
Polarized Growth in the Absence of F-Actin in
Saccharomyces cerevisiae Exiting Quiescence
Annelise Sahin1,2, Bertrand Daignan-Fornier1,2, Isabelle Sagot1,2*
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Abstract

Background: Polarity establishment and maintenance are crucial for morphogenesis and development. In budding yeast,
these two intricate processes involve the superposition of regulatory loops between polarity landmarks, RHO GTPases,
actin-mediated vesicles transport and endocytosis. Deciphering the chronology and the significance of each molecular step
of polarized growth is therefore very challenging.

Principal Findings: We have taken advantage of the fact that yeast quiescent cells display actin bodies, a non polarized
actin structure, to evaluate the role of F-actin in bud emergence. Here we show that upon exit from quiescence, actin cables
are not required for the first steps of polarized growth. We further show that polarized growth can occur in the absence of
actin patch-mediated endocytosis. We finally establish, using latrunculin-A, that the first steps of polarized growth do not
require any F-actin containing structures. Yet, these structures are required for the formation of a bona fide daughter cell
and cell cycle completion. We propose that upon exit from quiescence in the absence of F-actin, secretory vesicles randomly
reach the plasma membrane but preferentially dock and fuse where polarity cues are localized, this being sufficient to
trigger polarized growth.
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Introduction

The ability to grow asymmetrically is essential for a large variety

of cellular processes such as cell division or migration, and is

therefore crucial for morphogenesis and development. For years,

Saccharomyces cerevisiae, which undergoes polarized growth during

various phases of its life cycle, has been a model of choice for

studying the molecular mechanisms underlying polarity establish-

ment. Budding yeast is an attractive model since it has a

predictable polarization pattern. Further, in Saccharomyces cerevisiae,

by contrast with other organisms, the polarized delivery of

secretory vesicles is mediated by the actin cytoskeleton and

microtubules do not appear to be involved in this process [1,2].

In budding yeast, landmark proteins deposited during the

previous cell cycle determine the axis of polarity. These positional

cues marking the future site of bud emergence are thought to

recruit scaffold proteins (such as Bem1p), GTPases (Rsr1p,

Cdc42p) and their regulators (Bud2p, Cdc24p…) (For review see

[3]). Cdc42p is assumed to activate formins which in turn nucleate

actin filaments that are specifically assembled into actin cables (for

review see [4]). Thus, actin cable nucleation is thought to take

place mainly at the site of polarity establishment. Actin cables

serve as tracks for type V myosins-mediated polarized transport of

secretory vesicles towards the site of bud emergence (for review

[2]). Once delivered, the vesicles dock and fuse with the plasma

membrane allowing polarized cell growth.

Even though the initial recruitment of Cdc42p can occur

independently of the actin cytoskeleton [5–8], actin cables clearly

contribute to maintain Cdc42p at the bud tip [5,6]. Furthermore,

actin patch-mediated endocytosis was shown to disperse Cdc42p

from the pre-bud site [6]. Thus, Cdc42p polarization at the

presumptive bud site involves a dynamic and antagonistic

interplay between distinct F-actin containing structures [9–11].

Budding yeast treated with latrunculin-A (Lat-A), a drug that

prevents F-actin polymerization, or cells specifically lacking actin

cables, have been shown to grow in an isotropic manner [8,12,13].

Therefore, the actin cytoskeleton seems not required for secretion

per se but rather for the polarized delivery of secretory vesicles

toward the site of growth. Intriguingly, in Schizosaccharomyces pombe,

cells lacking the formin for3p do not display any detectable

interphase actin cables and have depolarized actin patches, yet

these cells are viable and exhibit some degree of polarized growth

[14].

Whether the actin cytoskeleton is required for polarity

establishment or is only essential to maintain the polarization of

growth remains an unclear issue. This question is further

overshadowed by the fact that in rapidly dividing yeast cells, the

actin cytoskeleton is almost always polarized. Our recent discovery

of actin bodies, a non polarized F-actin containing structure that is

specific of yeast quiescent cells [15] prompted us to re-examine the

requirement of F-actin containing structures for the initiation of

polarized growth in S. cerevisiae.

PLoS ONE | www.plosone.org 1 July 2008 | Volume 3 | Issue 7 | e2556



Results

Polarized growth in the absence of actin cables
We have recently shown that after 7 days of growth in rich

medium, yeast cells display a specific actin cytoskeleton organiza-

tion that we have named actin bodies. Actin bodies are dense F-

actin containing structures that are not polarized. Within minutes

upon cell re-feeding, actin bodies disappear and depolarized actin

patches and cables are concomitantly assembled. These structures

then polarize toward the site of bud emergence and new budded

cells with polarized actin cytoskeleton appear within two hours

([15] and Supplementary Figure S1A-C). As previously reported

by others [16,17], we observed here that haploid yeast cells exiting

quiescence displayed a specific budding pattern, i.e.: the vast

majority of daughter and mother cells emitted a new bud at the

distal pole (Supplementary Figure S1D and data not shown). This

budding pattern is consistent with the maintenance of long term

distal polarity landmarks proteins in quiescent yeast cells [16].

We first addressed the role of actin cables in the establishment

and the maintenance of polarized growth upon exit from

quiescence using a thermo-sensitive (ts) mutant strain conditional

for formin function: bni1-FH2#1 bnr1D. When shifted to non-

permissive temperature during exponential growth, these mutant

cells specifically lose actin cables within a few minutes [18]. After 7

days of growth in rich medium at 25uC, the majority of bni1-

FH2#1 bnr1D cells displayed actin bodies, indicative of a proper

entry into quiescence (Figure 1, B and C). The stationary phase

culture was pre-shifted at 37uC for 30 min to ensure the

inactivation of Bni1-FH2#1p. The exit from quiescence was then

triggered by transferring the cells into pre-warmed rich medium. As

expected, 2 h after exit from quiescence at 37uC, bni1-FH2#1

bnr1D cells did not display any detectable actin cables (Figure 1, B

and C), but strikingly, many cells with a new bud were observed.

Based on the constriction between the mother and the ‘‘daughter’’,

we call these cells ‘‘budded cells’’. Furthermore, the concanavalin A

(Con-A) staining (Figure 1C) testified that buds were formed by de

novo polarized growth. Although in the early time points, bud

emergence was less efficient in the formin ts strain than in the bnr1D
or in the WT control strains (Figure 1A and supplementary Figure

S1), 4 h after exit from quiescence at 37uC, the percentage of

budded cells was higher in the formin ts strain than in the control

strains. Indeed, formin ts cells did not complete the cell cycle and

remained budded whereas the control strains started another round

of cell division. Importantly, in formin ts cells, just as in wild type

cells, the new bud emerged at the distal pole (97 +/2 2% of

daughter cells emitted a new bud at the distal pole, N.200, 2

experiments). This indicates that formin ts cells used long-term

distal polarity landmarks upon exit from quiescence. Consistently,

it has recently been reported that a formin conditional mutant was

able to initiate bud formation upon release from a-factor arrest

[19]. We further confirmed our observations using a tropomyosin ts

strain. Tropomyosins are required for actin cable maintenance

[13]. As formin ts cells, upon exit from quiescence at restrictive

temperature, tropomyosin ts cells were able to form a new bud at

the distal pole (Supplementary Figure S2). From those experiments,

we conclude that upon exit from quiescence, actin cables do not

appear to be required for bud emergence at the distal pole.

Additionally, these results show that actin cables are apparently not

required to sustain the primary steps of polarized growth, since cells

in which formins or tropomyosins were inactivated could grow a

bud of significant size. However, in both mutants, the bud necks

were widened and mother cells were abnormally round (see

Figure 1C and Supplementary Figure S2) revealing an impaired

overall long-term maintenance of cell polarity (see discussion).

Polarized growth in the absence of actin patch-mediated
endocytosis

Actin patches are required for endocytosis. The polymerization

of branched actin filaments that mediate the internalization of

endocytic vesicles is nucleated by the Arp2/3 complex and is

regulated by a large set of proteins (For review see [20]). To

decipher the role of actin patch-mediated endocytosis in bud

emergence, we used the temperature sensitive arp2-1 strain [21] in

which the Arp2/3 complex is impaired for actin nucleation [22].

At non permissive temperature, exponentially growing arp2-1 cells

are defective for the internalization step of endocytosis [23]. Arp2-1

cells were grown 7 days at 25uC. Surprisingly, even at permissive

temperature, these cells did not display actin bodies, but rather

depolarized actin patches and an abnormally dense network of

non-polarized actin cables (Figure 2C and data not shown). This

indicated that an impairment of Arp2/3 complex activity

prevented actin bodies formation. To inactivate the Arp2/3

complex, the 7 days old arp2-1 cell culture was pre-incubated 1 h

at 37uC. Cells were then re-fed with pre-warmed rich medium and

grown at 37uC. As shown in Figure 2A, upon exit from quiescence,

even at non permissive temperature, polarized growth can occur

in arp2-1 cells, although less efficiently than the WT control. As

expected, in these cells, actin patches monitored with an Abp1p-

3xGFP were defective for non linear movement that occurs upon

endosome internalization [24] (data not shown). Additionally, F-

actin staining using AlexaFluor phalloidin revealed that cells

undergoing de novo polarized growth display a typical Arp2/3

complex-defective actin cytoskeleton, i. e. depolarized patches and

abnormally big actin cable-like structures into the daughter cell

(Figure 2, B and C and supplementary Figure S3; [25]). After 4 h

at 37uC, arp2-1 cells died and lysed [21]. This probably accounts

for the low percentage of newly budded cells in this mutant.

Finally, the budding pattern of the newly budded cells could not be

investigated since arp2-1 mutant cells display a random budding

pattern even at permissive temperature [21]. These results indicate

that actin patches function is not strictly required for bud

emergence and the first steps of polarized growth upon exit from

quiescence. However, in the arp2-1 mutant, the emerging buds are

rather small and misshaped, confirming that endocytosis, like actin

cables-mediated polarized transport, is required to sustain normal

polarized growth.

Polarized growth in the absence of F-actin containing
structures

Since neither actin cables nor actin patches alone are

apparently required for bud emergence upon exit from quies-

cence, we asked whether depleting all F-actin containing

structures would allow polarized growth. Latrunculin-A (Lat-A)

prevents actin polymerization by interacting with actin monomers

and results in the rapid disassembly of dynamic F-actin structures

such as cables and patches [8]. Yet, because the turn over of actin

filaments embedded into actin bodies is slow, these structures

remained detectable even after a 2 h treatment with 200 mM Lat-

A. However, upon cells re-feeding in the presence of 200 mM Lat-

A, actin bodies promptly disappeared and no Abp1-3xGFP-

containing structures (i. e. actin patches) could be observed [15].

Wild type cells grown 7 days at 30uC were pre-treated for 30 min

with 200 mM of Lat-A and then re-fed in 200 mM of Lat-A-

containing rich medium. As shown in Figure 3, A and C, 4 h after

re-feeding, a small but significant number of Lat-A treated cells

could undergo de novo polarized growth. The number of new

budded cells did not increase with time because the newly formed

buds were fragile and lysed (Figure 3C, lower right panel). Indeed,

Bud Emergence without F-Actin
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triggering exit from quiescence in rich medium containing

200 mM of Lat-A and 1 M sorbitol significantly increased the

number of new budded cells (Figure 3A). Importantly, new buds

emerged at the distal pole (98% of daughter cells and 87% of

mother cells displayed de novo polarized growth at the distal pole).

We have verified that Bem1p, a scaffold protein important for

polarity establishment, is polarized at the tip of the new buds

(Supplementary Figure S4A; [8,26]). As expected, due to the Lat-

Figure 1. Bud emergence in the absence of actin cables. bnr1D and bni1-FH2#1 bnr1D cells were grown 7 days in YPDA medium at 25uC. Cells were
incubated with Con-A-FITC for 1 h, then washed with ‘‘old’’ YPDA and shifted to 37uC for 30 min as described in material and methods. Cells were then re-
fed with pre-warmed YPDA medium and grown at 37uC. (A) Percentage of budded cells in bnr1D and bni1-FH2#1 bnr1D cultures before and after exit
from quiescence at 37uC, N.200 for each time point, 2 experiments – error bars show SD. (B) Actin cytoskeleton organization in bnr1D and bni1-FH2#1
bnr1D cells before and after exit from quiescence at 37uC. Red: Actin Bodies; green: depolarized actin patches and cables; blue: polarized actin patches and
cables; yellow: no detectable actin cable and depolarized actin patches (N.200 for each time point, 2 experiments – error bars show SD). (C) Images of
typical bnr1D and bni1-FH2#1 bnr1D cells. Arrows indicate bud scars, arrowheads indicate birth scars; CW: Calcofluor White. Bar 2 mm.
doi:10.1371/journal.pone.0002556.g001

Bud Emergence without F-Actin
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A treatment, in cells with a new bud, no F-actin-containing

structures could be detected by AlexaFluor phalloidin staining

(Figure 3, B and C). We confirmed that Lat-A treated cells exiting

quiescence were not displaying detectable actin cables using cells

expressing Abp140p-GFP (Supplementary Figure S4B). Finally, to

re-enforce our findings, we used jasplakinolide, a drug that

stabilizes F-actin containing structures and causes a rapid

accumulation of large actin clumps in exponentially growing

yeast cells [27]. After a 30 min pre-treatment with 10 mM of

jasplakinolide, quiescent cells were released in rich medium

containing 10 mM of jasplakinolide. Following 2 and 4 h in the

presence of the drug, some cells with typical jasplakinolide-

induced actin aggregates that have undergone de novo polarized

growth could be observed (Supplementary Figure S4C). These

newly emerged buds remained small and cells lysed rapidly and

even more dramatically than in the Lat-A experiment. These

results therefore demonstrate that upon exit from quiescence, F-

actin-containing structures are neither strictly required for

establishing polarity nor for sustaining early steps of polarized

growth.

Polarized secretion in the absence of F-Actin
Our data demonstrate that in cells where polarity landmarks are

present, the actin cytoskeleton is not required for the first steps of

polarized growth upon exit from quiescence. In budding yeast,

microtubules seem not to be involved in polarized growth [1,2]

and we have verified that cells exiting quiescence in the presence

of both Lat-A and nocodazole, a drug that affects microtubule

polymerization, were able to form new buds (data not shown). In

contrast, results presented in Figure 4A and B show that functional

secretion machinery is strictly required for polarized growth upon

exit from quiescence, as previously demonstrated in rapidly

dividing cells [28]. Indeed, thermo-sensitive mutants for the

exocyst function were unable to emerge a new bud upon exit from

quiescence. This prompted us to localize the secretion machinery

in cells undergoing polarized growth in the absence of F-actin

containing structures upon exit from quiescence. As shown in

Figure 4C, in cells exiting from quiescence in the presence of Lat-

A, Sec8p-GFP, a component of the exocyst, could be detected as

discrete dots all around the cell periphery, with an enrichment at

the site of emerging bud or at tip of the new small buds (Figure 4C).

Figure 2. Bud emergence in the absence of functional actin patches. ARP2 and arp2-1 cells were grown 7 days in YPDA medium at 25uC. Cells
were incubated with Con-A-FITC for 1 h, then washed with ‘‘old’’ YPDA and shifted to 37uC for 1 h as described in material and methods. Cells were
then re-fed with pre-warmed YPDA medium and grown at 37uC. (A) Percentage of budded cells in ARP2 and arp2-1 cultures before and after exit from
quiescence at 37uC, N.200 for each time point, 2 experiments – error bars show SD. (B) Actin cytoskeleton organization in ARP2 and arp2-1 cells
before and after exit from quiescence at 37uC. Red: Actin Bodies; green: depolarized actin patches and cables; blue: polarized actin patches and
cables; purple: abnormal actin cables and depolarized actin patches (N.200 for each time point, 2 experiments – error bars show SD). (C) Image of
typical ARP2 and arp2-1 cells. Arrows indicate abnormally big actin cable-like structures. Bar 2 mm.
doi:10.1371/journal.pone.0002556.g002

Bud Emergence without F-Actin
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However, this enrichment was no longer visible as incubation time

in the presence of Lat-A increased and as new buds grew

(Figure 4C, lower panel). The same results were obtained for

Sec5p-GFP (data not shown). These observations, which strongly

suggest that under these conditions growth is not restricted to the

bud, are in good agreement with the fact that in the absence of F-

actin, mother cells are abnormally rounded. However our results

are in contradiction with those previously reported by Ayscough et

al, a study in which Sec4p and Sec8p were not polarized in cells

exiting from early stationary phase in the presence of Lat-A [8].

We do not know what could account for these discrepancies but

since, in the Ayscough study, those proteins were detected by

immuno-fluorescence, we can speculate that the slight enrichment

of the signal at the polarization site was not detectable using this

technique. Alternatively, it could be that fragile newly budded cells

were lost during the chemical treatments used for immuno-

detection. Consistently with our results, in a recent study, France et

al have shown that the exocyst component Sec15p was able to

polarize in more than 70% of the cells upon exit from quiescence

in the presence of Lat-A [29]. In this study, it was also shown that

Sec8p can be detected as polarized foci in more than 20% of cells

exiting quiescence in the presence of Lat-A.

Discussion

Here we have shown that in yeast, F-actin containing structures

are not required for the first steps of polarized growth and bud

emergence upon exit from quiescence. Our results contrast with

previous studies where it has been shown that Lat-A treatment in

vegetative cells prevents new bud formation (See for example [12]).

More intriguingly, Ayscough et al and Bi et al have previously

observed that Lat-A treatment of early stationary phase cells inhibits

bud emergence [8,30]. We have shown that 7 days old quiescent cells

are capable to re-assemble depolarized patches and cables within few

minutes after release in fresh medium [15]. In the earlier studies,

stationary phase unbudded cells were sorted by differential

centrifugation in rich YPD. It is thus very likely that these cells

had already exited quiescence and therefore have already assembled

cables and patches before Lat-A addition. These cells might

therefore behave more like actively growing cells rather than bona

fide quiescent cells. In our experimental design, more than 90% of the

quiescent cells show non-polarized actin structures (actin bodies)

upon Lat-A addition. Furthermore the Con-A labeling testifies that

the observed buds are indeed new buds. Several differences between

vegetative and 7 days old quiescent haploid cells could account for

these discrepancies, for example the site of bud emergence and

therefore the active polarity landmarks are different; moreover de

novo protein synthesis is required for polarity establishment upon exit

from quiescence [15] suggesting that in quiescence key polarity

regulators are missing. Whatever the differences between quiescent

and actively dividing cells, this work demonstrates that F-actin is not

strictly required for early steps of polarized growth.

We propose a model in which, upon exit from quiescence in the

absence of F-actin, secretory vesicles emanate in all directions, but

Figure 3. Bud emergence in the absence of F-actin. Wild type cells were grown 7 days in YPDA medium at 30uC. Cells were incubated with
Con-A-FITC for 1 h and then washed with ‘‘old’’ YPDA. Lat-A (200 mM final concentration) or DMSO were added and cells were further incubated at
30uC for 30 min. Cells were then re-fed with YPDA medium (with or without 1 M sorbitol) containing either 200 mM Lat-A or DMSO and grown at
30uC as described in material and methods. (A) Percentage of new budded cells after exit from quiescence at 30uC, N.200 for each time point, 2
experiments – error bars show SD. (B) Actin cytoskeleton organization in unbudded cells before exit from quiescence or in new budded cells after exit
from quiescence at 30uC in YPDA medium containing either DMSO, DMSO and 1 M sorbitol, 200 mM Lat-A or 200 mM Lat-A and 1 M sorbitol. Red:
Actin Bodies; green: depolarized actin cytoskeleton; blue: polarized actin cytoskeleton; grey: no detectable F-actin containing structures (N.200 for
each time point, 2 experiments – error bars show SD). (C) Images of typical treated and untreated cells. The upper left panel display a typical wild type
cell pre-incubated 30 min with Lat-A before re-feeding and the lower right panel, examples of Lat-A treated wild type cells 6 h after re-feeding with a
collapsed new bud. Arrows indicate bud scar, arrowhead indicate birth scars; CW: Calcofluor White. Bar 2 mm. Of note, for AlexaFluor Phalloidin
images, the maximum intensity is about 20 times lower for Lat-A treated cells than for untreated cells and was therefore greatly enhanced in the
figure to document the absence of F-actin structure.
doi:10.1371/journal.pone.0002556.g003
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preferentially dock and fuse at the distal pole allowing bud

emergence where long term polarity landmarks are localized (See

Figure 5). Upon exit from quiescence, these tags are sufficient to

recruit Cdc42p independently of polymerized actin, which is

consistent with the fact that Cdc42p initial polarization can occur

in the absence of F-actin [5–8]. Cdc42p could then interact with

Sec3p [31,32] a protein known to polarize independently of F-

actin [33–35] through its interaction with Cdc42p [31,32,35].

Sec3p would therefore be able to facilitate the local tethering and

fusion of exocyst coated secretory vesicles. Other polarity factors

like Bem1p or protein involved in tethering and fusion of secretory

vesicles such as Exo70p have also been shown to polarize in the

absence of F-actin [8,26,35] and could therefore be crucial in this

process. This cascade of events triggers the initiation of polarized

growth and bud emergence upon exit from quiescence. However,

in the absence of F-actin, this local ‘‘activation’’ would not be

sustained and hence would not be sufficient to maintain a normal

polarized secretion. Therefore, in quiescent cells in which polarity

is established by polarity landmarks, F-actin containing structures

are not required for polarized growth initiation, but rather to

maintain long term polarized bud growth.

The specific impairment of actin patch-mediated endocytosis

through the arp2-1 mutation led to rapid cell death. Therefore, it is

hard to conclude about a specific role for actin patches in

polarized growth maintenance. Because a large variety of mutants

display depolarized actin patches without having critical defects in

polarized growth [36], polarization of endocytosis per se is clearly

not crucial for polarized growth. Thus, the function of actin

Figure 4. Bud emergence requires a functional exocyst. (A) sec4-8, sec6-4 and isogenic wild type cells were grown 7 days in YPDA medium at
25uC. Cells were incubated with Con-A-FITC then washed with ‘‘old’’ YPDA and cells were shift to 37uC for 1 h. Cells were then re-fed with pre-
warmed YPDA medium and grown either at 25uC or at 37uC as described in material and methods. The percentage of budded cells in wild type (blue),
sec4-8 (purple) and sec6-4 (yellow) is indicated before and after exit from quiescence at 25uC or 37uC, N.200 for each time point, 2 experiments –
error bars show SD. (B) Image of typical WT, sec6-4 and sec4-8 cells, 4 h after exiting quiescence at 25uC (left) and 37uC (right). (C) Localization of
Sec8p-GFP before and after exit from quiescence at 30uC in the absence or in the presence of 200 mM Lat-A. Arrowheads point at Sec8p-GFP dots at
the cell periphery. Bar 2 mm.
doi:10.1371/journal.pone.0002556.g004

Bud Emergence without F-Actin
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patches rather than their polarized localization seems critical for

polarized growth. Since, Lat-A or jasplakinolide treated cells, but

not actin cables-depleted cells, had a strong tendency to lyse upon

exit from quiescence, it is reasonable to speculate that actin patch-

mediated endocytosis is indispensable for the formation and/or

the maintenance of the plasma membrane and the cell wall and

may also affect the cell wall integrity pathway.

In the absence of F-actin containing structures, cells exiting

quiescence display an abnormally wide bud neck. This observation

has been previously reported for bni1D and polarisome defective

mutants [37] and is also observed here in cells where formins or

tropomyosins are inactivated (Figure 1 and Supplementary figure

S2). Therefore, this defect seems to be specific of actin cable-

defective cells. Whether the widening of the bud neck is due to an

improper septin assembly or to a defect in actin ring formation await

for further investigation. While polarized docking and fusion of

secretory vesicles is mandatory for bud emergence, our data show

that this process can occur in the absence of polarized actin tracks.

Consistently, previous studies have suggested that actin cables

polarization, which is abolished in a bni1D bnr1D mutant expressing a

non polarized activated form of Bni1p, was not required for cell

proliferation [38]. We propose that upon bud emergence, actin

cables greatly enhance polarized growth efficiency by directing the

transport of secretory vesicles. Although not mandatory for bud

emergence and the early steps of bud growth, formins and

tropomyosins are clearly required for cell cycle completion, possibly

because of their crucial function in cytokinesis.

Materials and Methods

Yeast strains, growth conditions and specific staining
The S. cerevisiae wild type strain used in this study is BY4741

available from Euroscarf (Frankfurt, Germany). Temperature

sensitive mutants used in this study have been described

previously: bnr1D and bni1-FH2#1 bnr1D [18], tpm2D and tpm1-

1 tpm2D strains [13], arp2-1 strain and its congenic WT strain [39],

sec4-8, sec6-4 and the congenic WT [40]. The Abp1-3xGFP

(P3006) and Sec8p-GFP constructs have been previously described

in [15] and [41], respectively. Sec8p-GFP imaging was done in live

cells. The YPDA medium was described previously in [15]. In all

the experiments carried out in this study, yeast cells were grown 7

days in liquid YPDA at 25uC (ts mutants) or 30uC (Lat-A

experiment) in 100 ml Erlenmeyer flasks with 220 rpm shaking.

Cells were then concentrated in the same medium by low speed

centrifugation. The remaining supernatant, i e the ‘‘old’’ YPDA

medium, was filtered to remove non-pelleted cells. Concanavalin

A-FITC (Sigma-Aldrich, St Louis, MO) was added to the

concentrated cells to a final concentration of 0.2 mg/ml. Cells

were then incubated 1 h at 25uC then washed twice with old

filtered YPDA medium. In case of temperature shift, cells were re-

suspended in old filtered YPDA medium and pre-shifted for

30 min or 1 h at 37uC in a water bath. Cells were then re-fed with

pre-warmed YPDA (37uC) at an OD600 nm of 0.6,0.8 and grown

in as liquid culture in a 37uC water bath. At the various time

points after re-feeding, aliquots of cells were immediately fixed

with formaldehyde (3.7% final) for at least one hour at the culture

temperature. Cells were then stained with AlexaFluor568-

phalloidin (Invitrogen, Carlsbad, CA) as described in [18].

Calcofluor white (Sigma-Aldrich, St Louis, MO) was added before

the last wash to the final concentration of 2 mg/ml. Cells were then

incubated 5 min at room temperature, washed with PBS and re-

suspended in mounting solution (PBS, glycerol 50%, parapheny-

lenediamide 0.05%) and imaged. Lat-A was a very generous gift of

B. Goode. For Lat-A experiments, cells were grown 7 days in

YPDA at 30uC, and stained with Con-A as described. Before re-

feeding, cells were incubated 30 min in old YPDA medium

containing 200 mM of Lat-A or DMSO, then re-fed in YPDA

medium containing 200 mM Lat-A with or without 1 M sorbitol.

Epifluorescence Microscopy
Cells were observed in a fully automated Zeiss 200 M inverted

microscope (Carl Zeiss, Thornwood, NY) equipped with an MS-2000

stage (Applied Scientific Instrumentation, Eugene, OR), a Lambda

LS 175 W xenon light source (Sutter Instrument, Novato, CA), a

10061.4 numerical aperture Plan-Apochromat objective, and a five

positions filter turret. Filter cubes were as follows: for Alexa-phalloidin

568: Cy3 (Ex: HQ535/50 – Em: HQ610/75 – BS: Q565lp), for live

cells GFP: Endow GFP longpass (Ex: HQ470/40 – Em: HQ500lp –

BS: Q495lp), for Con-A-FITC Narrowband HQ FITC (Ex:

HQ487/25 – Em: HQ535/40 – BS: Q505lp) and for Calcofluor

White DAPI/Hoechst/AMCA (Ex: D360/40 – Em: D460-50 – BS:

400dclp) (Chroma Technology, Rockingham, VT). Images were

acquired using a CoolSnap HQ camera (Roper Scientific, Tucson,

AZ). The microscope, camera, and shutters (Uniblitz, Rochester, NY)

were controlled by SlideBook software (Intelligent Imaging Innova-

tions, Denver, CO). The objective heater was from Bioptechs (Butler,

PA). Images are, unless specified, maximal projection of Z-stacks

performed using a 0.2 or 0.3 mm step.

Supporting Information

Figure S1 (A) to (D) Wild type cells were grown 7 days in YPDA

medium at 25uC. Cells were incubated with Con-A-FITC then

washed with ‘‘old’’ YPDA and then shifted to 25uC or 37uC for

30 min. Cells were then re-fed either with YPDA medium and

grown at 25uC or with pre-warm YPDA medium and grown at

37uC as described in material and methods. (A) Percentage of

budded cells in wild type cultures before and after exit from

Figure 5. Model for polarized growth maintenance in the
presence or in the absence of F-Actin containing structures. See
text for details.
doi:10.1371/journal.pone.0002556.g005
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quiescence at 25uC and 37uC. (N$200 for each time point, 2

experiments - error bars show SD). (B) Actin cytoskeleton

organization in wild type cell at 25uC or 37uC. Red: Actin

Bodies; green: depolarized actin patches and cables; blue:

polarized actin patches and cables (N$200 for each time point,

2 experiments - error bars show SD). (C) Image of typical wild type

cells; left panel: before re-feeding at 25uC; 2 h after re-feeding at

37uC. Arrows indicate bud scar, arrowhead indicate birth scars; CW:

Calcofluor White. Bar 2 mm. (D) Budding pattern of wild type

daughter cells 2 h after exit from quiescence at 30uC (N$200 for

each time point, 2 experiments). (E) Percentage of budded cells in

bnr1D and bni1-FH2#1 bnr1D cultures before and after exit from

quiescence at 25uC (N$200 for each time point, 2 experiments -

error bars show SD). (F) Actin cytoskeleton organization in bnr1D
and bni1-FH2#1 bnr1D cells before and after exit from quiescence at

25uC. Red: Actin Bodies; green: depolarized actin patches and

cables; blue: polarized actin patches and cables; yellow: no detectable

actin cable and depolarized actin patches (N$200 for each time

point, 2 experiments - error bars show SD).

Found at: doi:10.1371/journal.pone.0002556.s001 (9.80 MB TIF)

Figure S2 tpm2D and tpm1-1 tpm2D cells were grown 7 days in

YPDA medium at 25uC. Cells were then incubated with Con-A-

FITC for 1 h then washed with ‘‘old’’ YPDA as described in materiel

and methods. Cells were then shift to 25uC or 37uC for 30 min and

re-fed either with YPDA medium and grown at 25uC or with pre-

warmed YPDA medium and grown at 37uC. (A) Percentage of

budded cells in tpm2D and tpm1-1 tpm2D cultures before and after

exit from quiescence at 25uC or 37uC (N$200 for each time point, 2

experiments - error bars show SD). (B) Actin cytoskeleton

organization in tpm2D and tpm1-1 tpm2D cells before and after exit

from quiescence at 25uC or 37uC. Red: Actin Bodies; green:

depolarized actin patches and cables; blue: polarized actin patches

and cables; yellow: no detectable actin cable and depolarized actin

patches (N$200 for each time point, 2 experiments - error bars show

SD). (C) Images of typical tpm2D and tpm1-1 tpm2D cells. Left panel:

tpm1-1 tpm2D cell before re-feeding at 25uC; middle panel: tpm2D cell

2 h after re-feeding at 37uC; tpm1-1 tpm2D cells 4 h after re-feeding

at 37uC. CW: Calcofluor White; Bar 2 mm. (D) Budding pattern of

tpm1-1 tpm2D cells 4 h after exit from quiescence at 30uC (N$100 for

each time point, 2 experiments).

Found at: doi:10.1371/journal.pone.0002556.s002 (8.73 MB TIF)

Figure S3 (A) Percentage of budded cells in ARP2 and arp2-1

cultures before and after exit from quiescence at 25uC. For details

see materiel and methods (N$200 for each time point, 2

experiments - error bars show SD). (B) Actin cytoskeleton

organization in ARP2 and arp2-1 cells before and after exit from

quiescence at 25uC. Red: Actin Bodies; green: depolarized actin

patches and cables; blue: polarized actin patches and cables;

purple: abnormal actin cables and depolarized actin patches

(N$200 for each time point, 2 experiments - error bars show SD).

Found at: doi:10.1371/journal.pone.0002556.s003 (9.66 MB TIF)

Figure S4 (A) Localization of Bem1p-3xGFP in wild type cells

exiting from quiescence. Three copies of GFP were integrated at

the BEM1 locus. This fusion protein is functional since it can be

expressed in a bni1D or rsr1D without affecting their growth.

Details of the construct are available upon request. Wild type cells

expressing Bem1p-3xGFP were grown 7 days at 30uC, treated for

30 min with 200 mM Lat-A or DMSO. Cells were then re-fed with

YPDA medium containing either 200 mM Lat-A or DMSO and

grown at 30uC as described in material and methods. Bar 2 mm.

Histograms display the percentage of cells with polarized Bem1p-

3xGFP (red), depolarized Bem1p-3xGFP (green), Bem1p-3xGFP

slightly polarized in a diffuse crescent shape manner (blue) or

Bem1p-3xGFP not detected (grey). N$200 for each time point, 2

experiments - error bars show SD. (B) Localization of Abp140p-

GFP in wild type cells exiting quiescence in the presence of Lat-A.

Wild type cells expressing Abp140p fused to GFP (Invitrogen,

Carlsbad, CA) were grown 7 days at 30uC, treated for 30 min with

200 mM Lat-A or DMSO. Cells were then re-fed with YPDA

medium containing either 200 mM Lat-A or DMSO and grown at

30uC as described in material and methods. Bar 2 mm. Histograms

display the percentage of cells with detectable Abp140p-GFP

decorated actin structures 2 or 4 h after exit from quiescence in

the absence or in the presence of 200 mM Lat-A (N$100 for each

time point, 2 experiments - error bars show SD). (C) Cells exiting

quiescence in the presence of jasplakinolide. Jasplakinolide

sensitive strain (snq2D pdr5D erg6D see (Ayscough, 2000) expressing

Abp1p-3xGFP from the endogenous locus (Sagot et al, 2006) were

grown 7 days at 30uC. Cells were then pre-treated with 10 mM

jasplakinolide or DMSO and then re-fed in YPDA medium

containing 10 mM jasplakinolide or DMSO. Left panel: snq2D
pdr5D erg6D ABP1-3xGFP after 7 days of growth at 30uC. Of note,

because of the erg6 deletion, snq2D pdr5D erg6D ABP1-3xGFP cells

do not display actin bodies when grown to stationary phase (I.S.

unpublished result). Middle panel: DMSO treated cells 4 h after

re-feeding. In our hands, exponentially growing snq2D pdr5D erg6D
ABP1-3xGFP cells display a slightly depolarized actin cytoskeleton,

as revealed in DMSO treated cells, 4 h after exit from quiescence.

Right panel: jasplakinolide treated cells 4 h after re-feeding

(N$200, 2 experiments), bar 2 mm.

Found at: doi:10.1371/journal.pone.0002556.s004 (10.06 MB

TIF)
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