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Antibiotic resistance in human bacterial pathogens and commensals is threatening our
ability to treat infections and conduct common medical procedures. As novel antibiotics
are discovered and marketed it is important that we understand how resistance to them
may arise and know what environments may act as reservoirs for such resistance genes.
In this study a tetracycline and tigecycline resistant clone was identified by screening a
human saliva metagenomic library in Escherichia coli EPI300 on agar containing 5 µg/ml
tetracycline. Sequencing of the DNA insert present within the tetracycline resistant clone
revealed it to contain a 7,765 bp fragment harboring novel ABC half transporter genes,
tetAB(60). Mutagenesis studies performed on these genes confirmed that they were
responsible for the tetracycline and tigecycline resistance phenotypes. Growth studies
performed using E. coli EPI300 clones that harbored either the wild type, the mutated,
or none of these genes indicated that there was a fitness cost associated with presence
of these genes, with the isolate harboring both genes exhibiting a significantly slower
growth than control strains. Given the emergence of E. coli strains that are sensitive
only to tigecycline and doxycycline it is concerning that such a resistance mechanism
has been identified in the human oral cavity.
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INTRODUCTION

Tetracyclines are a group of broad spectrum antibiotics that have recently faced a reduction in
clinical use due to the increase in prevalence of tetracycline resistance (Chopra and Roberts, 2001;
Bishburg and Bishburg, 2009). In the UK tetracyclines are the most sold antibiotic for animal
use and represent 10% of prescribed antibiotics for human clinical use. This widespread use of
tetracyclines exerts a selection pressure on microorganisms to maintain tetracycline resistance
genes (Roberts, 2003; Martinez, 2009; Wu et al., 2010). Resistance is mainly attributed to the
production of efflux pumps, ribosomal protection proteins (RPPs) that prevent tetracycline binding
to the ribosome, and less often, tetracycline degrading enzymes (Aminov et al., 2002; Connell et al.,
2003; Yang et al., 2004; Forsberg et al., 2015).

Although resistance to this group of antibiotics is prevalent they are still used in the treatment
of some human infections, including Chlamydia infections and some eye infections such as
trachoma (Hu et al., 2010; Dukers-Muijrers et al., 2015). Tigecycline is a novel semi-synthetic
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derivative of tetracycline and the first of the glycylcyclines.
It contains a bulky N,N-dimethylglycylamido side group that
allows it to overcome RPP and efflux mechanisms of resistance
to earlier generation precursors such as tetracycline (Someya
et al., 1995; Olson et al., 2006). Tigecycline is used in the
treatment of skin and abdominal infections as well as some
cases of community acquired pneumonia (Rubinstein and
Vaughan, 2005; Shen et al., 2015; Van Berkel et al., 2016).
It has been shown that tetracycline resistance genes can
obtain mutations that broaden the activity of their products
to new tetracycline derivatives (Linkevicius et al., 2015). It is
important that we understand the mechanisms of resistance
to our current generation of tetracyclines in order for us to
identify environments that may harbor genes that could confer
resistance to novel tetracyclines, including those that are still in
development.

The microbiota of the human oral cavity constitutes a
reservoir of tetracycline resistance genes. RPP genes such
as tet(M) are the most abundant tetracycline resistant genes
in bacteria of the oral cavity (Villedieu et al., 2003; Seville
et al., 2009). Tetracycline efflux genes such as major facilitator
superfamily (MFS) exporters including tet(L) and the ATP
Binding Cassette (ABC) transporter tetAB(46) have also been
detected in bacteria in the oral cavity (Lancaster et al., 2005;
Seville et al., 2009; Warburton et al., 2013).

ABC transporters are a functionally and structurally diverse
family of proteins. They may comprise a single peptide,
four peptides or two half transporters. Bacterial half ABC
transporters typically contain a transmembrane domain (TMD)
and a highly conserved nucleotide binding domain (NBD).
Functional dimeric ABC transporters are composed of two
half ABC transporter subunits each contributing a TMD
spanning the membrane to form a substrate channel (Biemans-
Oldehinkel et al., 2006; Dawson and Locher, 2006). The two
NBDs interact to form the ABC of the transporter at the
cytoplasmic face of the membrane that can bind two ATP
molecules (Jones and George, 1999). It is here that ATP
binding and hydrolysis triggers conformational changes in the
substrate channel (Hollenstein et al., 2007). Cycles of ATP
binding and hydrolysis allow the substrate channel to alternate
between being open to the cytoplasm for substrate binding
and open to the cells external environment or periplasm
for substrate efflux (Higgins, 2001; Hellmich et al., 2012).
ABC transporters that confer multidrug resistance (MDR)
and biocide resistance to bacteria including human pathogens
have been described such as YheH/I, LmrCD, PatAB and
EfrAB from Bacillus subtilis, Lactococcus lactis, Streptococcus
pneumoniae and Enterococcus faecalis, respectively (Lee et al.,
2003; Lubelski et al., 2004; Torres et al., 2009; Baylay et al.,
2015).

The aim of this study was to identify the gene(s) conferring
resistance in a tetracycline and tigecycline resistant clone that
was identified from a human saliva metagenomic library in
Escherichia coli. Two genes from the clone, tetA(60) and tetB(60)
were found to encode for two half transporter proteins which
were shown to be responsible for the observed antibiotic
resistance phenotype and reduced fitness.

MATERIALS AND METHODS

Strains and Culture Conditions
The strains used in this study are listed in Table 1. E. coli
EPI300 strains were cultured in Luria-Bertani broth (LB; Sigma-
Aldrich R©) and LB agar (LA; Life TechnologiesTM) at 37◦C with
shaking at 200 rpm for liquid culture. When antibiotic selection
was required the media was supplemented with chloramphenicol
(12.5 µg/ml; Sigma-Aldrich R©) and tetracycline (5 µg/ml; Sigma-
Aldrich R©). Mueller Hinton (MH; Sigma-Aldrich R©) agar was used
in disk diffusion assays.

Sample Collection and Metagenomic
DNA Extraction
Saliva samples were collected from 11 healthy individuals who
had not taken antibiotics within the previous 3 months. Saliva
was expectorated into sterile tubes (approximately 5 ml per
individual) and samples were pooled. Metagenomic DNA was
extracted in 1.5 ml aliquots using a modified protocol of the
Gentra Puregene Yeast/Bact. Kit (Qiagen) as previously described
(Seville et al., 2009). Ethical approval to collect human saliva from
volunteers was granted by the UCL Research Ethics Committee
(Project ID Number 5017/001).

Creation of a Metagenomic Library
Saliva metagenomic DNA was partially digested using HindIII,
ligated into pCC1BAC and transformed into E. coli EPI300 as
described previously (Seville et al., 2009).

After transformation, cells were recovered in SOC media (New
England Biolabs R©), cultured on LA containing chloramphenicol,
0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG;
Promega©) and 40 µg/ml 5-bromo-4-chloro-3-indolyl-β-D-
galactopyranoside (X-gal; Promega©) for 16 h. White clones
were cultured in LB with chloramphenicol in individual wells of
96-well plates at 37◦C for 16 h. The cultures were then stored at
−80◦C in 20% glycerol.

Screening of Metagenomic Library and
Resistant Clone Isolation
Approximately 27,000 clones of the metagenomic library were
screened for tetracycline resistance by plating the library onto LA
with chloramphenicol (12.5 µg/ml) and tetracycline (5 µg/ml)
and incubating them at 37◦C for 16 h. A tetracycline resistant
clone, PS9, was selected for further study.

DNA Sequencing, Analysis and
Annotation
A list of the primers used in this study is detailed in
Supplementary Table S1. Sequencing of the BAC clone in PS9
was accomplished using 454 sequencing as described previously
(Card et al., 2014). Sequencing of subclones and mutants
was conducted using primer extension Sanger sequencing by
Beckman Coulter Genomics Inc. Contigs were assembled using
SeqMan Pro (Lasergene software, DNASTAR, Madison, WI,
USA) and sequence gaps were closed using PCR and Sanger
sequencing (Sanger et al., 1977). Sequences were analyzed using
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TABLE 1 | Bacterial strains, plasmids and constructs used in this study.

Name Information Source

Vectors pCC1BAC Chloramphenicol resistance marker,
inducible to multicopy in E. coli EPi300

Epicentre R© CopyControlTM

pHSG396 Chloramphenicol resistance marker Takara Bio©

Constructs pCC1BAC::PS9 pCC1BAC containing 7,765 bp
metagenomic DNA insert

This study

pHSG396::tetA(60) pHSG396::tetA(60) This study

pHSG396::tetB(60) pHSG396::tetB(60) This study

pHSG396::tetAB(60) pHSG396::tetAB(60) This study

pHSG396::tetB(60)1tetA(60) pHSG396::tetB(60)1tetA(60) This study

pHSG396::tetA(60)1tetB(60) pHSG396::tetA(60)1tetB(60) This study

Bacterial Strains E. coli EPI300 Electrocompetent, inducible trfA gene
for pCC1BAC copy number control

Epicentre R© CopyControlTM

E. coli::pCC1BAC E. coli EPI300::pCC1BAC P. Warburton, Eastman Dental
Institute

E. coli::pHSG396 E. coli EPI300::pHSG396 This study

PS9 E. coli EPI300::[pCC1BAC::PS9] This study

E. coli::pHSG396tetA(60) E. coli EPI300::[pHSG396::tetA(60)] This study

E. coli::pHSG396tetB(60) E. coli EPI300::[pHSG396::tetB(60)] This study

E. coli::pHSG396tetAB(60) E. coli EPI300::[pHSG396::tetAB(60)] This study

E. coli::pHSG396tetB(60)1tetA(60) E. coli
EPI300::[pHSG396::tetB(60)1tetA(60)]

This study

E. coli::pHSG396tetA(60)1tetB(60) E. coli
EPI300::[pHSG396::tetA(60)1tetB(60)]

This study

the tools on NCBI. Two open reading frames (ORFs) encoding
hypothetical ABC half transporter genes were named tetA(60)
and tetB(60) by the Stuart B. Levy lab according to tetracycline
resistance gene nomenclature guidelines (Levy et al., 1999).
The sequences for tetA(60) and tetB(60) were submitted to
GenBank (accession numbers KX000272.1and KX000273.1). The
full 7,765 bp insert sequence was also submitted to Genbank
(accession number KX887332; Supplementary Figure S1C). The
putative amino acid sequences of TetA(60) and TetB(60) were
compared to other phenotypically validated tetracycline and
multidrug ABC transporter protein sequences from Gram-
positive bacteria [TetAB(60), YheH/I, LmrCD, PatAB and EfrAB]
by alignment using Clustal Omega at http://www.ebi.ac.uk/
Tools/msa/clustalo/.

Subcloning
Primers used for subcloning are detailed in Supplementary Table
S1. Regions of PS9 were amplified using primer pairs that
introduced flanking HindIII and BamHI sites. The amplified
fragments were ligated into pHSG396 and transformed into
E. coli EPI300.

Mutagenesis
Primers used for mutagenesis are listed in Supplementary Table
S1. In frame deletions of the Walker-A motifs of tetA(60) and
tetB(60) were made using the NEB Q5 Site Directed Mutagenesis
kit. Two pairs of non-overlapping primers were designed to
amplify the pHSG396 vector containing both transporter genes.
The first primer pair amplified pHSG396::tetAB(60) without
a 69 bp region containing the tetA(60) Walker-A motif,

keeping tetB(60) full length. The second primer pair amplified
pHSG396::tetAB(60) without a 57 bp region containing the
Walker-A motif of tetB(60) keeping tetA(60) intact. The resulting
PCR products were circularized and transformed into E. coli
EPI300.

Disk Diffusion Assays
The susceptibilities of E. coli EPI300, E. coli::pHSG396 and
E. coli::pHSG396tetAB(60) to various antibiotics (cefotaxime,
ceftazidime metronidazole, neomycin, ciprofloxacin, nalidixic
acid, gentamicin, amikacin, amoxicillin/clavulanate and
trimetoprim/sulfametoxazole and erythromycin) were evaluated
using the disk diffusion assay according to BSAC guidelines
(Andrews, 2001). The antibiotic disks and concentrations used
in this study are listed in Table 2.

Minimum Inhibitory Concentration (MIC)
Assays
Minimum Inhibitory Concentrations of tetracycline,
minocycline, and tigecycline were determined using the
microbroth dilution method according to European Committee
on Antimicrobial Susceptibility Testing (EUCAST) guidelines
(EUCAST, 2015). For MIC determination, overnight cultures
grown in LB were adjusted to an OD600 of 0.1; 10 µl of the
adjusted overnight cultures were used to inoculate 90 µl
fresh LB containing varying concentrations of tetracycline
(0.25–32 µg/ml), minocycline (0.25–10 µg/ml) or tigecycline
(0.25–10 µg/ml) in a 96 well plate format. These plates were
incubated overnight at 37◦C with shaking at 200 rpm. Growth
was determined by spectrophotometry at OD600 and the MIC
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TABLE 2 | List of antibiotic disks used.

Antibiotic
(Concentration)

Concentration

Cefotaxime 30 µg

Metronidazole 50 µg

Neomycin 10 µg

Ciprofloxacin 1 µg

Nalidixic acid 30 µg

Gentamicin 10 µg

Amoxicillin/Clavulanate 20 µg/10 µg

Trimetoprim/Sulfametoxazole 23.75 µg/1.25 µg

Amikacin 30 µg

Tetracycline 10 µg

Ceftazidime 30 µg

Erythromycin 5 µg

was determined as the lowest concentration of antibiotic that
inhibited growth.

Growth Curves
Overnight cultures of E. coli::pHSG396, E. coli::pHSG396tet-
AB(60), E. coli::pHSG396tetB(60)1tetA(60) and E. coli::pHSG-
396tetA(60)1tetB(60) grown in LB with chloramphenicol
(12.5 µg/ml) and tetracycline (5 µg/ml; when required) were
adjusted to an OD600 of 0.05 in LB and chloramphenicol
(12.5 µg/ml). Cell suspensions were grown at 37◦C with shaking
at 200 rpm for 7 h and their cell density was measured every
30 min using spectrophotometry (OD600). E. coli::pHSG396tet-
AB(60)was also grown in LB and chloramphenicol (12.5 µg/ml)
with tetracycline (5 µg/ml) to determine if the presence of this
antibiotic affected the clones. Growth rates were measured for
each clone as the slope of the line between two time points on
the growth curve. The equation Nt =N∗0(1 + r)t, was used to
calculate the maximum growth rate between 60 and 240 min.
Technical triplicates and biological triplicates were conducted for
all growth curves and growth rate calculations.

Statistical Analysis
Standard deviations were calculated for each clone using the data
obtained from the growth curve assays, which included nine data
points encompassing biological and technical replicates. Standard
deviations were used as error bars in Figure 2 for comparison
of the mean OD600 for each clone. Two tailed t-tests with 95%
confidence intervals were used to determine the significance of
differences between clones and the control (E. coli::pHSG396) in
terms of OD600 at 420 min and growth kinetics.

RESULTS

A library of 27,000 clones was constructed from the pooled
human saliva of 11 individuals. Screening of this metagenomic
library for tetracycline resistant clones resulted in the isolation
of two of clones capable of growing on tetracycline (5 µg/ml),
including PS9.

Analysis of the 7,765 bp PS9 insert revealed it to have
nucleotide similarity along its entire length with Streptococcus sp.
263_SSPC (accession: GCA_001071995.1, 98% cover and 90%
identity) and Granulicatella adiacens ATCC 49175 (accession:
NZ_ACKZ00000000, 94% cover and 92% identity). The
alignments also identified an inversion in the PS9 insert between
1,600 bp and 1,789 bp (Supplementary Figures S1A,B). BlastX
analysis of the insert predicted it to contain five putative ORFs
(Figure 1A). The hypothetical products of the five ORFs had a
homolog with >90% amino acid identity from Streptococcus sp.
263_SSPC and G. adiacens ATCC 49175. Of the ORFs identified,
three encoded a UDP-galactose mutase, sulfurtransferase and
amidohydrolase. The remaining ORFs were predicted to encode
two half ABC transporters that were named TetA(60) and
TetB(60) as their putative amino acid sequences had less than
80% similarity to any other tetracycline resistance protein amino
acid sequence and therefore fulfilled the criteria for a new
tetracycline resistance gene. Interestingly, in the Streptococcus sp.
263_SSPC genome sequence two transposase genes were found
634 bp and 6,196 bp upstream of the UDP-galactose mutase.
No such genes were identified in the G. adiacens ATCC 49175
genome. Clustal Omega alignments of the putative amino acid
sequences of TetA(60) and TetB(60) to characterized antibiotic
resistance heterodimeric ABC transporters showed that they
were more closely related to TetA(46) and TetB(46) (39.27%
and 42.28% identity, respectively) and YheH and YheI (40.93%
and 46.61%, respectively). TetAB(60) were less related to the
MDR ABC transporters EfrAB, PatAB and LmrCD of E. faecalis,
S. pneumoniae and L. lactis, respectively (≤34.46%), Table 3.

Each putative ABC half transporter peptide was predicted to
be 579 amino acids and both contained a predicted NBD and a
TMD, which are hallmarks of ABC transporters. Additionally,
there is a 4 bp overlap of the genes, with the start codon of
tetB(60) being contained within tetA(60), although the genes are
in different reading frames.

To determine if these two genes were responsible for the
observed tetracycline resistance phenotype of PS9, tetA(60)
and tetB(60) were individually and jointly subcloned into
E. coli EPI300 using the pHSG396 cloning vector. Only
E. coli::pHSG396tetAB(60) grew on 5 µg/ml of tetracycline,
showing that both tetA(60) and tetB(60) were required for the
tetracycline resistance.

In order to ascertain whether the gene products function
as a heterodimeric ABC transporter that confers resistance to
tetracycline, a 69 and 57 base pair deletion was made to remove
the Walker A motif of the NBD from either tetA(60) or tetB(60),
respectively (Figure 1B). Both mutants, E. coli::pHSG396
tetB(60)1tetA(60) and E. coli::pHSG396tetA(60)1tetB(60) were
susceptible to tetracycline. This confirmed that the ABC
transporter activity of these gene products is responsible for the
tetracycline resistance in PS9 and the E. coli::pHSG396tetAB(60),
Table 4.

Using the broth dilution method, the MIC of tetracycline for
E. coli EPI300, E. coli::pHSG396, E. coli::pHSG396tetAB(60),
E. coli::pHSG396tetB(60)1tetA(60) and E. coli::pHSG396
tetA(60)1tetB(60) was determined (Table 4). The MIC of
tetracycline for E. coli::pHSG396tetAB(60) was found to be
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FIGURE 1 | (A) Diagram depicting the position and orientation of the ORFs present in the 7,765 base pair insert of PS9 according to BlastX. The 3, 703 base pair
region containing tetAB(60) that were subcloned to create pHSG396::tetAB(60) is marked by dashed lines. The positions of the Walker A motifs that were deleted to
make pHSG396::tetB(60)1tetA(60) and pHSG396::tetA(60)1tetB(60) are marked by vertical double headed arrows and the inversion in the sequence is indicated by
vertical dashed red lines. (B) The nucleotide sequences of the deleted regions are given above with the Walker A motif of each gene underlined and translated.

TABLE 3 | Alignment of TetAB(60) to other antibiotic resistance ABC transporters.

Percentage similarity

Source ABC half transporter TetA(60) TetB(60)

Human saliva metagenomic library (this study) TetA(60) 100% 24.69%

TetB(60) 24.69% 100%

Bacillus subtilis (Torres et al., 2009) YheH 40.93% 27.11%

YheI 24% 46.61%

Streptococcus australis (Warburton et al., 2013) TetA(46) 39.27% 24.16%

TetB(46) 24.69% 42.28%

Enterococcus faecalis (Lee et al., 2003) EfrA 28.62% 27.37%

EfrB 28.96% 34.46%

S. pneumoniae (Baylay et al., 2015) PatA 25.9% 26.69%

PatB 23.77% 29.68%

Lactococcus lactis (Lubelski et al., 2004) LmrC 27.69% 26.5%

LmrD 25.14% 30.07%

32 µg/ml. The MICs for the mutants and the controls strains
were 16-fold lower at 2 µg/ml. To determine if tetAB(60) was able
to confer resistance to later generation tetracycline derivatives,
MIC assays were conducted using minocycline and tigecycline.
The MIC of minocycline for all strains and clones was 1 µg/ml.
The MIC of tigecycline for E. coli::pHSG396tetAB(60) was
16-fold higher than the control and mutant strains at 8 µg/ml,
which was above the clinical break point for Enterobacteriaceae
(0.5 µg/ml).

Disk diffusion assays were used to discern the spectrum
of resistance for this transporter. E. coli::pHSG396tetAB(60)

was less sensitive to tetracycline but equally sensitive to
cefotaxime, ceftazidime, metronidazole, neomycin, ciprofloxacin,
nalidixic acid, gentamicin, amikacin, amoxicillin/clavulanate
and trimetoprim/sulfametoxazole as E. coli EPI300 and
E. coli::pHSG396. E. coli EPI300 was intrinsically resistant to
erythromycin which has been described previously and attributed
to AcrAB-TolC mediated efflux and membrane impermeability
(Vaara, 1993; Chollet et al., 2004).

We observed, when it was first isolated, that PS9 grew slower
and formed smaller colonies than E. coli::pCC1BAC even in the
absence of tetracycline in the growth media; this phenotype
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TABLE 4 | MICs of tetracycline antibiotics for E. coli::pHSG396tetAB(60)
and mutant strains.

Strain Tetracycline
(µg/ml)

Minocycline
(µg/ml)

Tigecycline
(µg/ml)

E. coli::pHSG396 2 1 0.5

E. coli::pHSG396tetAB(60) 32 1 8

E. coli::pHSG396tetB(60)1tetA(60) 2 1 0.5

E. coli::pHSG396tetA(60)1tetB(60) 2 1 0.5

was also observed for the E. coli::pHSG396tetAB(60) subclone.
Furthermore, it was noted that the E. coli::pHSG396tetB(60)-
1tetA(60) and E. coli::pHSG396tetA(60)1tetB(60) mutants
did not have such a large growth defect. Growth curves
revealed that although there were significant differences between
E. coli::pHSG396 and E. coli::pHSG396tetA(60)1tetB(60)
maximum growth rates (0.993 ± 0.05 and 0.917 ± 0.05,
respectively; p = 0.005) there was no significant difference in
their OD600 of cultures at 7 h (1.65 ± 0.08 and 1.565 ± 0.16;
p= 0.1807) when grown in the absence of tetracycline (Figure 2).

Compared to E. coli::pHSG396, E. coli::pHSG396tetB(60)1-
tetA(60) and E. coli::pHSG396tetAB(60) reached lower OD600
at 7 h when they were grown in the absence of tetracycline
(0.983 ± 0.03, 0.733 ± 0.01, respectively, p < 0.0001).
Additionally, when grown in the presence of tetracycline,
E. coli::pHSG396tetAB(60) reached an even lower OD600 at
7 h (0.543 ± 0.04, p < 0.0001). Whilst the maximum growth
rates of E. coli::pHSG396tetB(60)1tetA(60) grown without
tetracycline and E. coli::pHSG396tetAB(60) grown without or
with tetracycline were not significantly different from each other
(0.702 ± 0.06, 0.68 ± 0.03 and 0.692 ± 0.09, respectively;
p = 0.435 to 0.879), they were 1.14-1.46 fold lower than
the maximum growth rate of E. coli::pHSG396 grown without
tetracycline (p < 0.0001). We therefore suggest that there is

a fitness cost due to the activity of TetAB(60) rather than the
carriage of the plasmid itself and that TetB(60) contributes more
to this fitness cost than TetA(60).

DISCUSSION

There has been a resurgence in the use of tetracyclines
in human therapy due to the recent development of a
number of semisynthetic derivatives of the antibiotic that are
efficacious against antibiotic resistant pathogens (Rubinstein
and Vaughan, 2005; Anstead et al., 2014; Shen et al., 2015;
Lin et al., 2016; Van Berkel et al., 2016). Tigecycline is
the first of this new generation of tetracyclines to enter
clinical use, being effective against MDR pathogens including
carbapenem and colistin resistant microorganisms and those
expressing specific tetracycline efflux systems and RPPs (Fluit
et al., 2005; Cai et al., 2011). However, it is worrisome
that resistance to tigecycline has already been described
and associated with multidrug efflux systems and ribosomal
mutations (Villa et al., 2014; Zhong et al., 2014; Lupien et al.,
2015).

In this study we characterized a clone, PS9, isolated from a
human oral saliva metagenomic library that exhibited high levels
of resistance to tetracycline and tigecycline. BlastN alignments
of the clone with Streptococcus sp. 263_SSPC and G. adiacens
ATCC 49175 revealed the PS9 insert to have 90% and 92%
nucleotide similarity to these species, respectively, indicating
a probable Gram-positive origin for the insert. Streptococcus
spp. are predominant in the oral cavity although to the best
of our knowledge Streptococcus sp. 263_SSPC has not been
identified (Segata et al., 2012). Granulicatella spp. including
G. adiacens are also abundant in the oral cavity, typically
inhabiting the mucosa (Aas et al., 2005). Tetracycline resistance
mediated by Tn916 encoded tet(M) has been described for

FIGURE 2 | The above graph depicts growth curves for E. coli::pHSG396, E. coli::pHSG396tetB(60)1tetA(60) and E. coli::pHSG396tetA(60)1tetB(60)
grown in LB and chloramphenicol for 7 h. It also shows the growth curve for E. coli::pHSG396tetAB(60) grown in LB and chloramphenicol with and without
tetracycline to determine how the antibiotic effected the clone’s growth. P-values for OD600 at 7 h were calculated from biological triplicate OD600 measurements at
420 min for each clone compered to E. coli::pHSG396 are indicated beside each growth curve.
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oral Streptococcus and Granulicatella spp. (Lancaster et al.,
2005). Additionally, MFS and ABC transporter genes conferring
resistance to tetracyclines have also been identified in oral
Streptococcus spp. including tet(L) and tetAB(46), respectively
(Chen et al., 2013; Warburton et al., 2013). Although tetracycline
resistance has been observed in Granulicatella spp., minimal
characterisation studies have been conducted (Zheng et al., 2004;
De Luca et al., 2013). Although Streptococcus and Granulicatella
spp. are abundant in the oral cavity, it is not known how
prevalent tetAB(60) is in the oral cavity and further work beyond
the scope of our characterisation study is required to address
this.

Two transposase genes were located up stream of the UDP-
galactose mutase gene in Streptococcus sp. 263_SSPC, however, it
is unknown if these transposases are found in the host genome
of the PS9 sequence or if they are capable of transposition of
tetAB(60).The alignments also identified an inverted region in
the PS9 insert when compared to the Streptococcus sp. 263_SSPC
and G. adiacens ATCC 49175 genomes which may have resulted
from a DNA breakage followed by repair or a transposition event.

Analysis of the insert revealed it contained five ORFs,
predicted to encode a putative UDP-galactose mutase, a
sulfurtransferase, an amidohydrolase and two ABC half
transporters. Each predicted protein had amino acid sequences
with high similarity (>90% identity) to proteins from
Streptococcus sp. 263_SSPC and G. adiacens. Numerous
heterodimeric ABC transporters capable of conferring
antibiotic resistance have been described, including the
MDR transporters EfrAB of E. faecalis (Lee et al., 2003),
PatAB from S. pneumoniae (Baylay et al., 2015), LmrCD
from L. lactis (Lubelski et al., 2004) and the recently
characterized EfrCD of E. faecalis (Hurlimann et al., 2016).
These transporters have been shown to confer resistance to
fluoroquinolones, tetracyclines and biocides among other
antimcrobials. Alignment of the putative amino acid sequences
of TetAB(60) to other antibiotic resistance heterodimeric ABC
transporters showed that they were most closely related to
TetAB(46) and YheH/I and less so to the MDR ABC transporters
EfrAB, PatAB and LmrCD. As TetAB(46) has been shown
to be most closely related to YheH/I this suggested that
TetAB(60) was also tetracycline specific (Warburton et al.,
2013).

We showed that both tetA(60) and tetB(60) were required
to confer tetracycline resistance in E. coli EPI300, suggesting
that the product of these genes formed a heterodimeric ABC
transporter with each gene product containing a TMD and NBD
as revealed by BlastX (Dawson and Locher, 2006). Previous
studies have used E. coli as a host to characterize Gram-positive
antimicrobial ABC transporters including EfrAB from E. faecalis
and LmrA from L. lactis (Lee et al., 2003; Achard-Joris et al.,
2005). As E. coli::pHSG396tetAB(60) did not contain the inverted
sequence it is likely that this sequence does not affect expression
of tetAB(60).

Walker A motifs are found in many ATP utilizing enzymes
including ABC transporters and are required for binding and
stabilizing ATP (Ramakrishnan et al., 2002). Deletion of these
motifs from ATP transporters has been shown to result in a

loss of function (Warburton et al., 2013). Individual in-frame
deletions of these motifs from either tetA(60) or tetB(60) led to
a loss of the tetracycline and tigecycline resistance phenotype
providing further evidence that the products of these genes form
a heterodimeric ABC transporter.

Compared to E. coli::pHSG396, E. coli::pHSG396tetAB(60)
was 16-fold more resistant to tetracycline (MIC of 32 µg/ml)
and tigecycline (MIC of 8 µg/ml). Although E. coli::pHSG396-
tetAB(60) showed levels of resistance to tetracycline and
tigecycline beyond the EUCAST breakpoints, it was as susceptible
to minocycline as E. coli::pHSG396, indicating that minocycline
is not a substrate for this transporter (Olson et al., 2006; Ramos
et al., 2009). Efflux mediated tigecycline resistance has been
described previously in Pseudomonas aeruginosa and Klebsiella
pneumoniae, being attributed to the activity of an ABC and a
resistance nodulation division (RND) transporter, respectively
(Dean et al., 2003; He et al., 2015; McDaniel et al., 2016).
TetAB(46) was also shown to confer low tigecycline resistance in
S. australis (Warburton et al., 2013).

TetAB(60) appeared to be specific for tetracycline and tige-
cycline as disk diffusion assays demonstrated E. coli::pHSG396
to be as susceptible as E. coli::pHSG396tetAB(60) to cefotaxime,
ceftazidime, metronidazole, neomycin, ciprofloxacin, nalidixic
acid, gentamicin, amikacin, amoxicillin/clavulanate and
trimetoprim/sulfametoxazole and erythromycin, providing
further evidence for the tetracycline specificity of the ABC
transporter.

The observed fitness cost associated with tetAB(60) was not
observed in either mutant as although E. coli::pHSG396tetA-
(60)1tetB(60) had a lower maximum growth rate than the
control it had a comparable final OD600 to E. coli::pHSG396 and
E. coli::pHSG396tetB(60)1tetA(60) exhibited faster growth
than E. coli::pHSG396tetAB(60). This indicated that the growth
defect was a result of TetAB(60) activity rather than from
maintenance of the plasmid. Additionally, as E. coli::pHSG-
396tetB(60)1tetA(60) grew less well than E. coli::pHSG396-
tetA(60)1tetB(60) it suggests that TetB(60) produces a greater
cost to the E. coli host than TetA(60).

CONCLUSION

We have identified two novel genes from the human oral
cavity that likely produce a heterodimeric ABC transporter,
TetAB(60). TetAB(60) specifically exports tetracycline and
tigecycline conferring high levels of resistance to these antibiotics
in an E. coli host. A limitation of this work is that we do not know
the prevalence of these genes in the human oral cavity. Further
work should be undertaken to survey its prevalence in various
niches, to determine how common these genes are, and their
possible clinical relevance for treating bacterial infections with
tetracycline derivatives. This work also shows that the human oral
cavity harbors unknown tetracycline resistance determinants in
the absence of any obvious selection pressure. There is potential
for these genes to be acquired by mobile genetic elements and
transferred to bacterial pathogens, which is particularly worrying
given the recent identification of a carbapenem and colistin
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resistant strains of E. coli some of which could only be inhibited
by doxycycline and tigecycline (Liu et al., 2016; Mediavilla et al.,
2016; Yao et al., 2016). However, the associated fitness cost of
tetAB(60) observed in E. coli may limit any possible fixation
following dissemination of the genes from their native host to
E. coli strains in the absence of a tetracycline or tigecycline
selective pressure.

AUTHOR CONTRIBUTIONS

LR contributed to the design of the experiments as well as to the
acquisition, analysis, interpretation of the data included in this
manuscript, wrote initial and revised drafts of the manuscript
and approves of the final manuscript being submitted and also
agrees to be accountable for the work detailed in the submitted
manuscript. AR conceived the project, contributed to the design
of experiments conducted throughout it, interpreted results and
contributed to the drafting and revising of the manuscript being
submitted and also approved the final draft of the manuscript and
agrees to be accountable for the work detailed in the submitted
manuscript. MA conceived the project, contributed to the design
and direction of experiments within it, interpreted results and
made revisions to the final manuscript, approved the manuscript

being submitted and also agrees to be accountable for the work
represented in the submitted manuscript.

FUNDING

LR was jointly funded by the Seedcorn Programme at the Animal
and Plant Health Agency and a UCL IMPACT studentship at
UCL.

ACKNOWLEDGMENT

We would like thank Mr. Supathep Tansirichaiya (UCL) for
providing us with the human saliva metagenomic DNA used in
this study and Dr. Philip J. Warburton (University of Plymouth)
for providing us with E. coli EPI300::pCC1BAC.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fmicb.
2016.01923/full#supplementary-material

REFERENCES
Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I., and Dewhirst, F. E. (2005). Defining

the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43, 5721–5732.
doi: 10.1128/JCM.43.11.5721-5732.2005

Achard-Joris, M., van den Berg van Saparoea, H. B., Driessen, A. J. M., and
Bourdineaud, J.-P. (2005). Heterologously expressed bacterial and human
multidrug resistance proteins confer cadmium resistance to Escherichia coli.
Biochemistry 44, 5916–5922. doi: 10.1021/bi047700r

Aminov, R. I., Chee-Sanford, J. C., Garrigues, N., Teferedegne, B., Krapac, I. J.,
White, B. A., et al. (2002). Development, validation, and application of PCR
primers for detection of tetracycline efflux genes of gram-negative bacteria.
Appl. Environ. Microbiol. 68, 1786–1793. doi: 10.1128/AEM.68.4.1786-1793.
2002

Andrews, J. M. (2001). BSAC standardized disc susceptibility testing method.
J Antimicrob Chemother. 48(Suppl. 1), 43–57. doi: 10.1093/jac/48.
2.322

Anstead, G. M., Cadena, J., and Javeri, H. (2014). Treatment of infections due
to resistant Staphylococcus aureus. Methods Mol. Biol. 1085, 259–309. doi:
10.1007/978-1-62703-664-1_16

Baylay, A. J., Ivens, A., and Piddock, L. J. (2015). A novel gene amplification causes
upregulation of the PatAB ABC transporter and fluoroquinolone resistance
in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 59, 3098–3108.
doi: 10.1128/AAC.04858-14

Biemans-Oldehinkel, E., Doeven, M. K., and Poolman, B. (2006). ABC transporter
architecture and regulatory roles of accessory domains. FEBS Lett. 580, 1023–
1035. doi: 10.1016/j.febslet.2005.11.079

Bishburg, E., and Bishburg, K. (2009). Minocycline–an old drug for a new
century: emphasis on methicillin-resistant Staphylococcus aureus (MRSA) and
Acinetobacter baumannii. Int. J. Antimicrob. Agents 34, 395–401. doi: 10.1016/j.
ijantimicag.2009.06.021

Cai, Y., Wang, R., Liang, B., Bai, N., and Liu, Y. (2011). Systematic review and
meta-analysis of the effectiveness and safety of tigecycline for treatment of
infectious disease. Antimicrob. Agents Chemother. 55, 1162–1172. doi: 10.1128/
AAC.01402-10

Card, R. M., Warburton, P. J., MacLaren, N., Mullany, P., Allan, E., and
Anjum, M. F. (2014). Application of microarray and functional-based screening

methods for the detection of antimicrobial resistance genes in the microbiomes
of healthy humans. PLoS ONE 9:e86428. doi: 10.1371/journal.pone.0086428

Chen, L., Song, Y., Wei, Z., He, H., Zhang, A., and Jin, M. (2013). Antimicrobial
susceptibility, tetracycline and erythromycin resistance genes, and multilocus
sequence typing of Streptococcus suis isolates from diseased pigs in China. J. Vet.
Med. Sci. 75, 583–587. doi: 10.1292/jvms.12-0279

Chollet, R., Chevalier, J., Bryskier, A., and Pagès, J.-M. (2004). The AcrAB-
TolC pump is involved in macrolide resistance but not in telithromycin
efflux in Enterobacter aerogenes and Escherichia coli. Antimicrob.
Agents Chemother. 48, 3621–3624. doi: 10.1128/AAC.48.9.3621-3624.
2004

Chopra, I., and Roberts, M. (2001). Tetracycline antibiotics: mode of
action, applications, molecular biology, and epidemiology of bacterial
resistance. Microbiol. Mol. Biol. Rev. 65, 232–260. doi: 10.1128/MMBR.65.2.
232-260.2001

Connell, S. R., Tracz, D. M., Nierhaus, K. H., and Taylor, D. E. (2003).
Ribosomal protection proteins and their mechanism of tetracycline resistance.
Antimicrob. Agents Chemother. 47, 3675–3681. doi: 10.1128/AAC.47.12.
3675-3681.2003

Dawson, R. J., and Locher, K. P. (2006). Structure of a bacterial multidrug ABC
transporter. Nature 443, 180–185. doi: 10.1038/nature05155

De Luca, M., Amodio, D., Chiurchiu, S., Castelluzzo, M. A., Rinelli, G.,
Bernaschi, P., et al. (2013). Granulicatella bacteraemia in children: two
cases and review of the literature. BMC Pediatr. 13:61. doi: 10.1186/1471-
2431-13-61

Dean, C. R., Visalli, M. A., Projan, S. J., Sum, P.-E., and Bradford, P. A.
(2003). Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas
aeruginosa PAO1. Antimicrob. Agents Chemother. 47, 972–978. doi: 10.1128/
AAC.47.3.972-978.2003

Dukers-Muijrers, N. H., van Liere, G. A., Wolffs, P. F., Den Heijer, C., Werner,
M. I., and Hoebe, C. J. (2015). Antibiotic use before chlamydia and gonorrhea
genital and extragenital screening in the sexually transmitted infection
clinical setting. Antimicrob. Agents Chemother. 59, 121–128. doi: 10.1128/aac.
03932-14

EUCAST (2015). Breakpoint Tables for Interpretation of MICs and Zone Diameters.
Version 5.0, 2015. Basel: European Committee on Antimicrobial Susceptibility
Testing. Available at: http://www.eucast.org

Frontiers in Microbiology | www.frontiersin.org 8 December 2016 | Volume 7 | Article 1923

http://journal.frontiersin.org/article/10.3389/fmicb.2016.01923/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fmicb.2016.01923/full#supplementary-material
https://doi.org/10.1128/JCM.43.11.5721-5732.2005
https://doi.org/10.1021/bi047700r
https://doi.org/10.1128/AEM.68.4.1786-1793.2002
https://doi.org/10.1128/AEM.68.4.1786-1793.2002
https://doi.org/10.1093/jac/48.2.322
https://doi.org/10.1093/jac/48.2.322
https://doi.org/10.1007/978-1-62703-664-1_16
https://doi.org/10.1007/978-1-62703-664-1_16
https://doi.org/10.1128/AAC.04858-14
https://doi.org/10.1016/j.febslet.2005.11.079
https://doi.org/10.1016/j.ijantimicag.2009.06.021
https://doi.org/10.1016/j.ijantimicag.2009.06.021
https://doi.org/10.1128/AAC.01402-10
https://doi.org/10.1128/AAC.01402-10
https://doi.org/10.1371/journal.pone.0086428
https://doi.org/10.1292/jvms.12-0279
https://doi.org/10.1128/AAC.48.9.3621-3624.2004
https://doi.org/10.1128/AAC.48.9.3621-3624.2004
https://doi.org/10.1128/MMBR.65.2.232-260.2001
https://doi.org/10.1128/MMBR.65.2.232-260.2001
https://doi.org/10.1128/AAC.47.12.3675-3681.2003
https://doi.org/10.1128/AAC.47.12.3675-3681.2003
https://doi.org/10.1038/nature05155
https://doi.org/10.1186/1471-2431-13-61
https://doi.org/10.1186/1471-2431-13-61
https://doi.org/10.1128/AAC.47.3.972-978.2003
https://doi.org/10.1128/AAC.47.3.972-978.2003
https://doi.org/10.1128/aac.03932-14
https://doi.org/10.1128/aac.03932-14
http://www.eucast.org
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-01923 December 2, 2016 Time: 15:36 # 9

Reynolds et al. Tetracycline and Tigecycline Efflux

Fluit, A. C., Florijn, A., Verhoef, J., and Milatovic, D. (2005). Presence of
tetracycline resistance determinants and susceptibility to tigecycline and
minocycline. Antimicrob. Agents Chemother. 49, 1636–1638. doi: 10.1128/aac.
49.4.1636-1638.2005

Forsberg, K. J., Patel, S., Wencewicz, T. A., and Dantas, G. (2015). The tetracycline
destructases: a novel family of tetracycline-inactivating enzymes. Chem. Biol.
22, 888–897. doi: 10.1016/j.chembiol.2015.05.017

He, F., Fu, Y., Chen, Q., Ruan, Z., Hua, X., Zhou, H., et al. (2015). Tigecycline
susceptibility and the role of efflux pumps in tigecycline resistance in KPC-
producing Klebsiella pneumoniae. PLoS ONE 10:e119064. doi: 10.1371/journal.
pone.0119064

Hellmich, U. A., Lyubenova, S., Kaltenborn, E., Doshi, R., van Veen, H. W.,
Prisner, T. F., et al. (2012). Probing the ATP hydrolysis cycle of the ABC
multidrug transporter LmrA by pulsed EPR spectroscopy. J. Am. Chem. Soc.
134, 5857–5862. doi: 10.1021/ja211007t

Higgins, C. F. (2001). ABC transporters: physiology, structure and mechanism–
an overview. Res. Microbiol. 152, 205–210. doi: 10.1016/S0923-2508(01)
01193-7

Hollenstein, K., Dawson, R. J., and Locher, K. P. (2007). Structure and mechanism
of ABC transporter proteins. Curr. Opin. Struct. Biol. 17, 412–418. doi: 10.1016/
j.sbi.2007.07.003

Hu, V. H., Harding-Esch, E. M., Burton, M. J., Bailey, R. L., Kadimpeul, J., and
Mabey, D. C. (2010). Epidemiology and control of trachoma: systematic review.
Trop. Med. Int. Health 15, 673–691. doi: 10.1111/j.1365-3156.2010.02521.x

Hurlimann, L. M., Corradi, V., Hohl, M., Bloemberg, G. V., Tieleman, D. P., and
Seeger, M. A. (2016). The Heterodimeric ABC Transporter EfrCD mediates
multidrug efflux in Enterococcus faecalis. Antimicrob. Agents Chemother. 60,
5400–5411. doi: 10.1128/AAC.00661-16

Jones, P. M., and George, A. M. (1999). Subunit interactions in ABC transporters:
towards a functional architecture. FEMS Microbiol. Lett. 179, 187–202. doi:
10.1111/j.1574-6968.1999.tb08727.x

Lancaster, H., Bedi, R., Wilson, M., and Mullany, P. (2005). The maintenance in the
oral cavity of children of tetracycline-resistant bacteria and the genes encoding
such resistance. J. Antimicrob Chemother. 56, 524–531. doi: 10.1093/jac/dki259

Lee, E.-W., Huda, M. N., Kuroda, T., Mizushima, T., and Tsuchiya, T. (2003).
EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis. Antimicrob.
Agents Chemother. 47, 3733–3738. doi: 10.1128/AAC.47.12.3733-3738.2003

Levy, S. B., McMurry, L. M., Barbosa, T. M., Burdett, V., Courvalin, P., Hillen, W.,
et al. (1999). Nomenclature for new tetracycline resistance determinants.
Antimicrob. Agents Chemother. 43, 1523–1524.

Lin, S. Y., Huang, C. H., Ko, W. C., Chen, Y. H., and Hsueh, P. R. (2016).
Recent developments in antibiotic agents for the treatment of complicated
intra-abdominal infections. Expert Opin. Pharmacother. 17, 339–354. doi: 10.
1517/14656566.2016.1122756

Linkevicius, M., Sandegren, L., and Andersson, D. I. (2015). Potential of
tetracycline resistance proteins to evolve tigecycline resistance. Antimicrob
Agents Chemother. 60, 789–796. doi: 10.1128/aac.02465-15

Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., et al. (2016).
Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in
animals and human beings in China: a microbiological and molecular biological
study. Lancet Infect Dis. 16, 161–168. doi: 10.1016/S1473-3099(15)00424-7

Lubelski, J., Mazurkiewicz, P., van Merkerk, R., Konings, W. N., and Driessen,
A. J. M. (2004). ydaG and ydbA of Lactococcus lactis encode a heterodimeric
ATP-binding cassette-type multidrug transporter. J. Biol. Chem. 279, 34449–
34455. doi: 10.1074/jbc.M404072200

Lupien, A., Gingras, H., Leprohon, P., and Ouellette, M. (2015). Induced tigecycline
resistance in Streptococcus pneumoniae mutants reveals mutations in ribosomal
proteins and rRNA. J. Antimicrob. Chemother. 70, 2973–2980. doi: 10.1093/jac/
dkv211

Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic
resistance determinants. Environ. Pollut. 157, 2893–2902. doi: 10.1016/j.envpol.
2009.05.051

McDaniel, C., Su, S., Panmanee, W., Lau, G. W., Browne, T., Cox, K., et al. (2016).
A putative ABC transporter permease is necessary for resistance to acidified
nitrite and EDTA in Pseudomonas aeruginosa under aerobic and anaerobic
planktonic and biofilm conditions. Front. Microbiol. 7:291. doi: 10.3389/fmicb.
2016.00291

Mediavilla, J. R., Patrawalla, A., Chen, L., Chavda, K. D., Mathema, B., Vinnard,
C., et al. (2016). Colistin- and carbapenem-resistant Escherichia coli harboring
mcr-1 and blaNDM−5, causing a complicated urinary tract infection in a patient
from the United States. MBio 7, e01191–e01216 doi: 10.1128/mBio.01191-16

Olson, M. W., Ruzin, A., Feyfant, E., Rush, T. S. III, O’Connell, J., and Bradford,
P. A. (2006). Functional, biophysical, and structural bases for antibacterial
activity of tigecycline. Antimicrob. Agents Chemother. 50, 2156–2166. doi: 10.
1128/AAC.01499-05

Ramakrishnan, C., Dani, V. S., and Ramasarma, T. (2002). A conformational
analysis of Walker motif A [GXXXXGKT (S)] in nucleotide-binding and other
proteins. Protein Eng. 15, 783–798. doi: 10.1093/protein/15.10.783

Ramos, M. M. B., Gartti-Jardim, E. C., and Gaetti-Jardim Junior, E. (2009).
Resistance to tetracycline and 2-lactams and distribution of resistance markers
in enteric microorganisms and pseudomonads isolated from the oral cavity.
J. Appl. Oral Sci. 17, 13–18. doi: 10.1590/S1678-77572009000700004

Roberts, M. C. (2003). Tetracycline therapy: update. Clin. Infect. Dis. 36, 462–467.
doi: 10.1086/367622

Rubinstein, E., and Vaughan, D. (2005). Tigecycline: a novel glycylcycline. Drugs
65, 1317–1336. doi: 10.2165/00003495-200565180-00009

Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-
terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74, 5463–5467. doi: 10.1073/
pnas.74.12.5463

Segata, N., Haake, S. K., Mannon, P., Lemon, K. P., Waldron, L., Gevers, D., et al.
(2012). Composition of the adult digestive tract bacterial microbiome based on
seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 13:R42.
doi: 10.1186/gb-2012-13-6-r42

Seville, L. A., Patterson, A. J., Scott, K. P., Mullany, P., Quail, M. A., Parkhill, J., et al.
(2009). Distribution of tetracycline and erythromycin resistance genes among
human oral and fecal metagenomic DNA. Microb. Drug Resist. 15, 159–166.
doi: 10.1089/mdr.2009.0916

Shen, F., Han, Q., Xie, D., Fang, M., Zeng, H., and Deng, Y. (2015). Efficacy and
safety of tigecycline for the treatment of severe infectious diseases: an updated
meta-analysis of RCTs. Int. J. Infect. Dis. 39, 25–33. doi: 10.1016/j.ijid.2015.
08.009

Someya, Y., Yamaguchi, A., and Sawai, T. (1995). A novel glycylcycline, 9-(N,N-
dimethylglycylamido)-6-demethyl-6-deoxytetracycline, is neither transported
nor recognized by the transposon Tn10-encoded metal-tetracycline/H+
antiporter. Antimicrob. Agents Chemother. 39, 247–249. doi: 10.1128/AAC.39.
1.247

Torres, C., Galian, C., Freiberg, C., Fantino, J. R., and Jault, J. M. (2009). The
YheI/YheH heterodimer from Bacillus subtilis is a multidrug ABC transporter.
Biochim. Biophys. Acta 1788, 615–622. doi: 10.1016/j.bbamem.2008.
12.012

Vaara, M. (1993). Outer membrane permeability barrier to azithromycin,
clarithromycin, and roxithromycin in gram-negative enteric bacteria.
Antimicrob. Agents Chemother. 37, 354–356. doi: 10.1128/AAC.37.
2.354

Van Berkel, M. A., Twilla, J. D., and England, B. S. (2016). Emergency
department management of a myasthenia gravis patient with community-
acquired pneumonia: does initial antibiotic choice lead to cure or crisis?
J. Emerg. Med. 50, 281–285. doi: 10.1016/j.jemermed.2015.04.019

Villa, L., Feudi, C., Fortini, D., Garcia-Fernandez, A., and Carattoli, A. (2014).
Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone
highlights the role of RamR and ribosomal S10 protein mutations in conferring
tigecycline resistance. Antimicrob. Agents Chemother. 58, 1707–1712. doi: 10.
1128/aac.01803-13

Villedieu, A., Diaz-Torres, M. L., Hunt, N., McNab, R., Spratt, D. A., Wilson, M.,
et al. (2003). Prevalence of tetracycline resistance genes in oral bacteria.
Antimicrob. Agents Chemother. 47, 878–882. doi: 10.1128/AAC.47.3.878-882.
2003

Warburton, P. J., Ciric, L., Lerner, A., Seville, L. A., Roberts, A. P., Mullany, P.,
et al. (2013). TetAB46, a predicted heterodimeric ABC transporter conferring
tetracycline resistance in Streptococcus australis isolated from the oral cavity.
J. Antimicrob. Chemother. 68, 17–22. doi: 10.1093/jac/dks351

Wu, N., Qiao, M., Zhang, B., Cheng, W. D., and Zhu, Y. G. (2010). Abundance and
diversity of tetracycline resistance genes in soils adjacent to representative swine
feedlots in China. Environ. Sci. Technol. 44, 6933–6939. doi: 10.1021/es1007802

Frontiers in Microbiology | www.frontiersin.org 9 December 2016 | Volume 7 | Article 1923

https://doi.org/10.1128/aac.49.4.1636-1638.2005
https://doi.org/10.1128/aac.49.4.1636-1638.2005
https://doi.org/10.1016/j.chembiol.2015.05.017
https://doi.org/10.1371/journal.pone.0119064
https://doi.org/10.1371/journal.pone.0119064
https://doi.org/10.1021/ja211007t
https://doi.org/10.1016/S0923-2508(01)01193-7
https://doi.org/10.1016/S0923-2508(01)01193-7
https://doi.org/10.1016/j.sbi.2007.07.003
https://doi.org/10.1016/j.sbi.2007.07.003
https://doi.org/10.1111/j.1365-3156.2010.02521.x
https://doi.org/10.1128/AAC.00661-16
https://doi.org/10.1111/j.1574-6968.1999.tb08727.x
https://doi.org/10.1111/j.1574-6968.1999.tb08727.x
https://doi.org/10.1093/jac/dki259
https://doi.org/10.1128/AAC.47.12.3733-3738.2003
https://doi.org/10.1517/14656566.2016.1122756
https://doi.org/10.1517/14656566.2016.1122756
https://doi.org/10.1128/aac.02465-15
https://doi.org/10.1016/S1473-3099(15)00424-7
https://doi.org/10.1074/jbc.M404072200
https://doi.org/10.1093/jac/dkv211
https://doi.org/10.1093/jac/dkv211
https://doi.org/10.1016/j.envpol.2009.05.051
https://doi.org/10.1016/j.envpol.2009.05.051
https://doi.org/10.3389/fmicb.2016.00291
https://doi.org/10.3389/fmicb.2016.00291
https://doi.org/10.1128/AAC.01499-05
https://doi.org/10.1128/AAC.01499-05
https://doi.org/10.1093/protein/15.10.783
https://doi.org/10.1590/S1678-77572009000700004
https://doi.org/10.1086/367622
https://doi.org/10.2165/00003495-200565180-00009
https://doi.org/10.1073/pnas.74.12.5463
https://doi.org/10.1073/pnas.74.12.5463
https://doi.org/10.1186/gb-2012-13-6-r42
https://doi.org/10.1089/mdr.2009.0916
https://doi.org/10.1016/j.ijid.2015.08.009
https://doi.org/10.1016/j.ijid.2015.08.009
https://doi.org/10.1128/AAC.39.1.247
https://doi.org/10.1128/AAC.39.1.247
https://doi.org/10.1016/j.bbamem.2008.12.012
https://doi.org/10.1016/j.bbamem.2008.12.012
https://doi.org/10.1128/AAC.37.2.354
https://doi.org/10.1128/AAC.37.2.354
https://doi.org/10.1016/j.jemermed.2015.04.019
https://doi.org/10.1128/aac.01803-13
https://doi.org/10.1128/aac.01803-13
https://doi.org/10.1128/AAC.47.3.878-882.2003
https://doi.org/10.1128/AAC.47.3.878-882.2003
https://doi.org/10.1093/jac/dks351
https://doi.org/10.1021/es1007802
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-01923 December 2, 2016 Time: 15:36 # 10

Reynolds et al. Tetracycline and Tigecycline Efflux

Yang, W., Moore, I. F., Koteva, K. P., Bareich, D. C., Hughes, D. W., and Wright,
G. D. (2004). TetX is a flavin-dependent monooxygenase conferring resistance
to tetracycline antibiotics. J. Biol. Chem. 279, 52346–52352. doi: 10.1074/jbc.
M409573200

Yao, X., Doi, Y., Zeng, L., Lv, L., and Liu, J.-H. (2016). Carbapenem-resistant
and colistin-resistant Escherichia coli co-producing NDM-9 and MCR-1. Lancet
Infect. Dis. 16, 288–289. doi: 10.1016/S1473-3099(16)00057-8

Zheng, X., Freeman, A. F., Villafranca, J., Shortridge, D., Beyer, J., Kabat, W.,
et al. (2004). Antimicrobial susceptibilities of invasive pediatric Abiotrophia and
Granulicatella isolates. J. Clin. Microbiol. 42, 4323–4326. doi: 10.1128/JCM.42.
9.4323-4326.2004

Zhong, X., Xu, H., Chen, D., Zhou, H., Hu, X., and Cheng, G. (2014). First
emergence of acrAB and oqxAB mediated tigecycline resistance in clinical

isolates of Klebsiella pneumoniae pre-dating the use of tigecycline in a Chinese
hospital. PLoS ONE 9:e115185. doi: 10.1371/journal.pone.0115185

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Reynolds, Roberts and Anjum. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 10 December 2016 | Volume 7 | Article 1923

https://doi.org/10.1074/jbc.M409573200
https://doi.org/10.1074/jbc.M409573200
https://doi.org/10.1016/S1473-3099(16)00057-8
https://doi.org/10.1128/JCM.42.9.4323-4326.2004
https://doi.org/10.1128/JCM.42.9.4323-4326.2004
https://doi.org/10.1371/journal.pone.0115185
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

	Efflux in the Oral Metagenome: The Discovery of a Novel Tetracycline and Tigecycline ABC Transporter
	Introduction
	Materials And Methods
	Strains and Culture Conditions
	Sample Collection and Metagenomic DNA Extraction
	Creation of a Metagenomic Library
	Screening of Metagenomic Library and Resistant Clone Isolation
	DNA Sequencing, Analysis and Annotation
	Subcloning
	Mutagenesis
	Disk Diffusion Assays
	Minimum Inhibitory Concentration (MIC) Assays
	Growth Curves
	Statistical Analysis

	Results
	Discussion
	Conclusion
	Author Contributions
	Funding
	Acknowledgment
	Supplementary Material
	References


