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PHC1 maintains pluripotency by organizing
genome-wide chromatin interactions of the
Nanog locus
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Polycomb group (PcG) proteins maintain cell identity by repressing gene expression during

development. Surprisingly, emerging studies have recently reported that a number of PcG

proteins directly activate gene expression during cell fate determination process. However,

the mechanisms by which they direct gene activation in pluripotency remain poorly under-

stood. Here, we show that Phc1, a subunit of canonical polycomb repressive complex 1

(cPRC1), can exert its function in pluripotency maintenance via a PRC1-independent activa-

tion of Nanog. Ablation of Phc1 reduces the expression of Nanog and overexpression of Nanog

partially rescues impaired pluripotency caused by Phc1 depletion. We find that Phc1 interacts

with Nanog and activates Nanog transcription by stabilizing the genome-wide chromatin

interactions of the Nanog locus. This adds to the already known canonical function of PRC1 in

pluripotency maintenance via a PRC1-dependent repression of differentiation genes. Overall,

our study reveals a function of Phc1 to activate Nanog transcription through regulating

chromatin architecture and proposes a paradigm for PcG proteins to maintain pluripotency.
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P luripotent stem cells (PSCs) can self-renew indefinitely in
culture while maintaining the potency to give rise to any
cell types of the three germ layers1,2. Master transcription

factors (TFs) including Oct4, Sox2, and Nanog (OSN) are
essential for the maintenance of pluripotency by forming the core
autoregulatory circuitry that orchestrates a pluripotent-specific
transcriptional network3–6. At three-dimensional (3D) genome
level, recent studies have shown that OSN together with coacti-
vators such as mediator and the transcriptional apparatus bind to
cis-regulatory elements termed super-enhancers (SEs) of gene loci
associated with pluripotent cell identity7,8. SEs which are defined
by high OSN occupancy and enrichment of active chromatin
marks such as histone 3 lysine 27 acetylation (H3K27ac) in PSCs,
contact multiple promoters to form pluripotency-specific inter-
action networks9,10. Therefore, master TFs cooperate with epi-
genetic modifiers to drive robust expression of pluripotent genes
by shaping the chromatin landscape9.

Polycomb group (PcG) proteins maintain cell identity
by transcriptionally silencing developmental genes during
embryogenesis10,11. PcG proteins assemble into two major
multi-subunit complexes called the polycomb repressive com-
plex 1 and 2 (PRC1 and PRC2). PRC2 catalyzes tri-methylation
of histone H3 at lysine 27 (H3K27me3) through the histone
methyltransferase Ezh1/212. The PRC1 complexes contain the
E3 ligases Ring1A/B and one of Pcgf proteins as the core,
capable of mono-ubiquitinating lysine 119 of histone H2A
(H2AK119ub1)11. Based on the subunit composition, PRC1 is
further classified into canonical or non-canonical PRC1 (cPRC1
and ncPRC1). The Cbx subunit (Cbx2/4/6-8) of the cPRC1
complex reads PRC2-mediated H3K27me3 and recruits it to the
chromatin, and the Phc subunit (Phc1-3) promotes subsequent
chromatin condensation and gene silencing through oligo-
merization of the sterile alpha motif (SAM)11. However, the
ncPRC1 complex contains a Rybp or Raf2 subunit, but lacks
both Phc and Cbx proteins, and adopts a PRC2/H3K27me3-
independent targeting to the chromatin which drives PRC2
recruitment13–15. Thus, PRC2 and PRC1 act concertedly to
deposit H3K27me3 and H2AK119ub1 histone modifications,
thereby establishing a repressive chromatin landscape to silence
gene expression11. In PSCs, both PRC2 and PRC1 bind to
developmental regulators and repress their expression thereby
maintaining the cells in the undifferentiated state16,17. Recent
Hi-C (high-throughput Chromosome Conformation Capture)
technology has shown that PRC1-bound sites in the genome
contact each other to form chromatin loops through PHC-SAM
polymerization for developmental gene repression18–22. Intri-
guingly, besides their well-established gene repression function,
several studies have reported that a number of PcG proteins,
PRC1 subunits in particular, directly activate gene expression to
regulate cell fate decision in a PRC1-independent manner23–31.
In PSCs, PRC1 proteins such as Rybp and Pcgf5 have been
reported to associate with TFs to activate transcription26,28.
However, the molecular mechanisms underpinning how PcG
proteins cooperate with master TFs to activate pluripotency-
associated genes remain poorly understood.

In this work, we show that Phc1 is highly enriched in plur-
ipotent cells in comparison with differentiated cells, and
depletion of Phc1 in both mouse and human embryonic stem
cells (mESCs and hESCs) compromises pluripotency partially
through reducing Nanog expression. Furthermore, Phc1 inter-
acts with Nanog and activates its transcription by stabilizing
intra- and inter-chromosomal interactions of the Nanog locus.
Our study demonstrates that Phc1 maintains pluripotency not
only through PRC1-dependent repression of developmental
genes, but also through organizing genome-wide chromatin
interactions of the Nanog locus.

Results
PHC1 is highly expressed in pluripotent cells. In order to
identify cPRC1 genes that are highly expressed in human plur-
ipotent stem cells (hPSCs), we performed differential gene
expression analysis of all the cPRC1 subunits as well as core
PRC2 subunits. We observed highly enriched expression of CBX2,
CBX7, PHC1, PHC3, RING1B, and EZH2 in hESCs (H9) and
human induced pluripotent stem cells (iPSCs) in comparison to
human foreskin fibroblasts (HFFs) (Fig. 1a). In particular, we
found that the expression of PHC1, similar to key pluripotency
factors POU5F1 and NANOG, declined during differentiation of
embryoid bodies (EBs), indicating that PHC1 was specifically
expressed in the undifferentiated PSCs (Fig. 1b). This finding was
further confirmed by western blot (WB) analysis in multiple
hPSCs including hESCs, iPSCs, and NCCIT, a human ter-
atocarcinoma cell line (Fig. 1c). Next, we analyzed the publicly
available single-cell RNA sequencing data of early human
embryos and found that the expression of PHC1 among other
analyzed PRC1 genes such as RING1B, PHC2, PHC3, and CBX2
was enriched in epiblast (EPI) relative to trophectoderm (TE) and
primitive endoderm (PE) lineages (Fig. 1d and Supplementary
Fig. 1a)32. Moreover, the expression of NANOG is positively
correlated with that of PHC1, but not RING1B, at E5 EPI lineage
(Fig. 1d and Supplementary Fig. 1b). Immunostaining of E4.5
mouse embryos demonstrated that the expression of Phc1 co-
localized with Nanog and Sox2 in EPI, but not with PE marker
Gata6 (Fig. 1e). Taken together, these results demonstrate that
PHC1 is highly enriched in both human and mouse pluripotent
cells as opposed to the differentiated cells therefore suggesting
PHC1 may play an important role in the maintenance of
pluripotency.

PHC1 maintains pluripotency of hESCs beyond PRC1. To
functionally evaluate the role of PHC1 in the maintenance of
hESCs, we performed shRNA-mediated knockdown using
shRNAs targeting either the human PHC1 gene (shPHC1.1 &
shPHC1.2) or a scrambled (shScr) negative control (Supplemen-
tary Fig. 2a, b and Supplementary Table 3). Suppression of PHC1
expression by both shRNAs induced differentiation and sig-
nificantly decreased the colony-forming capacity of hESCs
(Fig. 2a, b), which indicates that PHC1 is required for the self-
renewal of hESCs. We further performed teratoma formation
assay in NOD/SCID mice. Knocking down PHC1 in particular
with shPHC1.1 significantly reduced the tumor sizes compared to
that of the control (Fig. 2c). Histological analysis of the tumors
showed that, in comparison with the control, hESCs after PHC1
suppression gave rise to less mature neural, gland, and muscle
tissues representative of ectoderm, endoderm, and mesoderm,
respectively (Supplementary Fig. 2c). These results demonstrated
that PHC1 is required for the pluripotency maintenance of hESCs
in vivo. At the molecular level, knocking down PHC1 decreased
the level of NANOG, but not that of OCT4 and SOX2 (Fig. 2d).
Interestingly, suppression of PHC1 expression did not obviously
change the levels of RING1B, the E3 ligase subunit of PRC1, and
its associated histone modification H2AK119ub1 level was not
consistently affected (Fig. 2d). This result implies that PHC1
knockdown impairs pluripotency of hESCs independently of
PRC1. To further verify that PHC1 suppression downregulates
NANOG level, we employed a clustered regulatory interspaced
short palindromic repeats (CRISPR)-associated protein 9
(Cas9) approach to knockout human PHC1 gene in hESCs by
targeting exon 7 (Fig. 2e). This led to drastic downregulation of
NANOG expression concomitant with PHC1 ablation in the bulk
population of hESCs (Fig. 2e). This observation is consistent
with the shRNA-based knockdown results and indicates that

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22871-0

2 NATURE COMMUNICATIONS |         (2021) 12:2829 | https://doi.org/10.1038/s41467-021-22871-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


downregulation of NANOG caused by PHC1 suppression was
unlikely due to an off-target effect (Fig. 2d). Furthermore,
immunofluorescent co-staining of PHC1 with NANOG, OCT4,
or SOX2 in hESCs also showed that, at single-cell level
PHC1 suppression correlated with lower expression of NANOG,
but not OCT4 and SOX2 (Fig. 2f). The percentage of

PHC1lowNANOGlow cells was significantly higher than that of
PHC1highNANOGlow cells due to heterogeneous expression of
NANOG in the shPHC1-infected hESC population as previously
reported33 (Fig. 2g). This result also supports that PHC1 sup-
pression specifically reduces NANOG expression (Fig. 2g). Taken
together, these results imply that PHC1 is required for the
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Fig. 1 PHC1 is highly expressed in both human and mouse pluripotent cells. a PRC1 and PRC2 gene expression was examined by RT-qPCR in HFFs, hESCs,
and hiPSCs. ACTIN was used as the house keeping gene and expression was normalized to HFFs. n= 4 independent experiments for PRC1 genes; n= 3
independent experiments for PRC2 genes including EZH1, EZH2, EED, and SUZ12. Error bars represent the s.e.m. Two-tailed unpaired t-tests were used (p=
0.0256 for CBX8, p= 0.0201 for PCGF2, p= 0.0498 for PHC1 in HFFs vs. ESCs, p= 0.0104 for PHC1 in HFFs vs. iPSCs, **p= 0.0022 for EZH2, ***p=
0.0003 for EZH2, **p= 0.0034 for SUZ12, *p= 0.0111 for SUZ12). b Expressions of PRC1 and PRC2 genes and key pluripotency factors POU5F1 and NANOG
during embryoid body differentiation (D0–D7) of hPSCs were examined by RT-qPCR. n= 3 independent experiments for CBX2, CBX7, and EZH2; n= 4
independent experiments for the other genes. Error bars represent the s.e.m. c WB analysis of PHC1 and NANOG protein expression in hPSCs and HFFs.
d Analysis of the published single-cell RNA-seq data of early human embryos (E5–7) showing expression of NANOG and PHC1 in epiblast (Epi), primitive
endoderm (PE), and trophectoderm (TE)32. e Co-immunostaining of Phc1 with Nanog and Sox2, or Gata6 and Sox2 in mouse E4.5 embryos. Scale bars,
31 μm. Source data are provided as a Source Data file.
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Fig. 2 PHC1 is required for the pluripotency maintenance of hESCs. a, b Morphology and colony-forming capacity of shScr-, shPHC1.1-, and shPHC1.2-
infected hESCs. Scale bars, 600 μm. Cells were stained for alkaline phosphatase activity 14 or 18 days after plating. Bar plot shows mean colony-
formation efficiencies normalized to the shScr. Mean ± s.d. of n= 3 independent experiments. Two-tailed unpaired t-tests were used (**p= 0.0022,
*p= 0.0458). c Comparison of tumor sizes about 1 month after injection of shScr-, and shPHC1-infected hESCs into NOD/SCID mice. Data are presented
as mean ± s.e.m. In each group, 4 NOD/SCID mice were injected. Two-tailed unpaired t-tests were used (*p= 0.0211). d WB analysis of PHC1, NANOG,
OCT4, SOX2, RING1B, H2AK119ub1, and ACTIN protein levels in shScr and shPHC1-infected hESCs. e WB analysis of PHC1 and NANOG protein levels in
hESCs infected with control and CRISPR-CAS9 vector targeting human PHC1 gene. f Immunofluorescent co-staining of PHC1 with NANOG, OCT4, or
SOX2 in shScr- and shPHC1-infected hESCs. Arrowheads showed cells with low PHC1 and NANOG signals. Scale bars, 20 μm. g The ratios of cells
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independent counts for shPHC1.1 and shPHC1.2. Two-tailed unpaired t-tests were used (p= 0.0065 for shPHC1.1, p= 0.0048 for shPHC1.2). Source data
are provided as a Source Data file.
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maintenance of hESCs possibly through specifically regulating
NANOG expression.

Since PHC1 is a subunit of cPRC1, we looked into the impact
of PHC1 suppression on PRC1 in hESCs. We first examined the
composition of PRC1 in hESCs. Super-resolution microscopic
imaging analysis of PHC1 and RING1B co-immunostaining
showed that, while the majority (around 80%) of PHC1 and
RING1B signals overlapped, some did not co-localize with each
other (Supplementary Fig. 3a, b). This observation indicates that
PHC1 and RING1B associate primarily, but not exclusively, to
form cPRC1 in hESCs. Interestingly, despite RING1B being
known to associate with various subunits to form ncPRC1 in the
absence of PHC111, RING1B-nonoverlapping PHC1 (approxi-
mately 20%) signals suggest that PHC1 may possess PRC1-
independent functions. To dissect this, we analyzed the publicly
available Phc1 and Ring1B ChIP-seq data in mESCs16. We
observed that while Phc1 and Ring1b co-occupied majority of
their bound targets (Phc1: 1095/1734 ≈ 63%; Ring1b: 1095/
6349 ≈ 17%), there were still approximately 24% of Phc1-bound
genes and 43% of Ring 1b occupied targets that did not overlap
with each other (Supplementary Fig. 3c). Ano2 and Foxj2 genes
with nonoverlapping Phc1 and Ring1b binding peaks were
shown as the examples (Supplementary Fig. 3d). Furthermore,
by performing immunoprecipitation (IP) experiments, we
showed that endogenous RING1B was able to precipitate both
PHC1 and CBX7, subunits of cPRC1, and RYBP, a core
constituent of ncPRC1 (Supplementary Fig. 3e). This result
indicates that RING1B associates with PHC1 and CBX7 as well
as RYBP to form cPRC1 and ncPRC1 in hESCs, respectively.
Further IP results showed that PHC1 suppression neither
significantly affected the expressions of CBX7, RYBP, and
RING1B, nor their precipitations by RING1B (Supplementary
Fig. 3f). This finding indicates that PHC1 knockdown did not
disrupt the assembly of PRC1 in hESCs. We then asked whether
PHC1 knockdown affected the occupancy of PRC1 target genes
in hESCs by performing H2AK119ub1 ChIP-PCR (Supplemen-
tary Figs. 3g and 4). Suppression of PHC1 did not significantly
change the H2AK119ub1 enrichment levels of EOMES, GSX2,
EX2, GATA4, and GATA6 (Supplementary Fig. 3g), known
PRC1 target developmental genes representative of mesoderm,
ectoderm, and primitive endoderm, respectively17. Thus, it
demonstrates that PHC1 knockdown did not influence PRC1-
associated H2AK119ub1 enrichment of target differentiation
genes in hESCs. Taken together, these results indicate that
PHC1 may possess a PRC1-independent role in maintaining
pluripotency of hESCs.

PRC1-independent regulation of Nanog by Phc1 in mESCs. To
further investigate the mechanisms by which PHC1 regulates
pluripotency, we used CRISPR-Cas9 method to completely
knockout Phc1 in mESCs by two pairs of guide RNAs indepen-
dently targeting exon 2 and exons 7–11, respectively (Fig. 3a,
Supplementary Fig. 5a, and Supplementary Table 3). This led to
the generation of four Phc1-deficient (Phc1−/−) mESC clones
verified by WB analysis which showed the absence of Phc1 pro-
tein (Fig. 3a, b and Supplementary Fig. 5a, b). Depletion of Phc1
induced spontaneous differentiation of mESCs (Fig. 3a and
Supplementary Fig. 5a). Consistent with PHC1 knockdown
results in hESCs (Fig. 2d, e), Phc1 knockout in mESCs sig-
nificantly reduced the expression of Nanog protein in multiple
clones (Fig. 3b and Supplementary Fig. 5b), whereas Oct4 and
Sox2 expression levels did not significantly change (Fig. 3b). By
contrast, knocking down Ring1b did not significantly affect
Nanog expression despite that it caused derepression of a few
PRC1 target genes (Supplementary Fig. 5c, d). This result

demonstrates that Phc1 specifically regulates Nanog among the
core pluripotent TFs. qPCR analysis showed that ablation of Phc1
led to significant reduction in the transcript abundance of Nanog
and its known direct target genes such as Klf4 and Esrrb
(Fig. 3c)34,35, indicating that Phc1 positively regulates the tran-
scription of Nanog. Furthermore, we knocked down Phc1 in a
mESC line carrying the Nanog-GFP reporter. Flow cytometric
analysis showed that suppression of Phc1 significantly reduced
the fraction of GFP+ cells similar to Nanog knockdown positive
control (Fig. 3d), further supporting the idea of Phc1 regulating
Nanog at the transcriptional level. To examine if reduced Nanog
expression in part mediates the effect of Phc1 depletion on
pluripotency maintenance of mESCs, we overexpressed exogen-
ous Nanog tagged with Flag epitope in the wild-type and Phc1−/−

mESC line. In line with the role of Nanog in supporting self-
renewal of mESCs36, overexpression of exogenous Nanog in the
Phc1−/− mESCs restored their undifferentiated morphology,
clonogenicity, and expressions of its target genes associated with
pluripotency and PE, but not the non-target genes involved in
mesoderm and ectoderm differentiation (Fig. 3e–h and Supple-
mentary Fig. 5e). Taken together, our results demonstrated that
Phc1 functions upstream of Nanog and maintains pluripotency of
mESCs at least in part through positively regulating Nanog.

To discern between the PRC1-dependent and -independent
function of Phc1 in maintaining the pluripotency of mESCs,
we analyzed the available ChIP-seq data of Phc1 against that
of PRC1-dependent repressive H2AK119ub1 and PRC1-
independnent active H3K27ac chromatin marks22,37. The analysis
showed that approximately 51% (884/1734) of the binding targets
of Phc1 overlapped with that of H2AK119ub1 (Fig. 4a) and as
expected many of the co-occupied targets are development-
associated genes as shown by GO pathway analysis (Fig. 4b)16,22.
Importantly, around 72% (1251/1734) of Phc1 target genes
including genes that are involved in regulating pluripotency of
stem cells were also occupied by active chromatin mark H3K27ac,
pointing out that Phc1 could also activate gene expression
to maintain pluripotency of mESCs (Fig. 4a, b). To fully
understand how Phc1 regulates the pluripotency of mESCs in
both PRC1-dependent and -independent manners, we performed
RNA sequencing of the Phc1+/+ mESCs + vector, Phc1−/−

mESCs + vector, and Phc1−/− mESCs + Nanog overexpression
followed by analysis against Phc1, H2AK119ub1, Nanog, and
H3K27ac ChIP-seq datasets (Fig. 4c). The results showed that
depletion of Phc1 induced downregulation of pluripotency-
associated genes including Nanog, Esrrb, and Satb1, etc. (Fig. 4c
yellow and blue clusters, and Supplementary Data 1). In contrast,
overexpression of Nanog in the Phc1−/− mESCs partly rescued
the expression of a subset of genes including Esrrb which were
bound by both Nanog and H3K27ac, but devoid of Phc1 binding
and H2Ak119ub1 mark (Fig. 4c blue cluster, and Supplementary
Data 1) as previously shown34. However, the expression levels of
some pluripotency-associated genes such as Satb1 were not
restored by overexpression of Nanog (Fig. 4c yellow cluster, and
Supplementary Data 1). Thus, these results demonstrated
that Phc1 activates pluripotency-related genes in both Nanog-
dependent and -independent manner. Moreover, consistent
with a previous study22, ablation of Phc1 also upregulated various
lineage-differentiation genes including Hox and neural
development-associated genes which were co-occupied by Phc1
and H2AK119ub1 (Fig. 4c purple cluster, and Supplementary
Data 1), supporting that Phc1 repressed the expression of these
genes in a PRC1-dependent manner. Overexpression of Nanog in
Phc1−/− mESCs reduced their expression levels similar to that of
Phc1+/+ mESCs + vector (Fig. 4c purple cluster, and Supple-
mentary Data 1), indicating that Phc1 represses this cluster of
differentiation-associated genes in a Nanog-dependent manner.
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Fig. 3 Phc1 maintains pluripotency of mESCs partly through Nanog. a Designing sgRNAs targeting the 2nd exon and 3rd intron of mouse Phc1, and the
morphology of the Phc1+/+ and Phc1−/− mESCs. Scale bars, 300 μm. bWB analysis of Phc1, Nanog, Oct4, Sox2, and Actin protein levels in the Phc1+/+ and
Phc1−/− mESCs. c qPCR analysis of transcript levels of Pou5f1, Sox2 Nanog, and its known direct target genes including Klf4 and Esrrb. Mean ± s.d. of n= 4
independent experiments. Two-tailed t-tests were used (p < 0.0001 for Nanog; p= 0.0023 for Pou5f1; p= 0.0216 for Sox2; p < 0.0001 for Klf4; p < 0.0001
for Esrrb). d Flow cytometry analysis quantifying GFP signal after Phc1 knockdown in a mESC line carrying the Nanog-GFP reporter. Nanog suppression was
used as the positive control. Mean ± s.d. of n= 3 independent experiments. e Morphology of Phc1+/+ and Phc1−/− mESCs transfected with an empty or
Flag-Nanog vector. Scale bars, 600 μm. f Immunoblotting of Flag, Nanog, and Tubulin in extracts of mESCs in (e). g Alkaline phosphatase staining of
mESCs in (e). h Quantification of colony-forming efficiencies of mESCs relative to Phc1+/+ + vector as the control in (e). Mean ± s.e.m. of n= 4
independent experiments. One-way ANOVA test with Bonferroni’s multiple comparison was used (**p= 0.0024, ***p= 0.0003, *p= 0.0319). Source data
are provided as a Source Data file.
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In contrast, some upregulated genes in the Phc1−/− mESCs were
not rescued by overexpression of Nanog (Fig. 4c green cluster,
and Supplementary Data 1), suggesting that Phc1 represses this
group of genes independently of Nanog. Taken together, our data
demonstrate that Phc1 regulates the transcriptional network of
mESCs through both Nanog-dependent and -independent
repression and activation function. To determine whether Nanog
and Phc1 form a transcriptional regulatory loop, we analyzed
Nanog and Oct4 ChIP-seq data in mESCs and found that both
Oct4 and Nanog bound to the promoter region of Phc1
(Supplementary Fig. 6a)8. However, knockdown of Pou5f1,
but not Nanog, robustly reduced the transcript levels of Phc1
as shown by qPCR analysis (Supplementary Fig. 6b, c). These
results indicate that both Phc1 and Nanog are direct transcrip-
tional targets of Oct4 rather than forming a transcriptional
regulatory loop.

PHC1 interacts with NANOG. Since our results demonstrated
that Phc1 controls pluripotency of mESCs partly through Nanog,
it prompted us to further investigate the relationship between
Phc1 and Nanog. Previous Nanog interactome studies have
shown that Nanog interacts with various TFs and chromatin-
modifying complexes to regulate self-renewal of ESCs38–40. To
test if Phc1 interacts with Nanog in ESCs, we performed co-
immunoprecipitation (Co-IP) experiments and observed that
endogenous PHC1 could precipitate endogenous NANOG, but
not OCT4 and SOX2 in hESCs, whereas endogenous RING1B
was not able to precipitate OCT4, SOX2, and NANOG except
PHC1 (Fig. 5a). These results demonstrated that PHC1 interacts
with NANOG to form a complex separate from cPRC1 in ESCs.
We generated PHC1-FLAG and NANOG-HA plasmids, and Co-
IP in HEK293T cells confirmed the interaction of exogenous
PHC1 with exogenous NANOG (Fig. 5b). Moreover, endogenous
Nanog could precipitate Phc1, but not Ring1b and Rybp, in
mESCs transfected with a Phc1 overexpression plasmid (Fig. 5c).

PHC1 organizes chromatin interactions of the Nanog locus. At
the 3D genome level, recent Hi-C data have shown that PHC1
promotes the formation of chromatin loops for PRC1-bound
developmental genes in the genome18–22. Previous studies have
shown that master TFs including Nanog bound to their own SEs
as well as SEs of other pluripotency-associated genes thereby
stabilizing promoter–enhancer looping and shaping 3D chromatin
landscape for transcriptional regulation7,8,41. The interaction of
Phc1 with Nanog independent of PRC1 in our study motivated us
to look into whether Phc1 is involved in organizing the chromatin
interactions of the Nanog locus in ESCs. We performed circular-
ized chromosome conformation capture sequencing (4C-seq) of
the genome-wide regions interacting with the Nanog locus in both
Phc1+/+ and Phc1−/− mESCs. By doing so, we showed that
ablation of Phc1 impaired the genome-wide chromatin interac-
tions of the Nanog locus in mESCs (Supplementary Fig. 7b and
Supplementary Data 2). Depletion of Phc1 altered the intra-
chromosomal interactions of Nanog promoter on chromosome
6 specific to mESCs (Supplementary Fig. 7a–d). In particular,
previously known contact regions such as Slc2a3 and 45 kb
upstream SE of the Nanog locus exhibited significantly reduced
interactions in Phc1−/− mESCs in comparison to Phc1+/+ control
(Fig. 5d). This result was consistent with the decreased contacts at
these regions observed in the Nanog knockdown mESCs com-
pared to the control after analysis of the previously published 4C-
seq data41 (Fig. 5d). The 45 kb upstream SE of the Nanog locus
which is defined by Nanog binding and high H3K27ac signals as
shown by ChIP-seq data analysis was previously reported
to activate Nanog transcription through enhancer–promoter

looping42. This supports that Phc1 cooperates with Nanog to
activate the transcription of Nanog by promoting its
enhancer–promoter looping. Taken together, our results demon-
strated that PHC1 interacts with NANOG to from a complex
separate from cPRC1 which stabilizes genome-wide chromatin
interactions of the Nanog locus to maintain pluripotency.

Discussion
This study uncovered the role of Phc1, a PcG protein, in main-
taining pluripotency of ESCs. Our results demonstrated that Phc1
controls pluripotency not only through PRC1-dependent
repression of developmental genes, but also via positive regula-
tion of Nanog. Overexpression of Nanog can partly rescue loss
of pluripotency induced by Phc1 deficiency. Importantly, PHC1
interacts with NANOG to form a separate complex which acti-
vates Nanog transcription through stabilizing intra- and inter-
chromosomal interactions of the Nanog locus (Fig. 6, proposed
model).

Our results showed that Phc1 expression was highly enriched
in both mouse and human PSC lines and epiblast in the early
embryos, and knockdown or knockout of Phc1 in hESCs or
mESCs compromised pluripotency. This suggests that Phc1 plays
an evolutionarily conserved role in maintaining pluripotency. In
line with this, knockout of Phc1 results in embryonic or perinatal
lethality with neural developmental defect43,44. A point mutation
in the SAM of human PHC1, a critical region for cPRC1-
mediated gene silencing, has been implicated in causing primary
microcephaly, a developmental disorder of neural progenitors45.
Consistent with this, Phc1-bound genes with H2AK119ub1
enrichment in mESCs are involved in nervous system develop-
ment and embryonic morphogenesis, and ablation of Phc1 led to
their derepression in our study, thus supporting that Phc1
maintains pluripotency through PRC1-dependent repression of
developmental genes16,17. However, we also found that PHC1
immunostaining signals did not completely overlap with
RING1B, and this finding was supported by Phc1-bound genes
devoid of Ring1B occupancy and H2K119ub1 enrichment, thus
indicating that Phc1 unlikely functions exclusively in a PRC1-
dependent repression. Instead, a large percent of Phc1 targets
which are involved in pluripotency are enriched with active
H3K27ac and their expression decreased in Phc1-deficient
mESCs, therefore pointing out that Phc1 also maintains plur-
ipotency in a PRC1-independent manner by activating plur-
ipotent genes. Our findings are supported by recent studies
reporting gene activation function of PcGs during development
and pluripotent cell fate decisions23–31.

We found that either suppression or depletion of Phc1 speci-
fically decreases Nanog expression in hESCs and mESCs,
respectively, which is indicating that Phc1 positively regulates
Nanog transcription through direct and/or indirect mechanisms.
Nanog locus is engaged in pluripotency-specific intra- and inter-
chromosomal associations which is dependent on core TFs such
as Nanog41,46. Nanog locus on murine chromosome 6 contains
three SEs (−45 kb upstream, −5 kb upstream, and +60 kb
downstream), and the −45 kb upstream and −5 kb upstream, but
not +60 kb downstream SEs have been shown to regulate Nanog
transcription through looping in ESCs42. We showed that PHC1
interacts with NANOG and promotes the genome-wide chro-
matin interactions of the Nanog locus (Fig. 5). Given the estab-
lished role of PHC-SAM in forming chromatin loops18–22, our
data support that Phc1 stabilizes the chromatin topology of the
Nanog locus for transcriptional activation. It remains unclear if
Phc1 achieves this by binding to a consensus DNA sequence or
non-coding RNA through its nucleic acid-binding FCS (Phe-Cys-
Ser) domain for the target specificity47.
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In summary, our study reveals the role of Phc1 in maintaining
pluripotency partly through positively regulating Nanog tran-
scription and proposes a mechanistic paradigm on transcriptional
activation by Phc1. This significantly extends our knowledge on
PcG-mediated regulation of gene expression. The concept of dual
function of PcG proteins to regulate cell fate decision by coop-
erating with TFs has a broad application beyond pluripotency

maintenance. It provides insights into understanding the func-
tions of PcG proteins in cell fate decision, normal development,
and human diseases.

Methods
Animal study. Mice were bred in the Experimental Animal Facility of Zhejiang
University. The experimental protocol and ethics were approved by the Animal
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Fig. 5 PHC1 interacts with NANOG and organizes genome-wide chromatin interactions of the Nanog locus. a Co-immunoprecipitation (Co-IP)
from total hESC extracts using antibodies against RING1B and PHC1 followed by immunoblotting of different proteins. b Co-IPs of nuclear extracts from
HEK293T cells transfected with PHC1-FLAG and NANOG-HA followed by immunoblotting. c IP of nuclear extracts from mESCs using an antibody against
Nanog and immunoblotting of Phc1, Ring1b, Rybp, and Nanog, respectively. d Top panel: Interaction profile showing the normalized interaction intensity
(y axis) of regions with the Nanog promoter (anchor) in chr6: 122500000-122700000 of mm9 genome assembly (x axis) in Phc1+/+ (green line) and
Phc1−/− (purple line) mESCs. Regions with significant decreases in Phc1−/− than Phc1+/+ mESCs were highlighted and statistical significance was indicated
with asterisk. n= 4 independent experiments. Paired single-side t-tests were used (from left to right p values are 0.0090, 0.0234, 0.0379, and 0.0304,
respectively). Middle panel: Analysis of the previously published 4C-seq datasets showing interaction profile of genomic regions near the Nanog promoter
(empirical anchor) in chr6: 122500000-122700000 of mm9 genome assembly in control (green line) and Nanog KD (purple line) mESCs41; H3K27ac and
Nanog ChIP-seq binding profiles in the corresponding regions8,37. Bottom panel: Hi-C interaction matrices of mouse cortical neurons (CNs) and mESCs in
chr6: 122500000-122700000 of mm9 genome assembly, respectively58. Source data are provided as a Source Data file.
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Care Facility of Zhejiang University (ZJU20200034). All in vivo experiments were
performed in accordance with protocols from the Institutional Animal Care. Day
4.5 mouse embryos were collected from mice for immunofluorescent staining. H9
hESCs were injected into NOD/SCID mice for teratoma formation.

Cell culture. H9 hESCs (WiCell, WA09) and human iPSCs were cultured on
Matrigel (BD Biosciences)-coated plates in complete mTeSR1 medium (STEM-
CELL Technologies)48,49. HFF (ATCC, SCRC-1041), HEK293T (ATCC, CRL-
11268), and MEF cells (Innovative Cellular Therapeutics Co, Ltd, 0304-500) were
cultured in DMEM-high glucose (Corning), supplemented with 10% fetal bovine
serum (FBS, Gibco). Mouse E14 ESCs (ATCC, CRL-1821) were maintained on
0.1% gelatin (Yisen)-coated plates in DMEM-high glucose, supplemented with 15%
FBS, GlutaMAX (Gibco), non-essential amino acids (Gibco), penicillin/strepto-
mycin (Gibco), 0.1 mM β-mercaptoethanol (Sigma), and 1000 U/mL leukemia
inhibitory factor (LIF, Millipore).

Gene knockout in mESCs and hESCs. We used CRISPR/Cas9-based genome
editing approach to knockout Phc1 in mESCs and hESCs. To generate Phc1-defi-
cient mESC lines, cells were transfected with px330 vector containing targeting
sequences using Lipofectamine 2000 (gRNA sequences were listed in Supplemen-
tary Table 3). After selection with 2 μg/mL puromycin for 2 days, puromycin-
resistant colonies were manually picked, expanded, and subjected to knockout
validation by PCR and immunoblotting analysis. Multiple Phc1-deficient mESC
lines were used for subsequent experiments. To knockout human PHC1 gene in
hESCs, gRNA sequences were cloned into the lentiCRISPR v2 vector (gRNA
sequences were listed in Supplementary Table 3). Lentiviruses were produced by
co-transfection of lentiCRISPR v2, psPAX2, and pMD2.G into 293T cells, and viral
supernatants were collected at 24 and 48 h after transfection. hESCs were infected
with the lentiviruses and selected with 2 μg/mL of puromycin. Bulk hESCs were
subjected to PHC1 immunoblotting for validation.

Stable gene knockdown and overexpression in mESCs. Sequences of shRNAs
against target genes were cloned into pLKO lentiviral vectors (shRNA target
sequences were listed in Supplementary Table 3). Lentiviruses were produced by
co-transfection of pLKO-shRNA, psPAX2, and pMD2.G into 293T cells, and viral
supernatant were collected at 24 and 48 h after transfection. To overexpress target
genes in E14 mESCs, gene sequences were cloned into pB-CAG vectors then
transfected into cells by using Lipofectamine 2000 (Life Technologies). After
knockdown or overexpression, the cells were cultured under 2 μg/mL of puromycin
and 200 μg/mL of hygromycin, respectively.

Human iPSCs generation. Human reprogramming was performed by over-
expression of four Yamanaka factors49. Briefly, HFFs were transduced in 6-well
plates using OCT4, SOX2, KLF4, and c-MYC (OSKM) lentivirus supernatants
produced in 293T cells. At 12 h after infection, cells were changed to DMEM-high
glucose medium supplemented with 20% FBS, GlutaMAX, non-essential amino
acids, penicillin/streptomycin, 0.1 mM β-mercaptoethanol, and 8 ng/mL basic
fibroblast growth factor (bFGF, Life Technologies). At day 6 after infection, cells
were then reseeded on feeder at the density of 30,000 cells per well of 6-well plate
and switched to DMEM/F12 medium (Gibco) supplemented with 20% KnockOut

Serum Replacement (Gibco), GlutaMAX, non-essential amino acids, penicillin/
streptomycin, 0.1 mM β-mercaptoethanol, and 8 ng/mL bFGF at D18. About
4 weeks after infection, ESC-like colonies were picked, characterized, and expanded
for further experiments.

Teratoma formation and histological analysis. Control and PHC1 knockdown
hESCs at 70–80% confluency were dissociated with EDTA and then resuspended
with ice-cold 50% Matrigel/mTeSR medium. Then, 1 × 106 cells were sub-
cutaneously injected into three groups of 4 male NOD/SCID mice. Injected mice
were assessed regularly for the formation of tumors. At 4 weeks after injection,
tumors were removed from the mice and their sizes from different groups were
measured and quantified. Histological analysis was performed at the histology core
facility at School of Medicine, Zhejiang University.

Immunofluorescence. For immunofluorescent staining, cells were washed twice in
PBS and fixed in 4% paraformaldehyde for 15 min at room temperature. The cells
were blocked with blocking buffer (1× PBS / 5% goat serum / 0.3% Triton X-100)
for 60 min and then incubated with primary antibodies in dilution buffer (1× PBS /
1% BSA / 0.3% Triton X-100) at 4 °C overnight. The cells were subsequently
stained with goat anti-rabbit or anti-mouse secondary antibody (Beyotime) at 1:300
for 60 min at room temperature in the dark. The primary antibodies NANOG (Cell
Signaling Technology, 4903), OCT4 (Cell Signaling Technology, 2750), SOX2 (Cell
Signaling Technology, 23064), RING1B (Cell Signaling Technology, 5694),
RING1B (Abcam, ab181140), and PHC1 (Active motif, 39723) were all used at the
concentration of 1:100. Immunofluorescent images were acquired by using
Olympus BX61 confocal microscope and Nikon SIM microscope. ImageJ software
was used to quantify the immunofluorescent intensities. To determine high and
low signals, the average immunofluorescent intensities of shScr were set as the
control. Intensities of PHC1 and NANOG staining in shPHC1.1 and shPHC1.2
groups higher or lower than the corresponding controls were defined as
PHC1highNANOGlow and PHC1lowNANOGlow, respectively. The percentage of
PHC1highNANOGlow and PHC1lowNANOGlow cells were quantified relative to
the shScr control. For the quantification of PHC1 and RING1B co-immunostain-
ing, super-resolution microscopic images were analyzed with Imaris software.
PHC1+RING1B+ and PHC1+RING1B− foci that represent PHC1 signals over-
lapping with and without RING1B, respectively, in more than 40 cells from the
staining experiments with two different RING1B antibodies were quantified.

AP staining. In all, 1 × 103 single E14 mESCs of different conditions were seeded
in a 6-well plate and 1 or 2 × 103 hESCs were plated into a 6 cm dish. Ten days after
seeding mESCs and 14 or 18 days for hESCs, alkaline phosphatase staining was
performed with an alkaline phosphatase detection kit (Beyotime) according to the
manufacturer’s instructions. The number of colonies was then quantified after the
staining.

Flow cytometry. mESC line carrying the Nanog-GFP reporter (a gift from Jin
Zhang Lab at Zhejiang University School of Medicine) was infected with shPHC1
or control lentiviruses. The cells were selected in the culture medium supplemented
with 2 μg/mL puromycin for 2 days. Then the cells were harvested by incubation in
0.05% trypsin-EDTA (Gibco) and washed once with PBS. Flow cytometry data
were collected on a BD Cytomics FC 500MCL machine and analyzed with FlowJo
software (v7.6) or CXP software (v2.3).

Chromatin immunoprecipitation. In all, 0.5–1 × 107 cells were fixed in 1% for-
maldehyde for 10 min at 37 °C and then the unreacted formaldehyde was quenched
by adding glycine to a final concentration of 125 mM. Cells were lysed in the SDS
lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris, pH 8.1) with protease inhibitors
(Sigma). The cell lysate was sonicated to shear cross-linked DNA to 200–1000 bp in
length by using a BioRupter sonicator (Diagenode). Chromatin was diluted with
10× ChIP Dilution Buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 167 mM
NaCl, 16.7 mM Tris-HCl pH 8.1) containing protease inhibitors. The chromatin
lysate was incubated with the immunoprecipitating antibodies overnight at 4 °C
with rotation. Protein–antibody complexes were bound by incubating with Protein
A/G Dynabeads (Invitrogen) for 3–4 h at 4 °C. Samples were then washed with
1 mL of each of the buffers listed in the given order: low-salt washing buffer (1%
Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.1, 150 mM NaCl), high-salt
washing buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH
8.1, 500 mM NaCl), LiCl buffer (0.25 M LiCl, 1% IGEPAL-CA630, 1% deoxycholic
acid, 1 mM EDTA, 10 mM Tris pH 8.1), and TE buffer (10 mM Tris-HCl, 1 mM
EDTA, pH 8.0). The beads were resuspended in TE buffer supplemented with
0.25% SDS and proteinase K. After incubation overnight at 65 °C, a Qiagen PCR
Purification Kit was used to purify the DNA. ChIP-qPCR primers were listed in the
Supplementary Table 2. The following antibodies were used for ChIP experiments:
Control mouse IgG (Sigma, I8765), control rabbit IgG (Cell Signaling Technology,
2729), H2AK119ub1 (Cell Signaling Technology, 8240, 1:100), Nanog (Cell Sig-
naling Technology, 8822, 1:100), and PHC1 (Cell Signaling Technology,
13768, 1:50).
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Fig. 6 Proposed model. Phc1, similar to Nanog, is transcriptionally activated
by Oct4. While PHC1 exerts PRC1-dependent repression of development
genes by associating with other cPRC1 subunits such as RING1B, CBX7, and
PCGF2, it also interacts with Nanog to regulate chromatin landscape of the
Nanog locus and activate pluripotent genes.
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Protein co-immunoprecipitation and western blotting. For Co-IP experiments,
293T cells (2 × 106) were plated in a 10 cm plate. Next day, the 293T cells were
transfected with HA-NANOG and FLAG-PHC1 plasmids and polyethylenimine
(PEI, 2 mg/mL) transfectant mixture. At 48 h after transfection, cells were collected
and nuclear lysates were extracted by a Nuclear Protein Extraction KIT (Beyotime).
The lysates were then incubated with anti-FLAG Affinity Gel (Bimake, B23101) or
anti-HA magnetic beads (Bimake, B26202) overnight at 4 °C. Beads were washed
six times with wash buffer (150 mM NaCl, 50 mM Tris, 1 mM MgCl2, 1% NP-40,
PH7.5). Proteins were eluted, denatured at 100 °C for 10 min, and analyzed by
SDS-PAGE. For IP of endogenous proteins in hESCs, cells were collected and lysed
with lysis buffer. Cell lysates were first incubated with antibodies against target
proteins overnight at 4 °C. Next day, the mixture was incubated with Protein A/G
magnetic beads (Life Technologies) and rest of the steps were following the same
procedure as Co-IP experiment. Western blotting was performed according to
standard procedures. For IP in mESCs, the cells were overexpressed with exo-
genous Phc1-FLAG, collected, and lysed with lysed buffer. The cell lysates were
then washed with PBS three times, fixed in PBS with 0.25 μg/mL DTBP for 40 min
at room temperature to cross-link the proteins. The lysates were then centrifuged
and a Nuclear Protein Extraction KIT (Beyotime) was used to extract nuclear
proteins, and the nuclear lysates were then incubated with the anti-Nanog antibody
at 4 °C overnight. Next day, the mixture was incubated with Protein A/G magnetic
beads (Life Technologies) and beads were washed six times in lysis buffer as above.
Immunoprecipitated proteins were suspended in 1× LB with 15 mM DTT at 37 °C
for 40 min to reverse cross-linked proteins, and the proteins were denatured at
100 °C and western blotting was performed according to standard procedures.

Plasmids. The coding sequence of Nanog gene was amplified from cDNA obtained
from mESCs and cloned into the PiggyBac transposon pPB-CAG-3×FLAG-pgk-
hph vector, a gift from Jin Zhang (Zhejiang University School of Medicine, China).
HA-NANOG and FLAG-PHC1 sequences were cloned into pcDNA5 vector from
Addgene for Co-IP experiments. shRNA inserts were cloned into pLKO lentiviral
vector (Addgene). The gRNA sequences targeting mouse Phc1 gene in mESCs were
cloned into px330-U6-Chimeric_BB-CBh-hSpCas9-puro vector from Yan Zhang
(Institute Pasteur of Shanghai, Chinese Academy of Science, China). The gRNA
sequence targeting human PHC1 gene in hESCs was cloned into lentiCRISPR v2
vector (Addgene). shRNA target sequences were listed in Supplementary Table 3.

RNA isolation, RT-PCR, and RNA-seq. Total RNA was extracted with TRIzoI
(Takara) following standard procedure. cDNA was reverse transcribed using
ReverTra Ace® qPCR RT Master Mix (TOYOBO). RT-qPCR reactions were per-
formed using SYBR® Premix Ex TaqTM kit (Takara) and the LightCycler480
machine (Roche). Samples were run in triplicates and expression was normalized to
the housekeeping gene Actin. All the primers used were listed in Supplementary
Table 1. RNA-seq library preparation and sequencing were performed by BGI
Group in Shenzhen, China.

RNA-seq and ChIP-seq analyses. RNA-seq reads were aligned to the mm10
mouse genome assembly using Bowtie2 (v2.2.5)50. RSEM (v1.2.15) was run to
quantify the expression FPKMs of each annotated transcript RefSeq. A gene set
with a 1.2-fold expression difference and adjusted p value≦ 0.001 were considered
as being differentially expressed. The expression levels of all genes were shown as
heatmaps. Differential genes that were up- or down-regulated in Phc1−/− mESCs
compared with the Phc1+/+ mESCs were clustered using K-means clustering
algorithm across all samples.

Raw data from the previously published ChIP-seq datasets GSE72886 (for
H3K27ac), GSE44288 (for Nanog), and GSE89949 (for H2AK119ub1, Phc1, and
Ring1b) were downloaded from EMBL-EBI (Supplementary Table 7). All these
data were re-analyzed according to the same criteria. Single-end ChIP-seq data
were aligned to the mm9 mouse genome assembly using Bowtie2 (v2.3.4.2) by
default50. Peak calling was performed by MACS2 program (v2.1.1.20160309) using
corresponding input samples for background normalization51. The option of cut-
off value analysis in MACS2 was used to decide an appropriate cut-off (for Phc1
p= 1.00e-02, for Ring1b q= 1.00e-08, and for Nanog, H3K27ac and H2AK119ub1
q= 1.00e-03). Each peak was annotated with its nearest gene using the R (v3.4.0)
package ChIPseeker (v1.10.3)52. Genomic annotation and gene coordinates were
obtained from a BioConductor package TxDb.Mmusculus.UCSC.mm9.
knownGene. The resulting normalized signal enrichment file in bigWig format was
visualized on the Integrative Genomics Viewer (IGV) (v2.4.14)53. The other
published ChIP-seq data in the Gene Expression Omnibus (GEO) under the
accession numbers GSE44288 (for OCT4) and GSE104690 (for H2AK119ub1 and
RING1B of hESCs) in bigWig format were visualized directly in IGV.

4C-seq. Phc+/+ and Phc1−/− mESCs were prepared for 4C as previously
described54. Briefly, 2 × 106 cells were cross-linked with 1% formaldehyde. The
cross-linked pellet was then resuspended with lysis buffer (10 mM Tris-HCl pH 8,
10 mM NaCl, 0.2% Igepal CA630, Protease Inhibitor). The suspension was cen-
trifuged and the supernatant was discarded. The chromatin was then digested with
200 units DpnII after pre-treatment with 0.5% SDS and 1.14% triton X-100. The
reaction was heat-inactivated and then incubated with ligation buffer (1× T4 Ligase

buffer, 8.3% TritonX-100, 120ug BSA, 10000U T4 DNA Ligase) at 16 °C overnight.
Chromatin was reverse cross-linked at 68 °C for 60 min with additional NaCl after
Proteinase K and SDS treatment. The DNA was then purified by DNA clean beads
followed by the second digestion with NlaIII and ligation in 10 mL 1× ligation
buffer. DNA was precipitated with acetate and ethanol. The precipitate was purified
again by DNA clean beads. Amplification of 4C products by PCR and paired-end
libraries was performed and then sequenced on the Illumina Novaseq platform.
Primers for 4C were listed in Supplementary Table 5.

4C-seq was performed on four biological replicates.

Analysis of 4C-seq data. Here, 4C data were processed using 4C-ker package
(v1.0) according to the software’s instructions55. Briefly, the reduced genome
(mm9) consisting of only 25 bp sequences flanking the primary restriction enzyme
sites was generated using a customized script, and 4C-seq reads were trimmed and
mapped to this reduced genome by Bowtie2 (v2.3.4.1)50. Each sample’s count
profiles were created from mapped data and removed self-ligated and undigested
fragments around bait fragment. Then the count profiles were used to analyze near
cis-, far cis-, and trans-interactions by 4C-ker. The far cis- and trans- interaction
profiles were visualized by ggbio (v1.30.0)56. The Sequence Read Archive (SRA)
files of 4C-seq data of control (BioSample ID: SAMN02222862) and Nanog
knockdown mESCs (BioSample ID: SAMN02222865) were downloaded from the
National Center for Biotechnology Information Gene Expression Omnibus (GEO)
under accession number GSE37275. These 4C-seq data were analyzed as described
above. For intra-chromosomal interactions, 4C-seq data were analyzed on genomic
regions near the Nanog promoter (anchor) in chr6: 122500000-122700000 of mm9
genome assembly containing the Nanog −45 kb SE (chr6: 122612514-122614260,
mm9) as previously defined8.

Hi-C data analysis. The SRA files of high-resolution mESCs (BioSample ID:
SAMN06564305) and mouse cortical neurons (CNs) (BioSample ID:
SAMN06564287) Hi-C data were downloaded from the National Center for Bio-
technology Information Gene Expression Omnibus (GEO) under accession num-
ber GSE96107. After the SRA files were gathered, the archives were extracted and
saved in FASTQ format using the SRA Toolkit (v2.9.0). The paired-end reads of
fastq files were aligned, processed, and iteratively corrected using HiC-Pro
(v 2.11.1) as previously described57. Briefly, short sequencing reads were first
independently mapped to mouse mm9 reference genome using the bowtie2 aligner
with end-to-end algorithm and ‘-very-sensitive’ option. To rescue the chimeric
fragments spanning the ligation junction, the ligation site was detected and the 5ʹ
fraction of the reads was aligned back to the reference genome. Unmapped reads,
multiple mapped reads, and singletons were then discarded. Pairs of aligned reads
were then assigned to DpnII restriction fragments. Read pairs from the uncut
DNA, self-circle ligation, and PCR artifacts were filtered out and the valid read
pairs involving two different restriction fragments were used to build the contact
matrix. Valid read pairs were then binned at a 5 kb resolution by dividing the
genome into bins of equal size. To eliminate the possible effects of variable
sequencing depths on data analyses, we randomly sampled equal numbers of read
pairs from each condition for downstream analyses involving comparison
between conditions. The binned interaction matrices were then normalized
using Knight-Ruiz matrix balancing method. Visualization of normalized Hi-C
matrix and topologically associated domains was carried out by HiCExplorer
(https://hicexplorer.readthedocs.io/en/latest/).

Statistics and reproducibility. Data of bar charts are represented as mean ± s.e.m. or
mean ± s.d. For violin plot, the central dotted line represents the median. For the
quantification results, n values refer to independent experimental replicates or sample
sizes in each figure legend. Significance was tested using two-tailed unpaired Student’s t-
tests or one-way ANOVA test with Bonferroni’s multiple comparison. Both the Pearson
correlation coefficient and Spearman correlation coefficient were computed to assess the
correlation of log expression values of NANOG with PHC1 and RING1B in each cell in
Supplementary Fig.1b. The correlation was performed using linear regression, and 95%
confidence interval was denoted. Figure 1a is representative of three (PRC2 genes) or
four (PRC1 genes) independent experiments. Figure 1b is representative of more than
three independent experiments. Figure 1c is representative of three independent
experiments. Figure 1e is representative of two independent staining (about 20 embryos
were stained in total). Figure 2a, b, f, g is representative of three independent experi-
ments. Figure 3a, b, d, e is representative of three independent experiments. Figure 3c, g
is representative of four independent experiments. RNA-seq data in Fig. 4c were from
experiments performed in three biological replicates, and 4C-seq data in Fig. 5d were
from experiments performed in four independent replicates. Figure 5a is representative
of two independent experiments. Figure 5b, c is representative of three independent
experiments. Supplementary Fig. 2a, b is representative of three independent experi-
ments. Supplementary Fig. 2c is representative of four independent experiments.
Supplementary Fig. 3a, e is representative of three independent experiments. Supple-
mentary Fig. 3g is representative of four independent experiments. Supplementary
Fig. 3f is representative of two independent experiments. Supplementary Fig. 5a, b is
representative of results of one experiment. Supplementary Fig. 5c is representative of
four independent experiments. Supplementary Fig. 5d, e is representative of three
independent experiments. Supplementary Fig. 6b, c is representative of three
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independent experiments. Supplementary Fig. 7a, b is representative of four indepen-
dent experiments.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
RNA-seq data are available in the SRA database with the accession number
PRJNA532733 and all the 4C-seq data were deposited with GEO accession GSE155524.
Previously published ChIP-seq data that were re-analyzed in this study are available
according to the GEO accession numbers that were listed in Supplementary Table 7.
Previously published Hi-C data that were re-analyzed here are available under the
accession code GSE96107. All other data supporting the findings of this study are
available on reasonable request from corresponding author. Source data are provided
with this paper.

Code availability
All codes used in this study for bioinformatics analysis are available upon reasonable
request from corresponding author.
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