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Abstract: Photodynamic therapy (PDT) is currently enjoying considerable attention as the subject
of experimental research to treat resistant cancers. The preferential accumulation of a non-toxic
photosensitizer (PS) in different cellular organelles that causes oxidative damage by combining light
and molecular oxygen leads to selective cell killing. However, one major setback, common among
other treatment approaches, is tumor relapse and the development of resistance causing treatment
failure. PDT-mediated resistance could result from increased drug efflux and decreased localization
of PS, reduced light exposure, increased DNA damage repair, and altered expression of survival
genes. This review highlights the essential insights of PDT reports in which PDT resistance was
observed and which identified some of the molecular effectors that facilitate the development of
PDT resistance. We also discuss different perceptions of PDT and how its current limitations can be
overturned to design improved cancer resistant treatments.
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1. Introduction

The use of sunlight exposure to treat various diseases such as skin diseases, diabetic
ulcers, and epithelioma has been traced back to 3000 B.C. [1,2]. The modern use of light in
a medical treatment known as phototherapy is producing a successful result in cancer treat-
ment. Light within the infrared region, electromagnetic and artificial light sources are often
used in phototherapy. Photodynamic therapy (PDT) is a non-invasive therapy that involves
using light and a photoactive compound in the presence of molecular oxygen to produce a
reactive oxygen species that damages cancer cells. This therapy was discovered by Prof.
Hermann Von Tappeiner and groups over a century ago [3]. Since then, photodynamic
reactions of light, photosensitive dye (called photosensitizer), and oxygen have gained
popularity among other types of therapies. PDT is a promising therapeutic approach for
various cancers and non-cancerous diseases such as age-related macular degeneration,
atherosclerosis, and bacterial infections.

In most cases, PDT treatment minimizes the need for surgery. It promotes good
healing efficacy by conserving the integrity and function of organs with a relative risk of
localized side effects [4]. Evidence has shown that PDT can be repeated with better cosmetic
outcomes, minimal functional disturbances, good tolerance, fertility preservation, and low
systemic toxicity. These are some of the advantages of PDT over the classic treatment
strategies such as surgery, chemotherapy, and radiotherapy [5]. However, some drawbacks
remain with the development of treatment resistance and tumor regrowth. The resistance
of cancer cells to apoptosis is a fundamental aspect of cancer development and a major
threat to most treatment strategies [6].

Resistance development of cells treated with PDT may arise due to poor photosen-
sitizer localization, inadequate illumination, and reduced generation of reactive oxygen
species (ROS). Additionally, tumor progression after PDT could result from increased drug
efflux transporters expression, DNA repair mechanisms, decreased drug activation, and

Int. J. Mol. Sci. 2021, 22, 13182. https://doi.org/10.3390/ijms222413182 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-5002-827X
https://doi.org/10.3390/ijms222413182
https://doi.org/10.3390/ijms222413182
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms222413182
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms222413182?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 13182 2 of 13

altered expression of tumor survival genes [7,8]. PDT aside, its resistance development has,
over the years, proven to be an effective form of cancer therapy and a subject of numerous
studies in bacteria inactivation. However, it is still underutilized and always meets a tough
clinical trial approval for resistance to cancer treatment. This review provides an overview
of PDT modality and molecular effectors that influence its treatment resistance. Most recent
efforts made in the limitations of PDT and its use in resistant treatment and future direction
will be given. Hence, we will analyze the molecular effector that aids PDT resistance and
give insights into how these limitations can be overturned for a better PDT design for
resistant cancer treatments.

2. Biochemical Effects of PDT and Reactive Oxygen Species (ROS) Production

PDT treatment modality requires the combined action of PS, light in red or near-
infrared regions, and molecular oxygen to elicit cancer cell death. The cell death response
of PDT depends on PS localization, light dose, and availability of molecular oxygen [9]. PS
predominantly localizes in organelles such as plasma membrane, lysosomes, mitochondria,
Golgi apparatus, or endoplasmic reticulum [10,11]. Under appropriate conditions and with
the required light dose, PS placed at the target site is activated by absorbing photons of light
energy and transferring it to in situ molecular oxygen to form a cytotoxic reactive oxygen
species (ROS) [5]. The photon absorption by the PS will convert the ground state (S0) PS to
an excited unstable state (S1) which will undergo intersystem crossing to a triplet (T1) state.
The T1 state will then react with molecular oxygen and decay to S0 upon ROS formation.
Or rather, the photon transfers from S0 to other reactive precursor molecules to form a
radical species molecule that is cytotoxic [12]. In either case, the radicals produced have a
strong reactivity with lipids, nucleic acids, proteins, and other biochemical substrates that
lead to the activation of distinct tumoricidal mechanisms. Singlet oxygen is the principal
product of type II photochemical reaction that causes PDT cell killing [13].

The photodamage caused by ROS can lead to apoptosis, necrosis, or autophagy, the
three main mechanisms of cell death [14]. The phase of death activated after PDT treatment
is determined by cell type, PDT dosimetry (e.g., light intensity), and PS type. The PS within
the mitochondria stimulates apoptosis, whereas in the plasma membrane, it can initiate
necrosis upon irradiation [15]. Overall, cell death initiation by PDT shifts from apoptotic to
necrotic as the cell damage increases [15].

Apoptosis is a highly regulated cell death mechanism. It involves the initiation of
numerous pathways following the damages of several organelles [16]. Mitochondria play
a key role in apoptosis regulation and any PS localized on the organelle triggered the
process. Leakage of the cytochrome c from the mitochondria into the cytosol can activate
caspase proteins to induce signal transduction that leads to apoptosis [16,17]. Cell death by
necrosis is extensive damage of cell components at PS site of action that results in leakage
of intracellular material that can cause inflammation. This process usually occurs when PS
localizes in the plasma membrane and PDT with higher doses of light and PS [18]. Beclin-1
is an essential tumor suppressor protein associated with autophagy. The autophagic process
is multifaceted in action; the production of Beclin-1 targets tumor growth suppression.
However, as the tumor becomes more advanced and progressing, an alternative process of
autophagy is triggered to support the cells in the central, low nutrient part of the tumor
to obtain the energy they need to stay alive [19]. In the later process, the photodamaged
cells recycle their damaged organelles and cytoplasmic components to become resistant
to PDT [13]. Depending on PDT dosage, autophagy can either be activated to recycle the
damaged organelle to cause cell survival (low dose PDT) or cause complete cell organelle
damage (high dose PDT) to induce cell death. However, mild PDT caused by insufficient
localization of PS, efflux of PS out of the cell and low light prompts protective capacity of
autophagy to repair the damage and thus lead to PDT resistance [20,21]. Mechanisms of
autophagic response that triggered PDT resistance will be discussed below.
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3. Autophagy-Mediated PDT Resistance in Tumor Cells

PDT effect can induce apoptotic or non-apoptotic cell death depending on the PS and
light dose used [22]. PS localization in the lysosome causes photo-degradation toxicity
of the lysosome upon irradiation and subsequently leads to cell death. PDT produces
enough ROS that can initiate apoptotic cell death. In cases where ROS production is not
sufficient, autophagy is triggered in response to cell survival and proliferation. Researchers
have found that upregulation of Bcl-2 protein protects the cells from the PDT mediated
phototoxicity [23]. PDT-induced autophagy sometimes occurs before apoptosis through
cytoplasmic content sequestration regulated by type I and III phosphoinositol-3-kinase
proteins [24–26]. After PDT treatment, resistant murine cells were found to overexpress
Bcl-2 anti-apoptotic protein and undergo non-apoptotic cell death (type II autophagy) [27].
However, other reports stated that Bcl-2 protein tends to bind to the Beclin-1 to inhibit PDT
resistance autophagic response [28]. Strategies such as gene silencing, especially ATG5
gene by a pharmacological agent, have been reported as an effective treatment for resistant
tumor cells [20].

The PDT efficacy was increased in ATG5 knock-out HeLa and MCF-7 cells [29]. They
also reported that photofrin-based PDT was very effective when the autophagic genes
were inhibited. This suggests the role of autophagy in the therapeutic survival response of
cells treated with PDT [29]. Many other inhibitors, such as 3-methyladenine, bafilomycin
A1, obatoclax, clarithromycin, chloroquine, and hydrochloroquine, etc., have the same
ability to block the cytoprotective effect of autophagy [30]. In response to PDT photo-
damage, some cellular contents are degraded and recycled to initiate the pro-survival
mechanism of autophagy (Figure 1) [31]. In this context, activated photosensitizer in the
mitochondria leads to the formation of reactive oxygen species (ROS) and a decrease in
the adenosine triphosphate (ATP) production. The AMP-activated protein kinase (AMPK)
senses the decrease in ATP and activates autophagy-initiating kinase 1 for reprogramming
the metabolism of autophagy. Other reports have stated that cytoplasmic photodamage of
PDT enhances the activation of NFkB and autophagy through HIF-1α/VIMP1-mediated [32]
and MAPK1/3 [33] regulatory pathways (Figure 1). Moreover, factors such as nutrient
depletion and oxidative stress injury from PDT ROS generation could contribute to the
autophagic response.

Mitophagy is another mechanism that tumor cells usually use as a rescue cellular
homeostasis to compensate for mitochondrial photodamage of PDT. Mitophagy is a selec-
tive type of autophagy that functions as a negative regulatory feedback mechanism that
reduces the mitochondrial-derived ROS production and prevents the release of proapop-
totic proteins to abort cell death [34–36]. Nonetheless, excessive ROS generation of PDT
causes the recruitment of ubiquitin ligase PRKN/parkin to initiate the degradation of the
mitochondria through a process called mitophagy [34,37].

Additionally, the photo-stress of autophagy has been reported to cause excitation of
the LC3-II proteins which oxidize the ER subdomains to cause ATF4 or CHOP protein
release. These proteins regulate the expression of autophagic proteins such as ATG5, ATG12,
and Beclin 1 [38–40]. PDT damage to mitochondria, lysosomes, or endoplasmic reticulum
organelles has shown to upregulate Bcl-2, and Bcl-xL anti-apoptotic and autophagy-related
(ATG5 and Beclin-1) proteins to induce PDT-resistance [41,42].

More evidence of autophagy and PDT interaction continue to accumulate despite the
controversial findings of autophagy activation by excess ROS generation. It is now estab-
lished that PDT ROS production triggers cellular damage to cytoplasmic organelles. This
consensus may serve to delineate the underlying mechanistic relationship of autophagic
death and survival following PDT [43].

Nevertheless, one major question remains: how PDT protocols with different PSs
and cell lines differ in the therapeutic modulation of autophagic response. To answer this
question and avoid the controversial analysis of the real role of autophagy (i.e., cytoprotec-
tive versus death routine), one must take into consideration the complexity of autophagy
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and numerous steps involved; hence, more research is needed in that aspect to arrive at a
rational conclusion.
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Figure 1. Autophagy-mediated response to photodynamic therapy (PDT). Photosensitizer activation in the mitochondria
enhances the formation of ROS and decreases ATP production. Energy sensing AMPK activates the ULK1 to initiate
autophagy. PDT can also trigger autophagy machinery NFkB for protein, lipid, and nucleotide synthesis to initiate lysosome
biogenesis and autophagy. Mitochondria photo-oxidation can transcriptionally regulate autophagy through MAPK, CHOP,
and HIF—1α.

4. Involvement of Pro-Survival Apoptotic Proteins in Photodynamic
Therapy Resistance

The Bcl-2 family proteins consist of anti-apoptotic (Bcl-XL, Bcl-W, A1, and Mcll) and
pro-apoptotic (Bax and BH3-only) proteins [16]. PDT initiates apoptosis by releasing
mitochondrial cytochrome c into the cytosol following the activation of the apoptosome and
pro-caspase 3. These proteins activate the Smac/DIABLO and Omi/HtrA2 by eliminating
the inhibitory effects of caspase-3 and 9, which will cause the release of apoptosis inducing
factor and endonuclease G into the cytosol to translocate into the nucleus and damage the
DNA. This intrinsic pathway activation and overall apoptotic process of PDT integrates
with the Bcl-2 family proteins and external cell death ligands such as FasL, TNF-α, and
TRAIL [15].

PDT induces its photodamage on cells by varying measures such as upregulation of
Bcl-2 and downregulation of Bax, which has been observed in resistant HT29 human colon
adenocarcinoma cells [44]. On the contrarily, suppression of the Bcl-2 mRNA levels and
elevation of Bax mRNA in cervical and esophageal cancer cell lines were associated with
apoptotic cell death induction of 5-aminolevulinic-mediated PDT [45,46]. PDT-mediated
apoptosis in A431 cells resulted in significant deregulation of Bcl-2 protein. The downreg-
ulation of Bcl-2 sensitizes the PDT apoptosis-resistant cells to apoptosis [18]. A study by
He et al., using a Chinese hamster ovary cell line, indicated that cells transfected with the
Bcl-2 gene were able to inhibit overall PDT death induced by silicon phthalocyanine. Their
study found a high apoptosis incidence characterized by DNA fragmentation in parental
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cells, unlike in the transfected Bcl-2 cells post- PDT [47]. Transfection of Bcl-2 could lead
to a higher Bcl-2/Bax ratio which inhibits initiation of apoptosis and consequently results
in therapy resistance. Hence, these studies indicated the involvement of Bcl-2 survival
proteins in resistance response to PDT.

5. Hypoxia-Induced Resistance to Photodynamic Therapy

Hypoxia is one of the features in the tumor microenvironment that inhibit the thera-
peutic efficacies of chemotherapy, radiotherapy, and conventional photodynamic therapy
(type II PDT) [48]. During cancer treatment, there is a high rate of oxygen consumption
which influences the selection of malignant cells that are more aggressive, thus promot-
ing the development of treatment-resistant cells [49]. Research has shown that hypoxic
tumors are three times more resistant to therapeutic interventions such as chemotherapy,
radiotherapy, and photodynamic therapy [50]. Tumor cells may protect themselves against
PDT-mediated damage by stabilizing the hypoxia-inducible factor 1 (HIF1)-alpha (Figure 2).
PDT induces hypoxia and vascular damage via the HIF1-alpha pathway, promoting tumor
proliferation and survival [51]. PDT is exacerbated by high levels of ROS, which cause
stabilization and activation of HIF-1 proteins and expression of angiogenic, surviving, and
proliferating signals (Figure 2) that result in tumor relapse [52]. To this effect, some innova-
tions have been proposed to counter the negative influence of hypoxia during treatment.
These approaches include using hyperbaric oxygen therapy, introducing external oxygen
carriers such as perfluorocarbon and hemoglobin, in situ O2 generated catalysts such as
photosynthetic bacteria and catalase, or O2 suppliers (CaO2). Other strategies to supply
oxygen and inhibit glutathione (GSH) activity were adopted, such as catalytic reduction
in hydrogen peroxide into intracellular oxygen by catalase enzymes or magnesium oxide
to enhance PDT anticancer effects [53]. These approaches have made significant progress
in developing better designs for effective PDT, thus showing promising usefulness of
oxygen-independent cancer therapeutic approach [54].
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Superoxide radicals are the main oxidant form of ROS that initiates from the mitochon-
dria to stimulate DNA breakage and membrane injury through oxidative phosphorylation.
They are converted to hydrogen peroxide by the enzymatic action of mitochondria super-
oxide dismutase (SOD) to trigger cellular apoptosis. Additionally, SOD could mediate
O2 conversion further to a downstream toxic hydroxyl radical (OH), which aggravates
treatment efficacy [55]. The tumor hypoxic treatment approach has aroused concerns for
use to combat PDT resistance due to the oxygen consumption of PDT. Suppose an oxygen
enrichment approach is used to supply O2 to hypoxic tumors during PDT. In that case,
there will be an increased conversion of the O2 to transient free radicals, which deteriorates
the tumor’s microenvironment and leads to strong cytotoxicity [56]. This has led to the
recent development of PDT and the hypoxia-activated chemotherapy combination therapy
approach reported by Wang and colleagues. This group investigated the approach by
using an integrated nanocarrier system with 6-amino flavone (AF), an inhibitor of hypoxia-
inducible factor-1α, to improve PDT resistance therapy in hypoxic tumors. They observed
that the combination treatment activates the HIF-1 inhibitor AF to enhance the antitumor
therapeutic effect [56].

6. Molecular Mechanisms of Cancer Resistance to Photodynamic Therapy

Cancer resistance to therapy is one of the major challenges in cancer and contributes
to tumor metastasis. The PDT approach of using light energy, PS molecule, and molecular
oxygen to destroy tumor cells has shown some levels of dormancy which, thus, have led
to cell survival and phototherapeutic resistance. In essence, PDT, similar to other cancer
therapies, can also elicit changes in the tumor microenvironment during treatment, leading
to cancer cell adaptation and ultimately cell resistance [57–59]. Though the knowledge of
tumor resistance to PDT is still at the infancy stage and have not really been documented,
emerging studies have shown that poor delivery of PS and its photoexcitation, including
the number of phototherapeutic sessions plus cancer cell type, are major determinants of
tumor resistance to PDT [33,60]. Here, we briefly consider some of the main molecular
mechanisms that underlie tumor defense against photooxidative damage and PS uptake,
as summarized in Figure 3.

Cancer cells develop intrinsic resistance to treatment due to some clonal selection
changes prior to treatment [59]. These changes constitute an adaptive response to therapy-
mediated stresses such as mutations and altered genetic and epigenetic profiles. Addition-
ally, cancers can also develop resistance during treatment due to dysfunctional apoptosis,
surrogate drug targets, increased drug efflux capacity, and activation of compensatory
signaling pathways [14,61,62]. In this case, cancer cells are said to have acquired resistance,
which affects the cytoskeleton and morphological appearance of the cell. This observation
is linked to the impairment of migratory and invasive behaviors of cells that caused high
cellular plasticity and cytoskeleton alteration [61]. The study of Lamberti and colleagues
have shown oxygen depreciation and HIF-1α as major drivers of resistance in colorectal
cancer cells during PDT. It was observed that these factors prevent the photosensitization
of Protoporphyrin IX (PpIX) in a heterotypic spheroid cell model of colorectal SW480
cancer cells and fibroblast. This could not allow the endogenous production of PpIX but
rather activate the MAPK1/ERK2 and MAPK3/ERK1 pathway as a compensatory adaptive
survival during PpIX-PDT [62]. This adaptive pathway is due to the changes in the tumor’s
microenvironment during treatment and, thus, acquired resistance.

Cancer gene expression profile studies have identified drug-efflux proteins such as
P-gp, breast cancer resistance, and multidrug-resistance proteins as mediators of most
chemotherapeutic drugs [63–66]. These proteins belong to the ATP binding cassette (ABC)
superfamily transporters whose function is to extrude foreign compounds such as PS and
drugs out of the cells [67,68]. Based on these, mediation of PDT effectiveness in cancer
therapy resistance could lead to the use of a nanotechnology delivery system approach to
mitigate the efflux action of the resistance proteins on PS [63,69].
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the P-glycoproteins, and autolysosome formation through recycling of cytoplasmic content for cell survival.

The antioxidant defense mechanisms and ROS-scavenger proteins such as glutathione
S-transferase (GST) or glutathione peroxidase 4 (GPx4) have been shown as effectors of
the phototoxic PDT effects on cells that leads to PDT resistance [70,71]. PDT utilizes ROS
to effect damage to cells, and this defense machinery could also be activated during PDT
therapy to quench ROS production to reduce the killing efficacy contributing to resistance.
Likewise, the degree of heat shock proteins expression has been reported to be associated
with an increase in autophagy [72] or apoptosis lessening [73], which ensure mediation
of Photofrin-photooxidative resistance to tumor cells [74]. Additionally, nitric oxide (NO)
generation through inducible nitric oxide synthase (iNOS/NOS2) during PDT has been
reported to cause resistance. An interesting observation by Alderton and co-workers
revealed that the photooxidative stress of PDT to some extent activates the induction of
NO synthase that catalyzes L-arginine conversion to citrulline and NO. This process occurs
in a Ca+2-independent manner and can prevent the killing efficacy of PDT [75].

Furthermore, is the role of NFκB via the increase in AKT/mTOR signaling activation
in PDT, which has been observed in glioblastoma U87 and LN18 cells [76]. The 5-ALA-
photoinduced stress stimulates tumor adaptation and resistance against 5-ALA-PDT photo-
oxidation by activating the autophagic process through AMPK signaling pathway. Once this
survival pathway is stimulated, a negative feedback regulation will decrease proapoptotic
caspase-9 activity to suppress cell death [77]. In essence, tumor PDT resistance seems to
correlate with ROS production which detects the activation of death or survival signaling
pathways. Therefore, any process that alleviates proteotoxicity might lead to functional
consequences of anticancer PDT immunity [78,79] as well as PDT sensitivity [80]. Hypericin-
mediated PDT with low fluency initiates autophagy that restores cellular homeostasis and,
thus, resistance to the phototoxicity of PDT [31]. Meanwhile, autophagy suppression due
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to ATG5 knockdown increases tumor cell death in non-malignant cells such as fibroblasts.
Thus, in the absence of autophagy, there will be a dysfunctional release of cytochrome c from
the mitochondria which triggers apoptosis by caspase 3 and PARP1 cleavage activation.

All these mechanisms were delineated from several in vitro PDT experiments involv-
ing resistant cancer cell variants summarized in Table 1. Similar to the development of
drug resistance with chemotherapy, PDT was used in a likewise manner through repeated
cycles of treatment to generate a resistant sublime. Different photosensitizers, such as
Photofrin, Pyropheophorbide-α methyl ester (MPPa), and 5-aminolevulinic acid (5-ALA)
and its precursors, were used. The first study of PDT-resistant cell isolation was performed
by Luna and Gomer from the mouse radiation-induced fibrosarcoma (RIF-1) cell line,
following a repeated porphyrin (Photofrin II,)-mediated PDT treatments [81]. Continuous
exposure of RIF-1 Fibrosarcoma cells to repeated PDT results in the generation of cells
with high proliferative ability, otherwise known as PDT-resistant cells. These cells serve
as a model for the study of PDT mechanisms of drug resistance. It is worth knowing that
the process has thrown more light and expanded our understanding of the rate of PDT
resistance [49].

Table 1. Summary of in vitro Isolation of Cancer Cells Resistance to Photodynamic Therapy.

Photosensitizer Methods Used in the Isolation
of Resistant Cell Population

Cancer Cell Line
Used

Features and Possible
Mechanism of Resistance References

Photofrin II

Short exposure (initial injury
associated primarily with the
plasma membrane) and long

exposure to PII-PDT (associated
with organelles and
enzymes) damage.

RIF-1 Fibrosarcoma
cells

Overlapping mechanisms of
membrane-bound P-gp

transport system amplification
decreased DNA repair or altered

biotransformation pathway.

[81]

Methyl-5-
aminoleuvlinic acid

(Me-ALA)

Red light doses and Me-ALA
concentration was used after ten

cycles of Me-ALA-mediated
PDT. The survival criteria are

PDT with a 5–15% rate.

Basal cell carcinoma

Resistance is dependent on the
production of endogenous

photosensitizer protoporphyrin
IX and its cellular localization.

[82]

5-aminolevulinic
acid (5-ALA)

PDT-resistant cell line was
isolated following repetitive

cycles of ALA-mediated PDT.

Glioblastoma (U-87
MG) cells

High repair efficiency of
oxidative DNA damage, high

activity of apurinic site
endonuclease 1 (APE1), and

increased expression of DNA
damage protein kinase ataxia
telangiectasia mutated (ATM).

[83]

Pyropheophorbide-
α methyl ester

(MPPa)

Repeated cycles of PDT with
increasing doses of

Pyropheophorbide-α methyl
ester-mediated PDT.

Human
osteosarcoma

(MG63 and HOS)
cell lines

High expression of CD133,
antiapoptotic B-cell lymphoma
(Bcl-xL and Bcl-2), multidrug

resistance protein 1 (MRP1), and
breast cancer resistance

protein (ABCG2).

[84]

Methyl-5-
aminolevulinic acid

(Me-ALA).

Successive cycles of
Me-ALA-mediated PDT.

Treatment conditions that caused
survival rate of 5–10% were used

as selection criteria.

Squamous
carcinoma cells

Increased expression of
cell-substrate adhesion proteins

(β1-integrin, vinculin) and
phosphor-survivin.

[85]

Methyl-5-
aminolevulinic acid

(Me-ALA).

The irradiation dose that caused
cellular death rate of 70–90% in

parental cells was selected.

Human
glioblastoma cells

(T98 G).

High mRNA expression levels of
Fibroblastic growth factor

receptor (FGFR), epidermal
growth factor receptor (EGFR),
and β-platelet-derived growth

factor receptor (βPDGFR).

[7]
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The knowledge of the drug resistance mechanism is vague. Still, research has identi-
fied a few subcellular targets such as DNA, cell organelles such as mitochondria, lysosomes,
Golgi apparatus, endoplasmic reticulum, enzymes, and their receptors as a direct effector
of treatment. Modifying the sensitivity of these cellular PDT targets or their repair system
would surely improve the current understanding of PDT resistance mechanisms. Mean-
while, different reports have indicated that resistance to PDT for the tumor cell lines is
photosensitizer-specific [49]. The development of an in vitro resistant cell culture model al-
lows more studies on minimally invasive methods such as PDT. It will help understand the
molecular mechanism of cancer resistance, as exemplified by the studies shown in Table 1.

7. Conclusions and Future Perspectives

The development of a new photosensitizer and its incorporation in nanoparticles for
PDT has led to a surge of interest in recent years. PDT triggers a photochemical reaction
that produces a reactive oxygen species with a PS, laser light, and molecular oxygen.
Cancer cells can develop resistance to chemotherapeutic agents, and this seems to be a
continuous process that limits the efficacy of many drugs used in therapy. Natural products
obtained from medicinal plant sources have a bright future in becoming an important
alternative source of treatment for cancer drug resistance. This is due to its lower cost,
toxicity, and natural abundance within our environment. Many reports have shown the
anti-proliferative effect of plant extracts against breast, lungs, and colon cancer. At the same
time, others have shown the important pharmacological applications of natural products in
the treatment of several human diseases. Hence, it is necessary to consider and look towards
using new molecules from natural sources in drug development with an unexploited mode
of action to fight against cancer drug resistance. Another important factor is the molecular
interaction between the heat shock proteins, such as the binding immunoglobin protein
(GRP78), and the induction of molecular cytoprotective mechanisms in cancer cells. Protein
constitutes roughly 2/3 of cell mass and is also a target for the action of ROS generated
during PDT. Protein modification, such as fragmentation, multimerization, unfolding, or
aggregation, has been reported in response to PDT.

Reports have recorded that the GRP78 protein is being overexpressed in breast,
prostate, liver, colon, and gastric cancers resistance to Adriamycin [86]. Hence, resis-
tance to PDT can be mitigated by GRP78 inhibitors such as genistein and salicylic acid
that can suppress GRP78 expression. Likewise, survivin, an inhibitor protein of apoptosis,
its expression after PDT has been found upregulated to modulate apoptotic response by
inhibiting the activities of caspases [87]. Survivin protein functions in complex signaling
and cellular adaptations involved in cell survival. Ways should be developed to downreg-
ulate survivin expression, such as combining PDT with a survivin inhibitor to increase the
apoptotic indexes and cytotoxicity of PDT. Nanoparticles could also be one of the solutions
to mitigate PDT resistance [88]. Nanocarriers can be used to encapsulate PS to ensure its
biodistribution and activation within the cellular targets. This will prevent sequestration
of PS by the efflux proteins, a major limitation of PDT ROS generation and effectiveness.
These strategies could be used to boost anticancer effects and mitigate PDT resistance.
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