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Abstract
Vector-borne diseases are amajor public health concern inflicting high levels of disease
morbidity and mortality. Vector control is one of the principal methods available to
manage infectious disease burden. One approach, releasing modified vectors (such as
sterile or GMmosquitoes) Into the wild population has been suggested as an effective
method of vector control. However, the effects of dispersal and the spatial distribution
of disease vectors (such as mosquitoes) remain poorly studied. Here, we develop a
novel mathematical framework using an integrodifference equation (discrete in time
and continuous in space) approach to understand the impact of releasing sterile insects
into the wild population in a spatially explicit environment. We prove that an optimal
release strategy exists and show how it may be characterized by defining a sensitivity
variable and an adjoint system. Using simulations, we show that the optimal strategy
depends on the spatially varying carrying capacity of the environment.

Keywords Density dependence · Dispersal · Mosquito control

Mathematics Subject Classification 92D25 · 92D40 · 92B05

1 Introduction

Vector borne diseases are a major public health concern, causing high levels of mor-
bidity and leading to nearly one million deaths, annually (WHO 2016). Often vector
control methods are the only feasible management option with the aim of vector con-
trol being to suppress or often eliminate insect vector populations. The sterile insect
technique (SIT) is a well established empirical method for reducing population size.
This technique has been widely used to suppress or eradicate many insect pest species,
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through the release of modified insects (lab-sterilised, irradiated and/or novel genetic
technologies) (Alphey et al. 2010). Control is achieved as mating between sterile and
wildtype mosquitoes reduces the reproductive potential of the wild population.

In evaluating the efficacy of SIT, mathematical modelling is an effective tool
(Manoranjan and van den Driessche 1986; Isidoro et al. 2009; Yakob and Bonsall
2009; Legros et al. 2012; Li and Zou 2012; Potgieter et al. 2013; Li and Yuan 2015).
SIT is an area-wide control method and hence involves spatial domains. Different con-
tinuous or discrete spatial model types have been proposed to investigate the effects
of space on the efficacy of SIT. The choice between different model formulations
depends on the specific biological problem (see Table 1). An early example is that
developed by Manoranjan and van den Driessche (1986) who analysed the effect of
non-uniformsterile insect releases in a heterogeneous environment.Anothermodelling
approach explored considered random releases across the environment and concluded
that the effectiveness of SIT is highly influenced by spatial heterogeneity (Ferreira
et al. 2008). More recently, Yakob and Bonsall (2009) developed a spatially explicit
model where the release of sterile insects was assumed to be uniform across space.
Their research suggests that high levels of insect dispersal reduces the effectiveness
of the SIT. Legros et al. (2012) analysed and compared two release strategies: (1)
spatially uniform releases and (2) releases at discrete locations. They concluded that
uniform releases are more effective than releasing at specific locations.

However, a constant dilemma is whether model predictions replicate real biological
situations as the field data are often incomplete or not straightforward to analyse. In
order to achieve successful vector control, we need amuchmore thorough understand-
ing of how mosquitoes would respond to these control interventions (such as sterile
insect releases) by focusing more on their biology, ecology and behaviour (Alphey
et al. 2010). Spatial spread is a key element in mosquito reproduction and some studies
argue that SIT techniquemay not be very effective in controllingmosquito populations
due to their dispersal and distribution (Ferreira et al. 2008).

To address this issuewepresent an alternativemodelling framework that allows us to
consider population dynamic outcomes associated with different dispersal behaviour.
Integrodifference equations (IDEs), which are discrete in time and continuous in space,
incorporate a dispersal kernel for the spatial distribution of mosquitoes, model popula-
tions in which growth and dispersal do not happen at the same time (Kot and Schaffer
1986; Hardin et al. 1990; Kot 1992; Neubert et al. 1995; Kot et al. 1996; Neubert and
Parker 2004; Hsu and Zhao 2008; Zhou and Kot 2011; Reimer et al. 2016). Unlike
the model approaches discussed in Table 1, IDEs allow a wide range of redistribution
kernels for dispersal to be considered. This way of formulating time and space also
provides a better approach for determining invasion speeds (compared to the reaction–
diffusion PDE approachwhich can often underestimate patterns of spread; see Kendall
1965; Murray 2001).

The aimof this paper is to use optimal control theory to find themost efficient release
strategy under different environmental conditions and dispersal behaviours. This is of
critical importance as it can be used as a guideline for the number of sterile mosquitoes
that need to be reared as well as aiding best practice for their release. Specifically, we
develop a bioeconomic model with the corresponding cost function for the control
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Table 1 Eclectic synopsis of different spatial mathematical models developed for understanding mosquito
control using SIT methods

Model assumption Results

Manoranjan and van den
Driessche (1986)

Modelled the effectiveness of
SIT using a
reaction–diffusion equation.
Sterile mosquitoes do not
disperse while the wild
population disperse
randomly. 2n releases per
space unit and the sex ratio
of sterile and wild
mosquitoes is one-to-one

The number of releases required for
population elimination depends on
the growth parameters of
mosquitoes, domain length and the
initial population distribution

Ferreira et al. (2008) Used a stochastic
two-dimensional cellular
automata (discrete time and
space). Releases based on
ratio between sites occupied
by sterile and wild
mosquitoes. The diffusion
is incorporated using
Margolus neighborhood

The wild population can not be
eliminated for a spatially
heterogeneous distribution of
mosquitoes

Yakob and Bonsall (2009) Developed a spatially explicit
model to find the optimal
timing and sex specificity of
lethal transgene activation
for the control of different
types of pest population.
Sterile mosquitoes are
uniformly distributed across
the space

Optimal release strategy is influenced
by the growth of the population,
mosquito stage structuring,
competition, and space. High rates
of mosquito dispersal reduces the
effectiveness of SIT

Legros et al. (2012) Applied a ‘Skeeter Buster’
model which is a stochastic,
spatially explicit model of
Ae. aegypti. Assumed the
daily dispersal of
mosquitoes to be limited to
the nearest neighbours.
Applicable to small-scale
settings

Population elimination is feasible
only in small geographical settings,
unless the habitat and releases are
homogeneous

of the wild mosquito population, where the control parameter r describes the release
ratio that should be applied.

Previous work (Gaff et al. 2007; Joshi et al. 2007; Martinez et al. 2015) has con-
sidered optimal harvesting in an integrodifference population framework, but to the
best of our knowledge no one so far has investigated the effectiveness of SIT through
an IDE framework. In particular we will analyse the effect of spatial heterogeneity on
the sterile release strategies. We find that an optimal control release strategy exists and
efficiently suppresses the wild mosquito population. Our approach allows us to find
the timing and the intensity of the control that needs to be applied. In Sect. 2 we intro-
duce the integrodifference framework. We present the model in Sect. 3 and derive the
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characterization of the optimal control in Sect. 4. This characterization corresponds
to the most cost-effective release strategy to suppress or eliminate the wild mosquito
population. In Sect. 5 we use numerical simulations to illustrate the theory developed.

2 Integrodifference equations

In order to familiarise the reader with the integrodifference equation (IDE) framework
(Kot and Schaffer 1986; Hardin et al. 1990; Kot 1992; Neubert et al. 1995; Kot et al.
1996; Neubert and Parker 2004; Hsu and Zhao 2008; Zhou and Kot 2011; Reimer
et al. 2016), we give some basic notations and assumptions. Let Nt be the population
density at time t , f (Nt ) the growth function where f (Nt ) = Nt g(Nt ) and g(Nt ) is the
per capita growth. We model the population (in discrete time) with no movement as

Nt+1 = f (Nt ) = Nt g(Nt ), (1)

with initial condition Nt0 = N0 for N0 > 0. The spatial spread is described by a
dispersal kernel, denoted by k(x, y), which is a probability density function (pdf)
and gives the probability that an individual starting at point y, will settle at point x
by the next time step. The number of individuals moving to location x is found by
integrating the dispersal kernel k(x, y) over the domain of interest. Hence, we have∫
�
k(x, y)dy ≤ 1 (as we are looking at a population on a finite domain), where �

is the spatial domain. We get the full dynamics of the population by combining the
growth function with the dispersal kernel as follows:

Nt+1(x) =
∫

�

k(x, y) f (Nt (y); y)dy. (2)

3 Themodel

For the SIT control problem, we assume an unstructured mosquito population with
no overlapping generations. Let Wt denote the wild mosquito population at time t.
In the absence of sterile mosquitoes and (initially) ignoring any spatial variation, the
governing difference equation for the wild mosquito population is

Wt+1 = αβWtγ (Wt ), (3)

where α is the number of matings per individual and β is the number of offspring
produced per mating. γ (Wt ) is the survival probability and we assume a Ricker-type
nonlinearity, such that: γ (Wt ) = e−d−KWt . The death function is approximated by
the linear function d + KWt , where d is the density independent death rate, e−d is
the density independent survival probability and K is related to the carrying capacity.
Now define A = αβe−d (as the intrinsic population growth rate) and assume that no
mating difficulties arise. Therefore, Eq. (3) takes the form:

Wt+1 = AWte
−KWt . (4)
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Suppose now that Rt sterile mosquitoes are released at time t into the wildmosquito
population. The total population size is then Nt = Wt + Rt . The number of offspring
produced by a wild mosquito over its life that would make it to adulthood with-
out density-dependence, given that random mating with sterile mosquitoes occurs is
AWt

Wt+Rt
. We assume that the life cycle happens in one time unit and that density depen-

dence occurs only at the larval stage (Clements 1992; Lord 1998). This means that the
survival probability depends only on the number of wild mosquitoes (and is indepen-
dent of Rt ). We assume that the number of released mosquitoes is Rt = rtW ∗, where
rt is the release ratio at time step t andW ∗ is the equilibrium population; the release of
sterile mosquitoes is proportional to the wildtype equilibrium population size. Under
these assumptions the population dynamics in a non-spatial system are governed by
the following equation:

Wt+1 = 1

1 + rt
W ∗
Wt

AWte
−KWt . (5)

Next, we introduce spatial effects by incorporating the dispersal kernels and growth
functions into our IDE framework. Assume that the wild mosquitoes have a dispersal
kernel k(x, y) in a one dimensional domain �. We assume a closed domain, for
example an area that is surrounded by unfavourable conditions such that mosquitoes
would not travel across. It is important to note that this might not always be the case
and different spatial analyses will be needed for these different boundary conditions.
To analyse the dynamics of the wild mosquito population under the influence of SIT
release, we use:

Wt+1(x) =
∫

�

1

1 + rt (y)
W ∗
Wt

k(x, y) f (Wt (y), y)dy, (6)

where f (Wt (y), y) = AWt (y)e−KWt (y) and initial condition W0 (Table 2). The
equilibrium population W ∗ is calculated as W ∗ = S f (W ∗) where f (W ∗) is the
growth function and S is the average dispersal success over the domain �, given by

S = 1

�

∫
�

∫
�
k(x, y)dxdy. See van Kirk and Lewis (1997) and Reimer et al. (2016)

for a more detailed analysis on equilibrium solutions.

4 Optimal control formulation of integrodifference equation

In this section, we describe the optimal control framework for minimizing the
cost of controlling the wildtype mosquito population. We propose to control a
vector population over a time period t ∈ [0, T ]. The state variable is W (x) =
(W0(x),W1(x), . . . ,WT (x)) and the control is r(x) = (r0(x), r1(x), . . . , rT−1(x)),
representing the wild mosquito population and the sterile insect release ratio respec-
tively at location x and time step t , where the initial distribution W0(x) is given.

The kernels are bounded and measurable such that | ∫
�
k(x, y)dy| ≤ 1,∀x ∈ �

and 0 ≤ k(x, y) ≤ k1 for (x, y) ∈ � × �, where k1 is a constant. We assume that the
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Table 2 Description of the
variables and parameters of the
IDE model

Variable Description

Wt Wild mosquito population at time t

Rt Released mosquitoes at time t

W∗ Equilibrium for the wild mosquito
population

Parameter Description

α Number of matings per individual

β Number of offspring produced per
mating

γ (Wt ) Survival probability

d Density independent death rate

K Strength of negative feedback–proxy
for the carrying capacity

A Intrinsic population growth rate

rt (x) Release ratio at time step t and
location x

Parameter values are given in the figure legends and associated text

function f is twice differentiable in Wt (y) and that partial derivatives
∂ f (W )

∂W , ∂2 f (W )
∂W

are L∞ bounded for any W ∈ L∞(�). We want to find the optimal strategy that
suppresses the mosquito population and minimizes the cost of vector control via the
release of sterile mosquitoes. Assume there is a linear cost associated with the wild
mosquitoes (due to impact on human health, lost tourism, etc.) which we denote by
mt . There is also a cost for producing and releasing sterile mosquitoes and we assume
it to be a quadratic of the form,(ntrtW ∗ +str2t (W ∗)2). The cost function is a nonlinear
relationship in r*. This choice of cost function is based on the reality that sterile insect
releases, through mating disruption, introduce an Allee effect into the wild population
(Bonsall et al. 2010; also see Kirschner et al. 1997 for similar choice of quadratic
costs for a HIV chemotherapy application). Using these costs, we define the objective
functional:

J (r) =
T−1∑

t=0

∫

�

[
mtWt (x) + ntrt (x)W

∗(x) + str
2
t (x)(W ∗)2(x)

]
dx, (7)

with set of bounded controls given by

� =
{
(r0(x), . . . , rT (x)) ∈ (L∞(�))T |0 ≤ rk(x) ≤ rmax , t = 0, 1, . . . , T − 1

}
.

(8)

Our goal is to minimize the total cost of mosquito management by finding r∗ such
that:

J (r∗) = min
r≥0

J (r). (9)
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In order to achieve this, we need to link the sensitivity ψt (x) and adjoint system
(append the difference equations (Eq. 6) to the objective functional to be minimized),
to characterize the optimal control. By differentiating the state equation we show that
the sensitivity satisfies:

ψt+1(x) =
∫

�

1

1 + rt (y)
W ∗
Wt

k(x, y)
∂ f (Wt (y), y)

∂W
ψt (y)dy

−
∫

�

(
1

1 + rt (y)
W ∗
Wt

)2

lt (y)k(x, y) f (Wt (y), y)dy,

for t=0,1,2,…,T−1

ψ0(x) = 0. (10)

Proof of this result is given in the “Appendix”. Using optimal control theory, we derive
the adjoint system and the resulting optimal release strategy in the following theorem.

Theorem 1 Given an optimal control r∗ and corresponding state solution W ∗
= W (r∗), there exist a weak solution λ ∈ (L∞(�))T satisfying the adjoint system

λt (x) = 1

1 + rt (x)
W ∗(x)
Wt (x)

∂ f (Wt (x), x)

∂W

∫

�

k(y, x)λt+1(y)dy + mt ,

with the transversality condition

λT (x) = 0, (11)

and furthermore

r∗
t (x) = (X − 1)Wt (x)

W ∗
(x)

, (12)

where X is the solution of

X3 + bX2 + d = 0 (13)

and b and d are defined by: b = n
2sW − 1, d = − f (Wt (x),x)

∫
� λt+1(y)k(y,x)dy

2sWtW ∗ .

Proof of this Theorem is given in the “Appendix”.Wefind the characterization of the
optimal control by solving Eq. (13). Using the proof of Theorem 1 (see “Appendix”),
if we analyse Eq. (32), we find its derivative is positive for all time. This implies that
Eq. (32) has precisely one real root. If we obtain a negative real root, we set the control
to zero. The solution is zero when C > A1 indicating that the optimal strategy is to
not release any sterile mosquitoes. This means that the burden imposed by the wild
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mosquito population (in terms of disease or nuisance biting) is so low that we do not
need to instigate a sterile mosquito release programme. When the real root is positive,
we release sterile insects at the release ratio dictated by the root.

5 Numerical results

We use a forward-backward sweep numerical method (e.g., Lenhart and Workman
2007) to find the optimal control r ∈ �, where

� =
{
(r0(x), . . . , rT (x)) ∈ (L∞(�))T |0 ≤ rk(x) ≤ rmax , t = 0, 1, . . . , T

}

such that J (r∗) = minr∈� J (r). This iterative process starts by guessing the control
(in our case we start with r = 0), and using the initial conditions of the state we solve
the state equation forward in time. The next step is to use the new values of the state
to solve the adjoint equation backwards in time. The values of the adjoint equation
are used to solve the characterization of the control in order to get a new control value
at each time step. To speed up the convergence, the value of the control is updated by
taking a convex combination of the new and old control value. The new calculations of
the optimal control and states are compared with results from the previous iterations.
If the difference between iterations is less than 1%, the final control r is considered to
be optimal.

5.1 Homogeneous environments

Here, we apply the optimal control theory to homogeneous environment. To replicate
such environments we assume that the value of K (related to the carrying capacity) is
the same across the whole domain�. Throughout this section, we assume a uniformly
distributed wild population at t = 0 with m = n = 1, s = 5 and consider � = [0, 1],
unless otherwise stated. We have chosen these values to correspond to a high cost of
producing and releasing sterile insects compared to the cost associated with the wild
mosquitoes. With this set of costs, we do not expect a complete elimination of the
wild population. In the following, we investigate the Laplace kernel for the dispersal,
which is described by:

k(x, y) =
√

κL

4DL
e

(
−|x−y|

√
κL
4DL

)

(14)

where the parameters associated with this kernel follow κL = DL = 1.
We have chosen an exponential form for the dispersal kernel, as these dispersal

conditions have received themost support from the available data (Gratton and Zanden
2009;Estep et al. 2014).Model simulations show that in the absence of control, thewild
mosquito population increases until it approaches the stable equilibrium at time step
t = 5 (see Fig. 1). The distribution of the wild mosquito population changes through
time. Initially it has a uniform distribution, and as a result of their redistribution and
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Fig. 1 The density of the wild mosquito population without control increases initially until it approaches
the equilibrium at time step t = 5. A Laplace kernel is assumed for the dispersal in the domain � = [0, 1]
for A = 2 and K = 0.001

the chosen boundary conditions, mosquitoes tend to aggregate more in the centre of
the domain as opposed to its boundaries.

When the control is introduced, the wild mosquito population decreases, but does
not go to zero (see Fig. 2b). Similar to the behaviour without control, the population
is aggregated in the centre of the domain and reduces towards the boundaries. For
an effective SIT technique (capable of suppressing the wild mosquito population for
the cost function and parameters given above), we need approximately 1.23:1 ratio of
sterile to wild mosquitoes initially and releases should be applied more in the centre
of the domain. The number of releases decreases through time (Fig. 2a) as the wild
mosquito population size decreases to the point that they do not impose a high burden
to the environment. This is the reason why the wild population size does not go to zero
in Fig. 2b. Releasing sterile mosquitoes can reduce significantly the wild mosquito
population, (by approximately 73% by time step t = 5) which could have a positive
impact on disease management.

5.2 Heterogeneous environments

Very often, a habitat has different attractiveness to mosquitoes in different areas. This
can be influenced by factors such as resource availability (e.g. food, mates, breeding
sites) and predation. In this section,we analyse how landscape heterogeneity affects the
dispersal and the optimal control ofmosquitoes.We replicate this behaviour by varying
the value of K (the strength of density feedbacks related to the carrying capacity). We
consider situations (a) when the centre of the domain has more favourable Conditions
(see Figs. 3, 4a), (b) when the boundaries of the domain have more favourable condi-
tions (see Figs. 5, 6a). We conclude that through time, the population in situation (a)
aggregates more in the centre of the domain, as expected, because the conditions are
more favourable there. This is true for populations with and without control. Without
control, the wild mosquito population slightly decreases initially at the boundaries
until it approaches the stable equilibrium. On the other hand, in the centre of the
domain, the wild mosquito population increases until it approaches its equilibrium
at t = 5. Once the control is introduced, we see from Fig. 4b that releasing sterile
mosquitoes greatly suppresses the wild mosquito population. The optimal strategy in
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Fig. 2 a The number of sterile mosquitoes released over time in a homogeneous environment. b The density
of the wild mosquito population under the optimal control strategy in the domain � = [0, 1] for A = 2 and
K = 0.001. A Laplace kernel is assumed for the dispersal. Releasing sterile mosquitoes does not eliminate
the wild population, but it significantly reduces it

Fig. 3 The density of the wild mosquito population increases at the centre of the domain. Wild mosquito
population through time, with no control, when only the centre of the domain has favourable conditions.
Laplace kernel is assumed
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Fig. 4 a The number of sterile mosquitoes released over time in the heterogeneous environment. b The
density of the wild mosquito population under the optimal control strategy in the domain � = [0, 1] for
A = 2 and K = 0.001, when only the centre of the domain has favourable conditions. A Laplace kernel
is assumed for the dispersal. Releasing sterile mosquitoes does not eliminate the wild population, but it
significantly reduces it

Fig. 5 In the absence of control, the density of the wild mosquito population increases initially at the
boundaries of the domain until it approaches the equilibrium
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Fig. 6 a The number of sterile mosquitoes released over time in the heterogeneous environment. b The
density of the wild mosquito population under the optimal control strategy in the domain � = [0, 1] for
A = 2 and K = 0.001, when only the boundaries of the domain have favourable conditions. A Laplace
kernel is assumed for the dispersal. Releasing sterile mosquitoes does not eliminate the wild population,
but it significantly reduces it

this scenario is to release more sterile mosquitoes in the centre of the domain where
they are concentrated. Figure 4a gives the optimal number of sterile mosquitoes that
need to be released in order to control the wild mosquito population. We release sub-
stantially more mosquitoes at the centre of the domain than its boundaries at time step
t = 1. This is because dispersing mosquitoes are moving more towards the centre and
at this level the burden imposed by the wild mosquito population is so high that a large
number of mosquitoes need to be released in order to suppress the population. Once
the population is suppressed, after t = 2, the ratio of releases between boundaries and
centre of domain is decreased. We get the opposite behaviour when the conditions
are more favourable in the boundaries. Without control, from Fig. 5, we notice that
the population increases initially and it approaches an equilibrium at time t = 5. As
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expected, the population size increases more in the boundaries, because mosquitoes
will move more towards them as the conditions for mosquito reproduction are better.
Using the control, we see from Fig. 6b that the population quickly decreases until it
reaches a threshold where they do not impose a high burden. The optimal strategy in
this case is to release more sterile insects in the boundaries initially (until t = 3) and
after the wild population has reached a critical low threshold (e.g., where the effects
are not very harmful), the ratio of release between boundaries and the centre of domain
is decreased.

6 Discussion

Here, we formulated a novel mathematical model to understand the effects of releasing
sterile mosquitoes into wild populations as well as the effect of spatial spread on
mosquito population dynamics. The approach described here has not been used before
in designing and optimizing sterile insect release strategies.

The model is described by an integrodifference equation, which are used to model
populations where growth and dispersal do not happen at the same time. In our model
we consider a homogeneous population consisting of wild and sterile mosquitoes with
no overlapping generations. The growth function is based on the Ricker model and
we assume releases proportional to wild population equilibrium. The spatial spread
of the mosquitoes is described by the dispersal kernel k(x, y) in the integrodifference
equation.

Using numerical simulations, we considered homogeneous environments with
uniform carrying capacity, and heterogeneous environments with different carrying
capacity in different areas, where the Laplace kernel describes mosquito movement.
One significant finding is that, due to redistribution, applying the optimal control
does not eradicate the wildtype mosquito but only substantially reduces popula-
tion size. In practice, sterile mosquitoes may be released from aircraft resulting in
releases that are approximately uniform. Our results highlight that this is not opti-
mal and instead releasing more where the population densities are higher is more
efficacious for vector control. Our model predicts a 73% suppression of the wild
population which is close to observed field estimates, where > 80% suppression
rates have been reported for A. aegypti control (Harris et al. 2012; Carvalho et al.
2015).

In heterogeneous environments, we consider situations where the centre of the
domain has more favourable conditions or when the boundaries have more favourable
conditions. In both cases the control significantly suppresses the mosquito population.
Our results suggest (as expected) that more mosquitoes should be released where
densities are higher. Another (expected) result from this model is that the optimal
strategy is to release significantlymore sterilemosquitoes at the beginning of the vector
management control programme until the wild mosquito population is suppressed to
a level that the imposed burden is so low.

Here we show that continuous releases predict that complete eradication of the
wild population is not an optimal solution. Furthermore, integrating different control
options (insecticide knockdowns, pulse or continuous SIT) to achieve cost-efficient
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control strategies needs more thorough investigation (Hackett and Bonsall 2018).
Additionally, we argue that this discrete-time, continuous-space model approach
is better than previous ones (described in Introduction) in finding the time and
intensity of control, as it can include a variety of dispersal behaviour. This is cru-
cial when modelling mosquito control. However, we emphasize the importance
of determining a more accurate dispersal kernel that supports the field data, as
the wave speed is very sensitive to the dispersal behaviour. Depending on the
specific system parameterization, the results presented here are likely to be sensi-
tive to the cost function form and the parameters used in this function. We have
assumed a quadratic form, but other functions can be explored (see Khamis et al.
2018). This will change the objective functional J (r) and the characterization of
the optimal control. Importantly, our results emphasize that optimal control does
not necessarily lead to population elimination. Varying the parameters (m, n, &
s in Eq. 7) associated with the cost of the wild and sterile mosquitoes will most
likely modify this outcome. If we lower the cost of producing and releasing ster-
ile mosquitoes, we can achieve elimination of the wild population. In summary, we
showed that the optimal control of the SIT model described by an integrodifference
equation exists and that the control can significantly suppress the wild mosquito
population.
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Appendix

Derivation of the sensitivity of the state with respect to the control

To characterize an optimal control we need to differentiate the map r −→ J (r). In
order to do this we need to first differentiate the control-to-solution map r −→ W =
W (r). The directional derivative ψ of this solution map is known as the sensitivity of
the state with respect to the control. The next step is to derive the equation of ψ by
taking the derivative of the control-to-solution map in the direction l, and assuming
that the perturbed control function contains W ε

t ≈ Wt .

Theorem 2 The mapping r −→ W is differentiable in the following sense: for any
r ∈ � and l ∈ (L∞(�))T , such that (r + εl) ∈ � for small ε, there exist sensitivity

ψ(x) ∈ (L∞(�))T+1 such that for t = 0, 1, . . . , T we have W ε
t (x)−Wt (x)

ε
−→ ψt (x)

pointwise on �. Furthermore the sensitivity satisfies:
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ψt+1(x) =
∫

�

1

1 + rt (y)
W ∗
Wt

k(x, y)
∂ f (Wt (y), y)

∂W
ψt (y)dy (15)

−
∫

�

(
1

1 + rt (y)
W ∗
Wt

)2

lt (y)k(x, y) f (Wt (y), y)dy, (16)

for t=0,1,2,…,T−1

ψ0(x) = 0 (17)

Proof Consider the control-to-solution maps

r −→ W = W (r)

r + εl −→ W ε = W (r + εl) (18)

where l is an arbitrary variation. From Eqs. (6) and (18) we can write the following

W ε
t+1(x) =

∫

�

1

1 + rt (y)
W ∗
Wt

(

1 − 1

1 + rt (y)
W ∗
Wt

εlt (y)
W ∗(y)
Wt (y)

)

k(x, y) f (W ε
t (y), y)dy

and obtain

W ε
t+1(x) − Wt+1(x)

ε
=

∫

�

1

1 + rt (y)
W ∗
Wt

k(x, y)
f (W ε

t (y), y) − f (Wt (y), y)

ε
dy

−
∫

�

(
1

1 + rt (y)
W ∗
Wt

)2

lt (y)
W ∗(y)
Wt (y)

k(x, y) f (W ε
t (y), y)dy

(19)

Using W ε
0 = W0 we obtain

W ε
1 (x) − W1(x)

ε
= −

∫

�

(
1

1 + r0(y)
W ∗
Wt

)2

l0(y)
W ∗(y)
W0(y)

k(x, y) f (W ε
0 (y), y)dy

(20)

This means that

∣
∣
∣
∣
W ε

1 (x) − W1(x)

ε

∣
∣
∣
∣ ≤ C1,∀x ∈ � (21)

We notice from Eq. (20) that
W ε

1 (x)−W1(x)
ε

does not depend on ε and therefore
W ε

1 (x)−W1(x)
ε

−→ ψ1(x) pointwise. Similarly we obtain
W ε

2 (x)−W2(x)
ε

−→ ψ2(x).
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By iteration we have

∣
∣
∣
∣
W ε

t (x) − Wt (x)

ε

∣
∣
∣
∣ ≤ Ct ,∀x ∈ � (22)

Subsequently we have W ε
t (x)−Wt (x)

ε
−→ ψt (x) weakly in L2(�). Using the pointwise

convergence we can show that ψ satisfies

ψt+1(x) =
∫

�

1

1 + rt (y)
W ∗
Wt

k(x, y)
∂ f (Wt (y), y)

∂W
ψt (y)dy

−
∫

�

(
1

1 + rt (y)
W ∗
Wt

)2

lt (y)k(x, y) f (Wt (y), y)dy, (23)


�

Proof of Theorem 1

Let r∗ be an optimal control and W (r∗) the corresponding state. For the arbitrary
variation l with (r∗ + εl) ∈ � for very small positive ε, let W ε be the corresponding
solution of the state Eq. (6). As the adjoint equation is linear in λ, there exists a weak
solution λ which satisfies Eq. (11). To characterize the optimal solution, we take the
directional derivative of the cost function J (r) with respect to r in the direction l.
Since J (r∗) is a minimum value we have

0 ≤ lim
ε→0+

J (r∗ + εl) − J (r∗)
ε

= lim
ε→0+

1

ε

[
T−1∑

t=0

∫

�

(
mtW

ε
t (x) + nt

(
r∗
t (x) + εlt (x)

)
W ∗(x) + st (r

∗
t (x)

+ εlt (x))
2
)

(W ∗)2(x)dx

−
T−1∑

t=0

∫

�

(mtW
∗
t (x) + ntr

∗
t (x)W ∗(x) + st (r

∗
t )2(x)(W ∗)2(x))dx

]

=
T−1∑

t=0

∫

�

[
mtψt (x) + ntW

∗(x)lt (x) + 2str
∗
t lt (x)(W

∗)2(x)
]
dx (24)

In the last expression we have used W ε
t (x)−Wt (x)

ε
= ψt (x) [from Eq. (22)]. We

calculate first the term
∑T−1

t=0

∫
�
[mtψt (x)] dx by adding λTψT (x) (which is zero

due to the transversality condition) and using the adjoint equation:

T−1∑

t=0

∫

�

[mtψt (x)] dx =
T−1∑

t=0

∫

�

[

λt (x) − 1

1 + rt (x)
W ∗(x)
Wt (x)

∂ f (Wt (x), x)

∂W

∫

�

k(y, x)λt+1(y)dy

]

ψt (x)dx
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=
T−1∑

t=0

∫

�

λt (x)ψt (x)dx −
T−1∑

t=0

∫

�

1

1 + rt (x)
W ∗(x)
Wt (x)

∂ f (Wt (x), x)

∂W
ψt (x)

∫

�

k(y, x)λt+1(y)dydx

=
T−1∑

t=0

∫

�

[λt (x)ψt (x) + λT (x)ψT (x)] dx

−
T−1∑

t=0

∫

�

1

1 + rt (x)
W ∗(x)
Wt (x)

∂ f (Wt (x), x)

∂W
ψt (x)

∫

�

k(y, x)λt+1(y)dydx

=
T−1∑

t=0

∫

�

λt+1(x)ψt+1(x)dx −
T−1∑

t=0

∫

�

λt+1(x)
∫

�

1

1 + rt (y)
W ∗(y)
Wt (y)

∂ f (Wt (y), y)

∂W
ψt (y)k(x, y)dydx

=
T−1∑

t=0

∫

�

λt+1(x)

[

ψt+1(x) −
∫

�

1

1 + rt (y)
W ∗(y)
Wt (y)

k(x, y)
∂ f (Wt (y), y)

∂W
ψt (y)dy

]

dx

=
T−1∑

t=0

∫

�

−λt+1(x)
∫

�

(
1

1 + rt (y)
W ∗(y)
Wt (y)

)2

lt (y)k(x, y) f (Wt (y), y)dydx

=
T−1∑

t=0

−
∫

�

lt (x) f (Wt (x), x)

(
1

1 + rt (x)
W ∗(x)
Wt (x)

)2 ∫

�

λt+1(y)k(y, x)dydx

where the third equality is obtained by switching the order of integration in the second
integral. Going back to Eq. (24) we obtain:

T−1∑

t=0

−
∫

�

[(

lt (x) f (Wt (x), x)

(
1

1 + rt (x)
W ∗(x)
Wt (x)

)2 ∫

�

λt+1(y)k(y, x)dy

)

+ ntW
∗(x)lt (x) + 2str

∗
t lt (x)(W

∗)2(x)
]

dx

(25)

We need

− lt (x) f (Wt (x), x)

(
1

1 + rt (x)
W ∗(x)
Wt (x)

)2 ∫

�

λt+1(y)k(y, x)dy + ntW
∗(x)lt (x)

+ 2str
∗
t lt (x)(W

∗)2(x) = 0

(26)

(to ensure minimization of cost functional) from which we get

− f (Wt (x), x)

(
1

1 + rt (x)
W ∗(x)
Wt (x)

)2

×
∫

�

λt+1(y)k(y, x)dy + ntW
∗(x) + 2str

∗
t (W ∗)2(x) = 0. (27)
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Defining

A1 = f (Wt (x), x)
∫

�

λt+1(y)k(y, x)dy, (28)

B = W ∗(x)
Wt (x)

, (29)

C = ntW
∗(x), (30)

D = 2st (W
∗)2(x), (31)

allows Eq. (27) to be written as:

−A1

(1 + Br)2
+ C + Dr = 0. (32)

We can transform Eq. (32) as:

A1 =
(

C − D

B

)

(1 + Br)2 + D

B
(1 + Br)3. (33)

Letting X = 1 + Br , b = CB
D − 1 = n

2sW − 1 and d = −A1B
D =

− f (Wt (x),x)
∫
� λt+1(y)k(y,x)dy

2sWtW ∗ in Eq. (33) we obtain the following cubic equation:

X3 + bX2 + d = 0. (34)
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