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Abstract
The medicinal plant Xanthium strumarium L. (X. strumarium) is covered with glandular tri-

chomes, which are the sites for synthesizing pharmacologically active terpenoids such as

xanthatin. MicroRNAs (miRNAs) are a class of 21–24 nucleotide (nt) non-coding RNAs,

most of which are identified as regulators of plant growth development. Identification of miR-

NAs involved in the biosynthesis of plant secondary metabolites remains limited. In this

study, high-throughput Illumina sequencing, combined with target gene prediction, was per-

formed to discover novel and conserved miRNAs with potential roles in regulating terpenoid

biosynthesis in X. strumarium glandular trichomes. Two small RNA libraries from leaves

and glandular trichomes of X. strumarium were established. In total, 1,185 conserved miR-

NAs and 37 novel miRNAs were identified, with 494 conserved miRNAs and 18 novel miR-

NAs being differentially expressed between the two tissue sources. Based on the X.
strumarium transcriptome data that we recently constructed, 3,307 annotated mRNA tran-

scripts were identified as putative targets of the differentially expressed miRNAs. KEGG

(Kyoto Encyclopedia of Genes and Genomes) pathway analysis suggested that some of

the differentially expressed miRNAs, including miR6435, miR5021 and miR1134, might be

involved in terpenoid biosynthesis in the X. strumarium glandular trichomes. This study pro-

vides the first comprehensive analysis of miRNAs in X. strumarium, which forms the basis

for further understanding of miRNA-based regulation on terpenoid biosynthesis.

Introduction
MicroRNAs (miRNAs) are small non-coding, endogenous RNAs consisting of ~22 nt in aver-
age, and are generated from large stem-loop precursors transcribed from non-protein-coding
genes, introns or coding regions of the host genome[1, 2]. They interact with mRNAs through
perfect or non-perfect complementarity to degrade mRNAs or repress translation, thus
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negatively regulating gene expression post-transcriptionally [3–7]. Plant miRNAs have been
reported to be involved in various biological processes, including plant growth development,
signal transduction, and stress responses against biotic or abiotic factors [8–12]. They also tar-
get genes with functions in metabolite biosynthesis [13,14]. With the aid of a high-throughput
sequencing technology, there are increasing miRNAs identified and characterized from a num-
ber of medicinal plant species, e.g. Panax ginseng [15], Opium poppy [16], Taxus [17], and
Catharanthus roseus [18], and their roles in regulating the production of secondary metabolites
of interests were also suggested by the bioinformatics analysis. In the model plant Arabidopsis
thaliana, there was direct evidence that miRNAs regulated the biosynthesis of secondary
metabolites by modulating their expression in vivo. For instance, the overexpression of
miRNA393 in Arabidopsis thaliana altered the levels of glucosinolate and camalexin via per-
turbing the auxin signaling pathway [19]. Other studies showed that the flavonoid biosynthesis
of Arabidopsis thaliana was regulated by the expression of miRNA156 while the modulation of
miRNA163 expression level changed the profiles of secondary metabolites [20, 21].

Xanthium strumarium L. (X. strumarium), an annual growth herb, belongs to the composi-
tae family [22]. The whole plant, especially its leaf, root and fruit, has been used in traditional
medicine for the treatment of rhinitis, malaria, rheumatism, tuberculosis, cancer, and ulcers
[23–26]. Previous studies indicated that plants of the Asteraceae family are characteristically
rich in sesquiterpene lactones, an important class of terpenoids, and the Xanthiums species are
rich in such medicinal ingredients [27–31]. The pharmacological properties of X. strumarium
are largely attributed to the presence of xanthanolides (a class of sesquiterpene lactones), which
have been reported to possess antifungal, antibacterial, and cytotoxic activities, and exhibit a
growth inhibitory activity against insects [30, 32–37]. Despite their multiple bioactivities, espe-
cially their anti-tumor and anti-cancer activities [38, 39], the knowledge on how xanthanolides
are biosynthesized and how the pathway is regulated remains largely unknown. Answering this
scientific question is one of the long-term aims in our laboratory. Previously, we discovered
that xanthanolides were highly biosynthesized and accumulated in the glandular trichomes of
the X. strumarium tissues, especially on its leaves at early stage [40]. To identify genes encoding
enzymes involved in trichome-dependent biosynthesis of xanthanolides in X. strumarium, the
transcriptome dataset from two related tissue sources—glandular cells isolated from young
leaves and intact young leaves was recently analyzed by our group. To study the regulatory
mechanisms of xanthanolides biosynthesis, we focused our attentions on miRNA-based regula-
tions as there are increasingly published literatures reporting their roles in plant secondary
metabolic activities [15–19]. To date, reports on miRNAs in X. strumarium remain lacking. In
this study, X. strumariummiRNAs were firstly identified using high-throughput sequencing
technology and the differentially expressed miRNAs between the isolated glandular cells and
intact young leaves were discovered. Combined with the analysis of the X. strumarium tran-
scriptome, the targets of those differentially expressed miRNAs were predicted and their func-
tions were annotated, which suggested that some of the differentially expressed miRNAs might
play roles in regulating terpenoid biosynthesis in X. strumarium glandular cells.

Materials and Methods

Plant materials
Young leaves (the first and second leaves from the top) were randomly collected from different
individual X. strumarium plants grown at the Wuhan Botanical Garden, Chinese Academy of
Sciences, Wuhan, China (Aug. 10th, 2013). The age of the X. strumarium was three month-old.
X. strumarium glandular trichomes were isolated from 20g of intact young leaves according to
protocols described previously by Chen et al. with some modifications [40]. The young leaves
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were abraded in a cell disrupter (Bead-Beater, BIOSPEC, USA) using glass beads in an isolation
buffer (25 mMMOPSO, pH 6.6, 200 mM sorbitol, 10 mM sucrose, 5 mM thiourea, 2 mM
dithiothreitol, 5 mMMgCl2, 0.5 mM sodium phosphate, 0.6% (w/v) methylcellulose and 1%
(w/v) polyvinylpyrrolidone). The disrupted extracts were filtered through a 425 μm nylon
mesh, and the filtrate was then consecutively passed through 125, 80 and 42 μm nylon meshes
with a resin buffer (25 mMMOPSO, pH 6.6, 200 mM sorbitol, 10 mM sucrose, 5 mM thiourea,
2 mM dithiothreitol, 5 mMMgCl2 and 0.5 mM sodium phosphate). The isolated glandular tri-
chomes were retained on the 42 μmmesh. Each sample was flash frozen in liquid nitrogen and
then stored at −80°C for RNA isolation.

Small RNA library construction and high-throughput sequencing
Total RNA was extracted from fresh young leaves and the isolated glandular trichomes with
Trizol reagent (Ambion). The quantity and quality of RNA samples were measured by Eppen-
dorf BioPhotometer plus to ensure that the OD260/OD280 values were between 1.8 and 2.2.
The RNA integrity was examined by agarose gel electrophoresis. Small RNA sequencing was
performed using an Illumina Genome Analyzer at the Beijing Genomics Institute (BGI, Shen-
zhen, China). Small RNA fractions with the length range from18 to 30 nt were purified and
then ligated to a 5' and 3' adaptor. After the reverse transcription followed by 11 cycles of poly-
merase chain reactions, approximately 20 μg of the amplified products were used for
sequencing.

Analysis of the sequenced data of the small RNAs
Small RNA reads with a length of 49 nt were produced by Illumina. Then data processing anal-
ysis was conducted as follows: (1) Removal of low-quality reads (more than four bases with sQ
values below 10, and more than six bases with sQ values less than 13); (2) Removal of reads
with 50 adaptor contaminants; (3) Removal of reads without 30 primer; (4) Removal of reads
without an insert tag; (5) Removal of reads with poly A; (6) Removal of reads shorter than 18
nt; and (7) A summary of the length distribution of the clean reads. The remaining clean reads
were mapped to X. strumarium transcriptome with less than two mismatches to analyze the
expression and distribution of the small RNAs using SOAP software[41].To annotate the small
RNAs, the sequences were aligned to the NCBI GenBank (http://www.ncbi.nlm.nih.gov/
genbank/) and Rfam (http://rfam.sanger.ac.uk/) 10.1 databases by a BLAST search[42, 43]. The
matched tags, including rRNA, scRNA, snoRNA, snRNA, and tRNA were eliminated. The
remaining tags were used to detect conserved and novel miRNAs. The transcriptome databases
of the X. strumarium small RNAs and mRNAs were deposited at the sequence read archive
(SRA) of National Center for Biotechnology Information (NCBI) under the accession numbers
of SRP056720 and SRP056511, respectively.

Identification of the conserved miRNAs
There is no miRNA information for X. strumarium in miRBase. To identify the conserved
miRNAs, the following strategy was used: first, considering the differences between species,
clean data was aligned to mature miRNAs or miRNA precursors of all plants in miRBase 20.0
(http://www.mirbase.org)[44] allowing two mismatches using tag2miRNA software (developed
by BGI); second, we chose the most abundant miRNA from each mature miRNA family to
construct a temporary miRNA database; third, we aligned the clean data to the above tempo-
rary miRNA database and the expression of miRNA was generated by summing the count of
all tags which were aligned to the temporary miRNA database within two mismatches. The
small RNAs that were unaligned to any databases were defined as unannotated sequences.
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Prediction of the novel miRNAs
The unannotated sequences ranging from 18 to 25 nt were used to identify novel miRNAs by
Mireap software based on the following main criteria described by chen et al. [45]: (1) The tags
which could be used to predict novel miRNAs came from the set of unannotated tags which
were matched to the transcriptome of X. strumarium; (2) Those tags whose sequences and
structures satisfied the two criteria: hairpin precursors could fold into secondary structures and
the sequences were present in one arm of the hairpin precursors, will be considered as candi-
date novel miRNAs; (3) Hairpin precursors lack large internal loops or bulges; (4) The second-
ary structures of the hairpins are steady, with the free energy of hybridization lower than or
equal to -18 kcal/mol; (5) The number of mature miRNAs with predicted hairpin precursors
must be at least five in the alignment results.

Target gene prediction of the conserved and novel miRNAs
To obtain putative target genes, we matched the identified miRNAs to the X. strumarium tran-
scriptome according to the rules published by Allen et al.[3] and Schwab et al.[7]. The criteria
were (1) the number of mismatches between small RNAs and their targets should be less than
four (G–U pairs count as half mismatch); (2) no more than two adjacent mismatches in the
miRNA/target duplex; (3) no adjacent mismatches in positions 2 to 12 of the miRNA/target
duplex from the 50 miRNA end; (4) no mismatches in positions 10 to 11 of the miRNA/target
duplex; (5) no more than 2.5 mismatches in positions 1 to 12 of the miRNA/target duplex from
the 50 miRNA end; and (6) the minimum free energy (MFE) of the miRNA/target duplex
should be� 75% of the MFE of the miRNA with its perfect complement.

Differential expression analysis of miRNAs between the leaves and
glandular trichomes
To ensure the significance of the difference in miRNA expression, we normalized the expres-
sion of miRNAs in the two tissue sources (leaves and glandular trichomes) as transcript per
million (TPM). Then those miRNAs with a P-value<0.05 (adjusted to a corrected P-value (q-
value) lower than 0.05) and an absolute value of log2Ratio>1 were selected as the differentially
expressed miRNAs. Target gene prediction of the differentially expressed miRNAs was also
conducted to better understand the regulatory roles of the miRNAs. Alignments of the miR-
NAs to the corresponding target sites are shown in S1 Table.

GO (Gene Ontology) functional classification and KEGG pathway
analysis for the potential targets of the differentially expressed miRNAs
GO is a classification system for gene function, which supplies a set of dynamically updated
and controlled vocabulary to comprehensively describe the property of genes and gene prod-
ucts. There are 3 ontologies in GO: molecular function, cellular component and biological pro-
cess. The basic unit of GO is GO-term, each of which belongs to one type of ontology.
Therefore, to classify the function distribution of the potential targets of the differentially
expressed miRNAs genes, the Blast2GO program was used to obtain their GO annotations [46]
and the WEGO software to obtain their GO functional classifications [47]. The GO enrichment
analysis of the targets was conducted and GO terms with a corrected P-value� 0.05 were
defined as significantly enriched terms. KEGG is a public database regarding metabolic path-
ways [48]. The target genes were mapped to the KEGG database to identify what pathways in
which those targets of the differentially expressed miRNAs are involved.
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Real-time quantitative PCR (RT-qPCR)
Stem-loop RT-qPCR was employed to validate the gene expression data from the Illumina
sequencing according to the method previously described by Chen et al. [49]. The primers
used for this part of the experiment were listed in S2 Table. First-strand cDNA synthesis was
performed using RevertAid Reverse Transcriptase (Thermo Scientific). The reaction was car-
ried out at 42°C for 60 min followed by incubation at 70°C for 10 min, and then held at 4°C
thereafter. RT-qPCR was conducted using the FastStart Universal SYBR Green Master (Roche)
and ABI 7500 Real-Time PCR System according to the manufacturer’s instructions. The reac-
tions were undertaken at 95°C for 10 min for one cycle; at 95°C for 15s, then at 62°C for 1 min
for 40 cycles. All reactions were performed in three independent biological samples with three
technical repeats. The melting curve was generated to test the specificity of PCR products and
avoid the amplicons only from primers themselves. The actin gene of X. strumarium (GenBank
accession no.JF434698) was used as an internal standard to normalize the variation in each
sample manipulation and the results were analyzed using the comparative 2-ΔΔCtmethod to
quantify the relative expression [50].

Results

High-throughput sequencing analysis of small RNAs
In total, 12,325,132 raw reads for the leaves and 9,076,601 raw reads for the glandular tri-
chomes were initially generated. After data preprocessing, 12,152,212 and 8,988,274 clean
reads for the leaves and glandular trichomes remained for the analysis, generating 7,261,121
and 4,842,894 total unique sequences for the leaves and glandular trichomes, respectively.
6,193,697 and 3,775,470 unique sequences (85.3% and 77.96% of the total unique sequences)
were specific to the leaves and glandular trichomes (Table 1). This was indicative of the diver-
sity of small RNA sequences in each tissue source. Little difference was found in the length dis-
tribution of the sequences from both tissue sources: the most abundant was the 24 nt small
RNAs, accounting for more than 60% of the total reads, followed by 21 nt small RNAs, and
small RNAs with a length of 23 nt (Fig 1). In addition, 220,115 (3.03%) and 247,453 (5.11%)
unique sequences for the leaves and glandular trichomes matched to the X. strumarium tran-
scriptome data. After annotating and removing the non-coding RNAs, including rRNAs,
tRNAs, snRNAs, and snoRNAs, 37,490 (0.52%) and 33,664 (0.7%) reads for the leaves and

Table 1. Statistics of small RNA sequencing.

Type Leaves Glandular trichomes
count % count %

total raw reads 12,325,132 — 9,076,601 —

high quality reads 12,195,632 100 9,021,559 100

3'adapter null reads 16,018 0.13 14,806 0.16

insert null reads 881 0.01 638 0.01

5'adapter contaminants 17,105 0.14 9797 0.11

smaller than 18nt reads 7103 0.06 5576 0.06

polyA reads 2313 0.02 2468 0.03

clean reads 12,152,212 99.64 8,988,274 99.63

total unique reads 7,261,121 — 4,842,894 —

tissue_specific unique reads 6,193,697 85.30a 3,775,470 77.96a

aThe percentage of the tissue_specific unique reads for the respective tissue source.

doi:10.1371/journal.pone.0139002.t001
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glandular trichomes were left for the identification of conserved miRNAs, and 7,138,288
(98.31%) and 4,735,851 (97.79%) unannotated reads for the leaves and glandular trichomes
were used to predict novel miRNAs (Table 2).

Identifying conserved miRNAs in both tissue sources
In X. strumarium, no miRNA has been reported at the time of drafting this manuscript. We
identified 978 conserved miRNA families with 745,146 total reads in the leaves and 894
miRNA families with a total of 550,246 reads in the glandular trichomes (S3 Table). There
were 687 conserved miRNA families expressed in both tissue sources (Fig 2A), of which

Fig 1. Size distribution of the miRNAs from the leaves and glandular cells.

doi:10.1371/journal.pone.0139002.g001

Table 2. Distribution of small RNAs among different categories in leaves and glandular trichomes of X. strumarium.

Type Unique small RNAs Total small RNAs
Leaves Glandular trichomes Leaves Glandular trichomes

total reads 7,261,121(100%) 4,842,894(100%) 12,152,212(100%) 8,988,274(100%)

matched readsa 220,115(3.03%) 247,453(5.11%) 1,474,980(12.14%) 1,819,939(20.25%)

miRNA 37,490(0.52%) 33,664(0.70%) 719,520(5.92%) 521,259(5.80%)

rRNA 75,056(1.03%) 60,161(1.24%) 388,404(3.20%) 405,948(4.52%)

snRNA 1003(0.01%) 1239(0.03%) 1493(0.01%) 2317(0.03%)

snoRNA 347(0%) 414(0.01%) 478(0%) 608(0.01%)

tRNA 8937(0.12%) 11,565(0.24%) 38287(0.32%) 339,486(3.78%)

unannotated 7,138,288(98.31%) 4,735,851(97.79%) 11,004,030(90.55%) 7,718,656(85.87%)

aThe reads that were matched to the X. strumarium transcriptome.

doi:10.1371/journal.pone.0139002.t002
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miR5565 was the most abundant miRNA family with 338,261 reads in the leaves and 249,096
in the glandular trichomes. The expression levels of a few other miRNAs, such as miR166,
miR167, miR172, miR398, and miR156 were also very high in both samples, while some miR-
NAs, including miR2084, miR2670, miR2875 and miR2950, were expressed in extremely low
abundance with only less than five reads.

Identifying potential novel miRNAs in X. strumarium
Based on the criteria described in the section of Materials and Methods, 22 potential novel
miRNAs for the leaves and 27 for the glandular trichomes were identified in both tissue sources
with at least five reads (S4 Table). Of these, only 12 novel miRNAs appeared in both samples
(Fig 2B), suggesting that the expression profiling of novel miRNAs was different between the
leaves and glandular trichomes.

The identified novel miRNAs ranged from 20 to 23 nt, with 21nt being the most abundant
(59.46%) (Fig 3A). The length of the predicted precursors for the novel miRNAs were 66 to
323 nt, with that the majority was between 50 and 150 nt (54.06%) (Fig 3C). The folding energy
of these hairpin structures for the precursors of novel miRNAs was -19.7 to -101.8 kcal/mol,
which most values within the range of -40 to -80 kcal/mol (54.05%) (Fig 3B). These results
were similar to those observed in Chinese cabbage, Arabidopsis thaliana, Oryza sativa and Ara-
chis hypogaea [51–53]. The nucleotide bias analysis showed that novel miRNAs from both tis-
sue sources had the similar tendency on the nucleotide bias at certain key positions, for
example, a strong preference for adenosine (A) at the tenth position and for uridine (U) at the
first position(Fig 4), which are the typical features of miRNAs[54, 55].

Target prediction of conserved and novel miRNAs in X. strumarium
Target genes for the conserved and novel miRNAs were predicted to better understand the bio-
logical functions of the identified miRNAs in X. strumarium. In total, we found 4,071 target
genes for 544 conserved miRNAs and 116 target genes for 26 novel miRNAs in X. strumarium,
with an average of 7.48 and 4.46 targets per conserved and novel miRNA (S5 Table). To anno-
tate these potential targets, a BlastX search against the NCBI protein database with an E value
lower than 10−5 was performed. Some targets were annotated as transcription factors, including
WRKY, Basic helix–loop–helix (bHLH), SQUAMOSA Promoter Binding Protein-Like (SPL)
and basic leucine zipper motif (bZIP) proteins. Other target genes included those involved in

Fig 2. Proportion of identified miRNAs in the leaves and glandular trichomes presented in a Venn diagram. The miRNAs in the diagram consist of
three portions: miRNAs that are exclusively present in leaves, miRNAs that are exclusively present in glandular trichomes, and miRNAs present in both
tissue sources. (A) conserved miRNAs; (B) novel miRNAs.

doi:10.1371/journal.pone.0139002.g002
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signal transduction, metabolism, stress response and those with unknown functions. The
expression levels of these targets between the leaves and glandular trichomes were also com-
pared (S5 Table).

The identification of the miRNAs differentially expressed between the
two tissue sources
The total of 512 miRNAs, including 494 conserved and 18 novel miRNAs, were found to be
differentially expressed between the two tissue sources. Among them, 262 conserved and 13
novel miRNAs were up-regulated, and 232 conserved and five novel miRNAs were down-regu-
lated in the glandular trichomes (S6 Table). To validate the miRNA expression data from the
sequencing, the expression levels of 13 differentially expressed miRNAs, including eight novel
miRNAs and five conserved miRNAs, were measured using RT-qPCRs. As was shown in Fig 5,
the expression trend of most of the miRNAs, except for miR1134, was consistent with the Illu-
mina sequencing results, meaning that the gene expression data of miRNAs by the sequencing
technique was credible.

Fig 3. Summary of potential novel miRNAs identified in X. strumarium. (A) Length frequency for the identified novel miRNAs. (B) Folding energy
frequency of precursors for the potential novel miRNAs. (C) Length frequency of precursors for the potential novel miRNAs.

doi:10.1371/journal.pone.0139002.g003
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Target prediction of the differentially expressed miRNAs
Based on the X. strumarium transcriptome, a total of 3,307gene targets were identified for
those differentially expressed miRNAs (S6 Table). Among these targets, some encode tran-
scription factors such as v-myb avian myeloblastosis viral oncogene homolog (MYB), WRKY,
bHLH, APETALA2/ethylene-responsive factor (AP2/ERF), bZIP and SPL proteins. For
instance, the unique genes, including CL6103.Contig1 targeted by miR5072, CL1989.Conti-
g2_All targeted by miR7539 and Unigene12046_All targeted by miR1850, displayed high simi-
larities to WRKY proteins. WRKY transcription factors have been reported to play roles in
regulating the biosynthesis of terpenoids [56–58]. By mapping those targets to the KEGG path-
way database, we were able to find that some targets seemed to encode putative enzymes in ter-
penoid biosynthesisin X. strumarium (the ones highlighted by yellow color in S7 Table),
especially in sesquiterpene biosynthesis (Table 3). For example, the upstream enzymes in the
pathways of terpenoid biosynthesis, including 1-deoxy-D-xylulose 5-phosphate synthase
(DXS), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), isopentenyl diphosphate
(IPP)/dimethylallyl diphosphate (DMAPP) synthase (IDS), and isopenteyl diphosphate isom-
erase (IDI), were predicted to be targeted by miR7539, miR5021 and miR1134. DXS, HMGR,
IDS, and IDI are the enzymes involved in the biosynthesis of IPP and DMAPP, the common
precursors of all the terpenoids [59]. In particular, HMGR is a rate-limiting enzyme of the
pathway to synthesize IPP and DMAPP [60]. The target by miR6435 is homologous to

Fig 4. Nucleotide preference at each position of novel miRNAs. (A) miRNA nucleotide bias of novel miRNAs in leaves; (B) miRNA nucleotide bias of
novel miRNAs in glandular trichomes.

doi:10.1371/journal.pone.0139002.g004

MicroRNAs from Xanthium strumariumGlandular Cells

PLOS ONE | DOI:10.1371/journal.pone.0139002 September 25, 2015 9 / 17



Fig 5. RT-qPCR data for the transcript abundance of somemiRNAs in the leaves and glandular
trichomes. The miRNA levels were normalized to an internal control (actin) and expressed relative to the
values of leaves (control), which were given an arbitrary value of 1. Error bars indicate the standard deviation
of three biological replicates.

doi:10.1371/journal.pone.0139002.g005

Table 3. Target genes for differentially expressedmiRNAs involved in terpenoids biosynthesis.

microRNAs Target gene candidates Annotation Biosynthetic pathway

miR6435 Unigene22477_All Germacrene A oxidase sesquiterpenoid[61]

miR5255 Unigene26141_All Squalene epoxidase triterpenoid[65, 66]

miR5255 Unigene26143_All Squalene epoxidase triterpenoid

miR5255 Unigene26144_All Squalene epoxidase triterpenoid

miR5255 Unigene26145_All Squalene epoxidase triterpenoid

miR5255 Unigene26146_All Squalene epoxidase triterpenoid

miR5491 CL1191.Contig1_All beta-amyrin synthase triterpenoid[64]

miR5491 CL1191.Contig2_All beta-amyrin synthase triterpenoid

miR5491 CL1191.Contig3_All beta-amyrin synthase triterpenoid

miR5491 CL1191.Contig5_All beta-amyrin synthase triterpenoid

miR5491 Unigene18850_All beta-amyrin synthase triterpenoid

miR5021 CL12255.Contig3_All HMGR terpenoid backbone [59]

miR1134 CL12255.Contig3_Al HMGR terpenoid backbone

miR5021 CL3919.Contig4_All IDS terpenoid backbone [59]

miR5021 Unigene24678_All IDI terpenoid backbone [59]

miR5021 Unigene23634_All IDI terpenoid backbone

miR7539 CL4414.Contig1_All DXS terpenoid backbone [59]

miR7540 CL2999.Contig1_All R-linalool synthase monoterpenoid[67]

miR5183 CL5257.Contig2_All gibberellin 3-oxidase diterpenoid[68]

miR6449 CL5429.Contig1_All ent-kaurene synthase diterpenoid[63]

miR6449 CL5429.Contig7_All ent-kaurene synthase diterpenoid

miR6449 CL5429.Contig8_All ent-kaurene synthase diterpenoid

doi:10.1371/journal.pone.0139002.t003
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germacrene A oxidase (GAO), the first key enzyme in the pathway to the biosynthesis of
xanthanolides [61]. Interestingly, xanthanolides have been considered to be the major active
compounds in X. strumarium [62]. In addition, some targets are homologs to the enzymes in
the biosynthesis of di-, or tri-terpenoids. For example, the beta-amyrin synthase targed by
miR5491 and ent-kaurene synthase targeted by miR6449 are key enzymes that catalyze the for-
mation of the most common triterpene β-Amyrin and diterpene ent-kaurene [63, 64].

GO analysis showed that these targets could be summarized into three main categories and
classified into 47 functional groups (Fig 6). Based on the biological process category, the major-
ity of the targets were involved in “cellular process”, “metabolic process” and “single-organism
process”. In the case of molecular functions, a large number of genes were grouped into “bind-
ing” and “catalytic activity”. While in the cellular component, the genes were mostly related to
“cell”, “cell part” and “organelle”. The GO enrichment analysis showed that the terms “mito-
chondrial respiratory chain complex IV” and “respiratory chain complex IV” are overrepre-
sented in the cellular component. For the molecular function, the majority of genes were found
to be involved in the “oxidoreductase activity” and “cytochrome-c oxidase activity”. The GO
terms “heme a metabolic process” and “heme a biosynthetic process” account for a large pro-
portion in the biological process, which indicated that the miRNAs might play roles in modu-
lating plant metabolic processes (S8 Table).

Discussion
Plant miRNAs have been reported to be involved in a variety of important processes, including
development, signal transduction, and responses to environmental stresses [12]. There was
also evidence to show that miRNAs function in regulating secondary metabolic activities. For
example, the molecule miRNA156 is involved in the regulation of flavonoid biosynthesis in
Arabidopsis thaliana [21]. Glandular trichomes are one type of specialized structure in synthe-
sizing a wide range of plant secondary metabolites [69], in X. strumarium, they are also the pri-
mary sites for accumulating xanthanolides, the compounds with multiple bioactivities [40]. We
hypothesized that miRNA expression in glandular cells might play roles in regulating the bio-
synthesis of secondary metabolites in X. strumarium such as xanthanolides. However, to the
best of our knowledge, no any information is available for the miRNAs from glandular tri-
chomes of any plant species. As the beginning to address this hypothesis, glandular trichomes
were physically isolated from the young leaves of X. strumarium in this study and large sets of
miRNAs in this particular structure were identified using a high-throughput sequencing tech-
nology. A database for miRNAs from its intact young leaves was also constructed and used as a
comparison. A total of 894 conserved miRNAs and 27 novel miRNAs were successfully identi-
fied from the glandular trichomes. The expression levels of more than 50% of these miRNAs
seem to be up- or down-regulated in the glandular trichomes compared to intact leaves. The
reliability of the gene expression data was confirmed by the Q-RT-PCR analysis of the five con-
served and eight novel miRNAs that were randomly selected. The expression of, novel-mir-14,
novel-mir-17, and novel-mir-34 is very high in glandular trichomes and more than 1000 folds
to those in intact leaves, indicating that they may have physiological functions in this special-
ized structure. With respects to the miRNAs with the highest abundance in the glandular cells,
they may be glandular trichome-specifically expressed or transported into the trichomes from
the other parts of the leaves.

To understand the regulatory roles of miRNAs, it is essential to predict and annotate its tar-
get mRNAs. Based on the feature that plant miRNAs are perfectly complementary to their tar-
gets, miRNA target genes can be predicted by a bioinformatics approach [3, 7]. Using the
bioinformatics tool, we were able to identify that the targets by the glandular trichomes
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conserved miRNAs included transcription factors and non-transcriptional factor proteins (S5
Table). Several transcription factors were predicted to be targeted by the same conserved
miRNA molecule, for example, miR7539 targets MYB, bHLH, WAKY, zinc finger, DNA Bind-
ing With One Finger(DOF), SPL, and bZIP transcription factors and miR5658 targets MYB,
bHLH, zinc finger, and bZIP transcription factors, suggesting that these miRNAs may play
multiple roles in diverse physiological processes. Non-transcriptional factor proteins, such as
DXS, HMGR, IDS and IDI, were predicted to be targets of miR7539, miR5021 and miR1134,
respectively. These targets are essential enzymes in upstream isoprenoid pathway to produce
IPP and DMAPP, the common precursors for all the downstream end terpenoids. In particular,
HMGR is a key regulatory enzyme that controls the amounts of isoprenoids [60]. These data
suggested that miR7539, miR5021 and miR1134 might be involved in regulating terpenoid bio-
synthesis by targeting upstream terpenoid pathway genes. Some miRNAs target putative down-
stream enzymes in the biosynthesis of mono-, sesqui-, di-, and tri-terpenoids. They were R-
linalool synthase, gibberellin 3-oxidase, ent-kaurene synthase, squalene epoxidase, beta-amyrin
synthase, and germacreneA oxidase, which were targeted by miR7540, miR5183, miR6449,
miR5255, miR5491, and miR6435, respectively (Table 3). Most interestingly, germacrene A
oxidase (GAO) targeted by miR6435 is a key P450 involved in the biosynthesis of xanthano-
lides[61], which was previously reported to be active molecules to contribute to the pharmaco-
logical property of X. strumarium [30, 34, 70]. Gene expression data from the miRNA-
sequencing showed that the molecule miR6435 is glandular trichome-specifically expressed (S6
Table), which is also consistent with the feature that glandular trichomes are the primary sites
to synthesize xanthanolides. The data allowed us to hypothesize that miR6435 might play a
role in the regulation of xanthanolide biosynthesis in X. strumarium glandular trichomes. Iden-
tification of miRNAs which can perfectly bind to their mRNA targets may also provide alter-
nate approach to isolate pathway genes, especially for those pathways that are not elucidated
well. The discovery of X. strumarium glandular trichome miRNAs of this study may help to
identify xanthanolide biosynthesis genes. The biosynthetic pathway of xanthanolides is not

Fig 6. GO functional classification for the predicted targets by the differentially expressedmiRNAs. X-axis, the three main GO categories and 47 GO
terms assigned for the differentially expressed miRNA targets; Y-axis, the gene numbers corresponding to the GO terms.

doi:10.1371/journal.pone.0139002.g006
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elucidated yet, especially for its downstream pathway in which cytochrome P450 enzymes are
presumably involved. Here, we have tried to identify miRNAs whose targets were P450
mRNAs. In addition to GAO targeted by miR6435, we also have found that the targets of other
miRNAs, including miR1512, miR3447, miR5678, miR6283, and miR7539, encode P450s, in
particular, of these P450 mRNA sequences, the target mRNA by miR6283 seemed to be tri-
chome-specifically expressed (S5 Table). Thus, it will be of interest to further experimentally
perform functional analysis of miR6283 and its target. In contrast to the conserved miRNA tar-
gets, none of the targets by novel miRNAs presented in this research were transcription factors
and many of them encoded cytochrome c oxidase, ABC transporter, and protein kinases, sug-
gesting their roles in oxidation-reduction processes, transport, and signal transduction.

Conclusions
In conclusion, this is the first comprehensive identification of miRNAs from the plant glandu-
lar trichomes, the specialized structure to synthesize a wide range of medicinal molecules. We
have been able to identify miRNAs and their mRNA targets that are trichome-specifically
expressed. The data of this study provide the starting point to further investigation to elucidate
the miRNAs regulatory mechanism underlying the biosynthesis of secondary metabolites,
especially terpenoids, in X. strumarium glandular cells.
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