with spirometry measurements. We have 
extended the analysis and showed the appreciated correla-
tion contributed by combing both fSAD on expiratory CT 
and emphysema on inspiratory CT. On top of the PFT cor-
relational analysis, in the categorical analysis of low atten-
uation volume percentage (LAV%) at a different GOLD 
stage, we have shown that only patients suffering from 
severe COPD have a moderate correlation with LAV% 
on inspiratory CT. The heterogeneity of the disease phe-
notype is thus evidently affecting the functional outcome 
measured by PFT. After collecting more than 8 million 
LACs from 100 subjects, the cluster analysis divides the 
LACs into 10 scales according to the occupying fractions. 
The percentage occupying the parenchyma by each LAC 
can be seen as a fraction of total low attenuation density 
(LAD). The distribution of lung function in each LAD has 
shown that the size of LACs has a non-linear relationship 
with lung function. Particularly, the subjects with medium-
sized LACs tend to have weaker lung function than those 

Fig. 5  Scatter plot of LAV%AirT using HU-856 threshold on expiratory CT and LAV%Emph950 + fSAD using classification results of PRM. The 
result has shown a linear relationship in LAV%
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with diffusive lesions which form into much larger LACs. 
Furthermore, these LACs are distributed across the entire 
lung, and their spatial information also has a functional 
contribution to the disease. Together with the size and the 
location of LACs, the heterogeneity of emphysema and 
fSAD can be generalized by the total volume of each LAD 
category in upper and lower lobes. Utilizing the derived 
predictive modeling of airflow limitation, we are able to 
achieve a much stronger correlation between CT image 
predictors and PFT measurements. The low attenuation 
density distribution was furtherly incorporated into the 
BPRM to show a promising result in identifying regional 
COPD severity for the treatment planning of BLVR.
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