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Abstract—Tuberculosis is one of the leading causes of death
in several developing countries and a public health emer-
gency of international concern. In Silico Trials can be used to
support innovation in the context of drug development
reducing the duration and the cost of the clinical experimen-
tations, a particularly desirable goal for diseases such as
tuberculosis. The agent-based Universal Immune System
Simulator was used to develop an In Silico Trials environ-
ment that can predict the dose–response of new therapeutic
vaccines against pulmonary tuberculosis, supporting the
optimal design of clinical trials. But before such in silico
methodology can be used in the evaluation of new treat-
ments, it is mandatory to assess the credibility of this
predictive model. This study presents a risk-informed cred-
ibility assessment plan inspired by the ASME V&V 40-2018
technical standard. Based on the selected context of use and
regulatory impact of the technology, a detailed risk analysis
is described together with the definition of all the verification
and validation activities and related acceptability criteria.
The work provides an example of the first steps required for
the regulatory evaluation of an agent-based model used in
the context of drug development.

Keywords—Tuberculosis, Agent-based model, Drug devel-

opment, Model credibility, Verification, Validation.

ABBREVIATIONS

ABM Agent-based model
CoU Context of use

FCMtb Fragmented mycobacterium tuberculosis
cell

IFN-c Interferon-gamma human
KL Kullback–Leibler divergence measure
MDR Multidrug resistant
MTB Mycobacterium tuberculosis
PD Pharmacodynamic
PK Pharmacokinetic
QoI Quantity of interest
TB Tuberculosis
Th T-helper cell
UISS Universal Immune System Simulator
UISS-TB-
DR

Universal Immune System Simulator
designed to predict the population dose–
response relationship for therapeutic
vaccine against tubercolosis

INTRODUCTION

Tuberculosis (TB) is still a serious health problem in
several developing countries, and it is considered today
the second leading cause of death worldwide from a
single infectious agent, after SARS-CoV-2.42 The most
recent global TB report published by the World Health
Organization42 states that about a quarter of the
world’s population is affected by TB and about 1.5
million people died in 2020. The number of TB cases
varies widely among countries: it is estimated that only
eight states of South-East Asia and Africa accounted
for almost two thirds of the global TB incidence rate
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with India the worst affected (26%). Poverty, malnu-
trition, overcrowding, HIV infection and alcohol
consumption are all factors strongly associated with
TB.22

Tuberculosis, caused by a bacillus named
Mycobacterium tuberculosis (MTB), typically affects
the lungs (Pulmonary TB) and can lead to active and
latent forms.15 The commonly used first line antibiotic
treatments recommended for drug-susceptible TB
patients are isoniazid, rifampicin, ethambutol, and
pyrazinamide. Second line treatments for drug-resis-
tant and multidrug resistant patients (resistant to both
isoniazid and rifampicin) are usually more complex
and include long duration antituberculosis therapies
that are sometimes prohibitively expensive, especially
considering the low average income of many target
countries. A new promising strategy that proved to be
effective in shortening the treatment duration and in
preventing recurrent tuberculosis is a combined
approach known as therapeutic vaccination or
immunotherapy.6,14 Different recent studies demon-
strated the possibility to use the combination of TB
vaccination and drug treatments to drastically shorten
the time to sputum culture conversion and decrease the
probability of developing drug-resistant strain6,43;
however, the clinical experimentation of this therapies
is slow and expensive and to date none have entered
the market.42,36

In Silico Trials technologies, used in combination
with clinical experimentation, promise to reduce the
cost and duration of such trials.14,29,30,34,40 The use of
computer modelling and simulations is rapidly grow-
ing in the pharmaceutical area41 and one specific
application which is gaining particular interest in the
context of drug development and evaluation is the
assessment of the optimal drug dose to be used in the
clinical study.25 The design of these dose–response
studies is in fact complex and requires the recruitments
of both healthy volunteers and TB patients. Also, be-
cause different arms need to be included in the study
(e.g., drug-resistant and drug-responsive strains, HIV-
positive and HIV-negative patients), only a fairly lim-
ited number of doses can be tested over a small group
of subjects per each arm.27

In the last decades, different modelling and simu-
lation-based approaches have been proposed to test
dose–response of new treatments for different appli-
cations. Some of the most advanced methods were
classified and summarised in References 14, 23.
Specifically for TB, the most commonly used compu-
tational approach relies on mechanistic and physio-
logically based pharmacokinetic/pharmacodynamic
(PK/PD) models.4,16,20 In Reference 20, a computa-
tional framework that combines a PK-PD model and a
multi-objective optimization approach was presented

to identify a set of trade-off optimal dosage regimens
for pulmonary TB. Boonpeng et al. recently used a
population PK model to guide optimal levofloxacin
dose regimens for multidrug resistant (MDR) TB
therapy4; the pharmacokinetics analyses explored the
population variability examining different patient
characteristics and predicted different dosage regimens
using Monte Carlo simulations. A similar mechanism-
based PK/PD approach was adopted by Heinrichs
et al.16 that simulated a virtual clinical trial to inform
optimal dosage of moxifloxacin and linezolid. Other
promising modelling techniques include the use of
agent-based multi-scale models, powerful tools to
simulate complex phenomena such as the interaction
of single cells and molecular entities.9,10,31 In 2017,
Cicchese et al. found that optimal TB antibiotic doses
and schedules could be identified using a hybrid model
that incorporates Agent-Based models (ABM), PK/PD
models and mathematical optimization strategy based
on genetic algorithms and radial basis function net-
works.9 More recently, the Universal Immune System
Simulator (UISS) has been used as a basis to imple-
ment a patient-specific disease progression model for
TB (UISS-TB), and a treatment model of the RUTI
therapeutic vaccine, indicated for the prevention of
active TB in subjects with latent infection.30

Although the value of such emerging technologies is
widely recognized, one critical aspect that must be
properly addressed before using them to support
human experimentation in the context of drug devel-
opment and new market authorization submission is
the assessment of the model’s credibility. Recent pub-
lications co-authored by officers of major regulatory
agencies suggest the possibility to use, also for drug
development tools, a recent technical standard pro-
posed to assess the credibility of models for the
development of medical devices, the ASME VV-
40:2018.2,24,25,37 A brief summary of the verification
and validation strategy for UISS-TB was introduced in
References 11, 25; however, a comprehensive descrip-
tion of all the activities that are needed to evaluate the
credibility of the model has never been reported.

The aim of this paper is to present a detailed risk-
based credibility assessment plan according to the VV-
40 standard of an agent-based In Silico trial model to
be used in dose selection studies of new therapeutic
vaccines against TB. Based on the selected context of
use and regulatory impact of the technology, a detailed
risk analysis is described together with the definition of
all the verification and validation activities and related
acceptability criteria. This work provides a general
framework that will be submitted as proposed credi-
bility evidence plan for the qualification advice request
of the in silico methodology to the regulatory author-
ity.
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MATERIALS AND METHODS

The Investigational Product and Regulatory Status

Therapeutic vaccines are adjunctive therapies
administered along with a specific chemotherapy and
used to shorten the TB treatment period, reduce the
resistance and the relapse rate. The product formula-
tion and route of administration depend on the specific
drug. The vaccine is typically administered along or
after the start of the chemotherapy and the duration of
the combined therapy can vary significantly (e.g., from
1 to 20 months). Examples of TB therapeutic vaccines
are Mycobacterium vaccae and RUTI vaccines. The
mechanisms of action of these two vaccines follow the
‘‘host-directed-therapy’’ and ‘‘bacilli-directed therapy’’
respectively, according to the two main design cate-
gories described in Reference 7. The first vaccine is
made of heat-killed Mycobacterium vaccae that can
enhance the host defence against MTB by promoting
T-helper (Th) lymphocytes Th1 and suppressing Th2
response. It promotes the generation of CD8 + T cells
that increases the production of Interferon-gamma
human (IFN-c), a cytokine with a fundamental role in
the body’s immune response when fighting MTB
infection since it activates macrophages that kills the
intracellular mycobacteria. A phase III clinical study
that involved 10,000 participants was conducted in
2013 to assess safety and efficacy of Mycobacterium
vaccae. RUTI is a polyantigenic liposomal vaccine
made of detoxified, fragmented M. tuberculosis cells
(FCMtb), that demonstrated to significantly reduce the
bacillary load also thanks to its bactericidal activity.
Good safety, tolerability and immunological response
was observed in a Phase II study where 96 latent TB
infected individuals were evaluated. Immunogenicity,
defined as the ability to induce an immune system
response was used as an indicator of vaccine efficacy
and measured in term of IFN-c production by blood
cells. A Phase IIb clinical trial to investigate the RUTI
efficacy in drug sensitive and multidrug-resistant
patients has recently started in India.1 Other thera-
peutic vaccine candidates are MVA Multiphasic vac
and ID93/GLA-SE which completed preclinical and
phase I respectively.

General Description of the Predictive Model

The computational platform UISS-TB is a specific
implementation of the Universal Immune System
Simulator that has been recently extended to model the
response of the immune system to the pulmonary
infection of MTB.30 The model is based on an agent-
based paradigm and represents the compartment of
interest (lung or lymph node) as a bidimensional do-

main, within which each biological entity (e.g., pa-
thogens, cells or molecular species) can move and
interact according to specific cause-effect relationships
(e.g., molecular dynamics and string-matching affinity
rule). Each agent is mainly characterised by a type, a
set of admissible states, a position within the com-
partment, and a molecular fingerprint (presentation
pattern). Stochastic interactions and intrinsic ran-
domness of the complex phenomena are also imple-
mented using three stochastic variables that define the
initial distribution of the agents in the space domain,
the human leukocyte antigen type and randomisation
of the environmental factors (e.g., the effect on the
lymphatic flow). Random seed algorithms generators
are used to initialize the stochastic variables.39

A feature set of 22 model inputs (Table 1) with
admissible minimum (IMIN) and maximum (IMAX)
values identified according to literature data17,21 is
used to define a possible virtual patient to be consid-
ered in the simulation setting. The novel approach
from Juárez et al.18 is then adopted to create the virtual
cohort based on the typical values, standard deviation
and joint distribution of the target population char-
acteristics.

The simulation platform is defined based on three
different model layers: (i) physiology layer where
UISS-TB simulates the physiological response of the
human immune system to an infective exposure of
MTB; (ii) disease layer that implements the disease
mechanism of the pulmonary infection and (iii) the

TABLE 1. Inputs values of the UISS-TB model.

INPUTS Description IMin IMAX

Mtb_Vir Virulence factor 0 1

Mtb_Sputum

(CFU/mL)

Bacterial load in the sputum

smear

0 10,000

Th1 (cells/lL) CD4 T cell type 1 0 100

Th2 (cells/lL) CD4 T cell type 2 0 100

IgG (GMT) Specific antibody titer 0 512,000

TC (cells/lL) CD8 T cell 0 1134

IL-1 (pg/mL) Interleukin 1 0 235

IL-2 (pg/mL) Interleukin 2 0 894

IL-10 (pg/mL) Interleukin 10 0 516

IL-12 (pg/mL) Interleukin 12 0 495

IL17-a (pg/mL) Interleukin 17A 0 704

IL-23 (pg/mL) Interleukin 23 0 800

IFN1A (pg/mL) Interferon alpha-1 0 148.4

IFN1B (pg /mL) Interferon beta-1b 0 206

IFNG (pg/mL) Interferon gamma (IFN-c) 0 49.4

TNF (pg/mL) Tumor necrosis factor 0 268.2

LXA4 (ng/mL) Lipoxin A4 0 3

PGE2 (ng /mL) Prostaglandin E2 0 2.1

VitaminD (ng/mL) Vitamin D 25 80

Treg (cells /lL) Regulatory T cells 0 200

Age (years) Age 10 80

BMI (kg/m2) Body mass index 18 35

BIOMEDICAL
ENGINEERING 
SOCIETY

A Credibility Plan for a Tubercolosis In Silico Model



treatment layer that includes the effect of different
therapeutic treatments on the development of the
pathology.

The modelling application specifically designed to
predict the population dose–response relationship for
the therapeutic vaccine is called UISS-TB-DR and
includes all the three model layers, considering both
the first line antibiotic therapy and the second line
vaccine mechanism of action in the treatment model.
The model simulates the infection of a representative
portion of the pulmonary compartment by MTB and
considers the pathogen with genomic polymorphisms,
including their debris, macrophages, neutrophils, den-
dritic cells, regulatory T cells, B cells, and CD4+ and
CD8+ Th cells. Each treatment is modelled on the
basis of the known mechanism of action, the treatment
plan, and the patient-specific drug susceptibility/resis-
tance test. To implement a vaccine mechanism of ac-
tion and predict its effects in terms of stimulated
immune response against MTB and the provoked
tuberculosis disease, UISS-TB-DR needs to consider
the vaccine formulation, dosage, biochemical proper-
ties (i.e., half-life) and the specific interactions of all the
components that constitute the vaccine with the host
simulated immune system. All these properties are re-
trieved from preclinical studies. The methods used to
translate dose results in humans are based on allo-
metric scaling (e.g., normalizing dose-to-body surface
area). Five steps are usually performed to extract data
from preclinical studies that include fundamental tox-
icology trials: (i) determination of no observed adverse
effect levels (NOAEL) in animal toxicity studies; (ii)
the conversion of NOEL to human equivalent dose;
(iii) selection of appropriate animal species; (iv) apply
safety factor; (v) consider pharmacologically active
dose.26

Validation Data

The observed data used for the validation study
(‘‘Validation’’ section) are described in the work pub-
lished by Nell et al.,27 In the phase II clinical trial,
carried out by three South African sites (Bloemfontein,
George, and Port Elizabeth) from July 2010 to April
2011, three different doses (5, 25 and 50 lg) of RUTI
vaccine are evaluated in term of safety, tolerability and
immunogenicity compared to placebo in subjects with
latent tuberculosis infection. The study involved 96
patients without evidence of active TB (men and wo-
men 18–50 years of age including 47 HIV-positive and
48 HIV-negative). Each subject was randomized to
receive one of the four treatments: placebo, 5, 25 and
50 lg of RUTI vaccine at days 28 and 56 after com-
pletion of one month of isoniazid (INH, one tablet of
300 mg/day). Tolerability and safety were mostly

qualitatively evaluated (e.g., pain, swelling, induration,
functional limitation, vital sign and adverse events
assessment) while immunogenicity was accurately
measured in a time frame of 63 days. Cellular mediated
immunity was assessed using ELISPOT and ELISA
techniques and IFN-c Spot Forming Units were mea-
sured with WHO and TIGRA (T-SPOT TB) assays.
Humoral responses were also studied. Five time points
were identified at day 0, 28 (pre-1st dose), 35, 56 (pre-
2nd dose) and 63.

Risk-Informed Model Credibility

Question of Interest and Context of Use (CoU)

The scientific question of interest to be addressed is
‘‘what is the most immunogenic dose of the new
therapeutic vaccine to be used in patients affected by
tuberculosis?’’.

This is a critical issue is the context of dose selection
studies since immunogenicity, as indicator of vaccine
efficacy, contributes to the identification of the optimal
vaccine dose together with safety and tolerability evi-
dence. Also, the highest dose does not necessarily
produce the highest immune response which can be
non-linear and might vary depending on the time
considered after the drug administration. The UISS-
TB-DR model will be used to support the decision
about the most immunogenic dose of the new thera-
peutic vaccine against TB and inform phase II dose
selection studies by predicting the human immune
system response representative of a real population in
terms of immunogenicity. Based on the results of
preclinical experiments and phase I clinical studies (i.e.,
minimum effective and maximum tolerable doses),
simulations are run taking into account patients
specific characteristics. The model results in term of
IFN-c concentration will be used to extract an average
dose–response curve and to identify the dose that
produces the highest immunogenic response. The
characteristics of the real patients will be used to build
an ‘‘extended’’ virtual cohort that, in addition to the
treatment formulations and route of administration,
will be considered as inputs to the simulation platform.
The levels of IFN-c predicted by the model will be used
as immunogenicity response biomarker to suggest the
appropriate dose of the treatment for which the mar-
keting authorisation is requested to be tested on a real
cohort of patients during phase II dose selection
studies. The process we propose uses UISS-TB-DR to
predict the response over a virtual population much
larger than the one normally used in such experimental
studies. The results obtained with the in silico model
will be used to confirm and support evidence from
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phase I clinical experiments and inform phase II dose
selection studies.

Regulatory Impact

Considering the definitions presented in References
17, 20, and 21 where the concept of regulatory impact is
related to how regulators weigh the importance of
models compared to alternative methods to address the
final regulatory question, the regulatory impact of the
developed modelling framework for the proposed CoU
is low. An iterative and stepwise approach process will
be adopted for the qualification advice request to the
regulatory agency. As a first step, the computational
methodology is proposed to confirm the available clin-
ical evidence and support the selection of the most
immunogenic dose of the new therapeutic vaccine
obtained during phase II dose selection studies. How-
ever, it is important to notice that the final intended
regulatory use of the UISS-TB-DR model is to reduce
the human experimentation required to choose the
optimal immunogenic dose of a new therapeutic vaccine.
Based on the taxonomy presented in References 40, we
position our application in the general category ‘‘reduce
Clinical Human Experiments’’ with the final aim to
optimize and accelerate TB drug development reducing
the number of humans involved in the experiment, and
its cost/duration. Once the methodology will be tested
and validated for different therapeutic treatments and
case studies, the modelling and simulation framework
canbe considered an alternativemethod that canbeused
to assess immunogenicity in the dose–response studies,
replace the usual evidence and drastically reduce the
number of patients enrolled in the clinical trials.

Model Risk Assessment

The model risk assessment defined in the ASME
VV-40 standard is based on the combination of model
influence and decision consequence. The definition of
model influence is somehow related to the concept of
regulatory impact described in the previous section;
but it better stresses the contribution of the model on
the final decision versus other available evidence used
to address the question of interest.

For the CoU previously described, the model influ-
ence can be considered low because the results of the
computational model represent a minor factor in the
final decision. The most immunogenic dose will be
mainly selected based on confirmatory clinical studies
and other evidences about safety and tolerability.

The Decision consequence is medium: an incorrect
decision could have a moderate impact for the patient
especially if unfavourable benefit-risk balance is esti-
mated. In case the selected dose is moderately sub-
optimal (a grossly sub-optimal dose would be detected

by the confirmatory experiment), the treatment might
result to be slightly less effective, but no serious ad-
verse effects related to safety and tolerability would be
expected (usually carefully tested in preclinical and
phase I studies).

The credibility assessment plan is thus designed
assuming the risk associated with the use of UISS-TB-
DR for this specific context of use as medium–low
(Fig. 1).

RESULTS

Credibility Activities Plan and Goals

Following the ASME VV-40:2018 standard, the le-
vel of risk and regulatory impact guide the definition of
the credibility assessment plan. The activities selected
for UISS-TB-DR model are detailed in Table 2, to-
gether with the relative credibility factors and goal,
also defined consistently with the VV-40 standard.

According to the CoU, the verification and valida-
tion activities are defined considering as quantity of
interest (QoI), the concentration of IFN-c that is used
to test immunogenicity and suggest the appropriate
dose of the treatment.

Verification

Code Verification

Credibility goal: Low. Little SQA and numerical code
verification procedures are specified

Software quality assurance procedures include
quality metrics tracking such as correctness and

FIGURE 1. Model risk map indicating model influence and
decision consequence for the CoU.
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reproducibility. A specific benchmark test is replicated
to ensure that the software is functioning correctly and
produces previously established results. In particular,
two generic challenges with extracellular bacteria have
been performed at month 0 and at month 3, in order to
assess the antibodies-mediated immune response
directed against the generic bacterium one week after
the first challenge and one week after the second one.
The comparison between the two antibody levels
showed an increase after the second challenge which
should be almost doubled compared to the previous
phase.32,35 The GitHub platform is also used to enforce
quality control, usability, portability and versioning
control (e.g., code review and debugging).

Calculation Verification

Credibility goal: Medium. Problem specific calcula-
tion verification study is conducted and key inputs/out-
puts are verified by internal peer review.

Calculation verification is performed based on the
methodology described in a recently published paper11

that is specifically designed for agent-based models and
distinguishes between deterministic and stochastic
model verification activities. The first group includes
all the tests performed considering fixed values for the
stochastic parameter values (Existence, Uniqueness
and Use Error; Input/Output exploration) while the
second aims at investigating the effect of the random-
ization factors and includes: Consistency and sample
size determination. The verification activities with the
identified quality metrics and requirements for model
acceptability are described below.

Existence, Uniqueness and User Error It aims at veri-
fying basic essential properties such as existence and
uniqueness of the solution. Key inputs and outputs are
also verified to ensure that no errors occur in the

simulations due to the practitioner (e.g., typographical
errors).

I/O Exploration The goal of this activity, also called
parameter sweep analysis, is to verify that the model is
not numerically ill-conditioned and behaves reliably
for all the input value combinations. The entire input
sets space is sampled uniformly using a Design of
Experiment (DoE) approach and considering the pos-
sible minimum and maximum values for all the vari-
ables (Table 1). A total of 100 simulations are then run
for all the admissible drug doses to verify that any
combinations of inputs do not lead to unexpected
trends of the model’s corresponding outputs (e.g.,
concentration of IFN-c values outside the ‘‘biological
acceptable’’ concentration range). The global variation
effect of the input parameters on the output results is
also quantified through coefficient of variation C de-
fined as the ratio between the standard deviation and
the mean for each output. This value should not be
greater than typical variability results (e.g., around
70%) obtained from clinical studies across multicentre
trials and continents.3

Consistency and Sample Size Determination A total of
1000 simulations varying the value of the stochastic
parameters and setting all the other inputs to their
mean value are run and studied in terms of statistical
consistency. In particular, a graphical check on the
histograms and the Kullback–Leibler (KL) divergence
measure38 is used to characterise the shape of the
sample distributions for the QoI and their fit to gaus-
sian and Student-t distribution. Also, typical descrip-
tive statistics (i.e., mean, standard deviation and
coefficient of variation) are computed. We assume the
model is stochastically consistent if the ratio between
the divergence of the Student-t (KLs) and the Gaussian

TABLE 2. Verification, validation and applicability activities with their credibility factors. Outline of the credibility goal is also
reported.

Activities Credibility factors Credibility goals

Verification Code Software quality assurance Low

Numerical code verification

Calculation Existence, uniqueness and use error Medium

Input/output exploration

Consistency and sample size

Validation Computational model Model form Medium

Model inputs

Comparator Test samples Low

Test conditions

Assessment Equivalency of input parameters Low

Output comparison

Applicability Relevance of the quantity of interest Medium

Relevance of the validation activities
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(KLG) are in the range [0.8–1.2]. The number of sim-
ulation runs (number of samples obtained with dif-
ferent values for the stochastic variables) required to
have a statistical significance is computed assessing the
variability of the measurements and evaluating the
coefficient of variation rate as described in Reference
11. A sample size of 600 simulation runs is considered
acceptable assuming the computational cost as a major
constraint. The time required to run the entire simu-
lation with an Intel Core i7-9700 at 3 GHz and 32 GB
RAM for one single digital patient is about one min-
ute.

Validation

Validation aims at assessing the degree to which the
computational model is an appropriate representation
of the reality of interest. The validity of some model
form and input assumptions are tested in the activities
related to Model Form and Model Input with uncer-
tainty quantification analyses. Then, credibility factors
related to the comparator data samples (Test samples)
and conditions (Test conditions) are evaluated to
examine the rigor of the comparison in terms of
number and characteristics of test samples used and
measurements of the test conditions. Finally, model
assessment is evaluated analysing the Equivalency of
Input Parameters and Output Comparison.

Computational Model

Credibility goal: Medium. Influence of expected key
model form assumption and uncertainties on expected
key inputs is explored.

I. Model Form
The key modelling form assumptions are related to

the definition of the computational domain used for
the simulations (i.e., 1 lL of peripheral blood sample)
and the time frame used to expose the virtual patient to
the MTB challenge (i.e., 730 days before the antibiotic
treatment starts). The influence of the model form
assumptions was explored by quantifying their impact
on the output results. The simulations are repeated
considering a blood volume of 10 and 100 lL and a
time interval of 730 ± 10 days for the MTB exposure
challenge. The model form assumptions were assumed
to not significantly impact the decision related to the
CoU for percentage differences of the IFN-c concen-
tration inferior to 10%.

II. Model Inputs
Uncertainty quantification analyses are conducted

on the key model inputs: MTB_Vir, MTB_Sputum,
VitaminD, Treg, Age, and BMI. All these input fea-
tures, describing biological and patho-physiological
parameters, are fundamental in TB infection dynamics

and normally measured clinically. A novel statistical
Bayesian approach described in Reference 19 is used to
define the value ranges accounting for the uncertainty
in the augmented clinical trial. Considering a reference
input vector of features that identify one virtual pa-
tient, the analyses are performed perturbing the six
inputs one at a time from their minimum to their
maximum value. A variation range on the IFN-c
concentration less than 10% is considered as accept-
able.

Comparator

Credibility goal: Low. One in vivo experimental study
reported in the literature is considered for the compar-
ison that includes limited information on the patient
characteristics and test conditions.

Test samples and test conditions of the comparator
data (‘‘Validation Data’’ section) are identified and
used to build the in silico clinical trial. Three different
virtual cohorts (for the same three treatment RUTI
vaccine doses 5, 25 and 50 lg) are built considering the
mean value and standard deviation of the parameters
representing the main characteristics of the HIV-neg-
ative latent tuberculosis patients enrolled in the clinical
study.27 A total number of 12 patients were included in
each arm of the clinical trial, while for the augmented
in silico study, 100 virtual patients were modelled in
each of the three virtual cohorts following the
methodology presented in Reference 18. Test condi-
tions are characterised in terms of route of adminis-
tration and duration of the treatments (i.e., the virtual
patients are exposed to an infective MTB challenge
and then treated with the RUTI vaccine after com-
pletion of one month of INH as reported in the clinical
study).

Assessment

Credibility goal: Low. Visual comparison and quan-
titative agreement measurement is performed on one
single output quantity.

I. Equivalency of Input Parameters
The type and range of the input parameters are

similar but not equivalent. From the comparator data,
the mean value and standard deviation of two patient
features can be extracted and used as model inputs
(i.e., age and weight) while the other variables listed in
Table 1, were defined based on probability distribu-
tions data presented in the literature.19

II. Output Comparison
A single simulation output (i.e., concentration of

IFN-c expressed in SFU/ 0.25 9 106 cells) is compared
with the observed results of the clinical study for three
different time points (day 35, 56, 63). The standard
numerical and graphical analysis described in the
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EMA guidance on reporting pop-PK is considered
appropriate.13 Goodness of fit plot with quantitative
agreement measurements (e.g., percentage difference
between computational results and the in vivo data
obtained from the clinical study) is considered. Be-
cause the comparison is not at the individual level but
a statistical agreement assessment is performed, the
model credibility evidence falls in the category defined
as population based evidence.5 In both comparator
and computational model results, the most immuno-
genic dose of the RUTI therapeutic vaccine is consid-
ered the one that produces a higher concentration of
IFN-c in the observed population.

Other Validation Evidences

General non-CoU related evidence is also produced
to support model credibility. In particular, evidence
that demonstrates that the model reproduces phe-
nomena that are known to occur in humans are
reported considering qualitative experimental obser-
vations described in the literature at two different
layers: physiological and disease layer. Visual com-
parison is performed between the predicted and ex-
pected trend of the quantities and behaviours briefly
presented below.

I. Physiological Layer
Different UISS-TB output predictions regarding

tuberculosis immunological hallmarks during the early
infection phase are considered for the physiological
layer.28 These include: (i) innate early host immune
response to MTB infection; (ii) adaptive T cellular im-
mune response mounted against MTB infection; (iii)
dynamics of the typical CD4 + Th1 and Th17 cytoki-
nes signature; (iv) dynamics of IL-10, TNF-a, type I
interferons, LXA4 and PGE2; and (v) dynamics of Mtb
viable bacilli and specific IgM, IgG and IgA anti-Mtb.

II. Disease Layer
Model credibility evidence at the disease layer aims

to demonstrate that UISS-TB reproduces the natural
history of pulmonary tuberculosis infection.33 Model
predictions are compared in term of: (i) rate of mor-
tality over a population of untreated subjects exposed
to the MTB infection; (ii) rate of patients with latent
MTB infection that eventually develop the active form
of disease over a period of time; and (iii) changes in
representative lymphocytes populations in the transi-
tion from latent to the active form.

Applicability

Credibility goal: Medium. The quantity of interest is
relevant to support the use of the model for the intended
use. A partial overlap between the validation points and
the CoU is observed.

The applicability analysis is performed considering
the relevance of both the QoI and the validation
activities for the CoU. The simulation output selected
for the validation study is the concentration of IFN-c
which is identical to the quantity used as an accepted
biomarker of the immunogenicity response. The iden-
tified quantity of interest is thus fully relevant to the
CoU. However, a partial overlap between the context
of use and the validation points can be observed: only
one therapeutic vaccine is considered in the compara-
tor study with test conditions and samples that are
limited to one clinical trial.

DISCUSSION

The aim of this study was to develop a detailed risk
informed model credibility plan that can be used in the
qualification advice request submission to support the
overall credibility of the computational model for the
CoU. Based on the specific scope and role of the
computational model used to address the question of
interest and the established regulatory impact, a model
risk analysis has been performed and used to define the
credibility factors and goals. Specific factors for cal-
culation verification of agent-based models have been
selected while typical validation activities related to the
computational model, comparator and assessment
have been considered. According to the identified
regulatory impact and model risk, a low-medium level
of investigation into each factor is considered accept-
able and the credibility evidence, if the credibility goals
are achieved, are expected to be sufficient to support
using the model for the CoU. The QoI considered for
the model validation is applicable to the question of
interest and CoU: the concentration of IFN-c ex-
tracted from the computational platform is in fact
typically used to test immunogenicity in dose selection
studies. Also, the validation activities are performed
using in vivo experimental data reported in the litera-
ture that are relevant to the CoU; however the avail-
able dataset is related to only one type of therapeutic
vaccine and includes limited information on the patient
characteristics and test conditions (e.g., clinical pro-
tocols followed). For this reason, the credibility level
assigned to the validation factors, especially for the
comparator and assessment activities, is low. As al-
ready mentioned (‘‘Risk-Informed Model Credibility’’
section), the UISS-TB-DR model will be used to in-
form the decision about the most immunogenic ther-
apeutic vaccine dose using an augmented virtual
cohort that will allow a more extensive evaluation of
the treatment effect; however, final decision will be
taken based on the results of the clinical studies where
the different vaccine doses would be tested on a real
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cohort of patients. More extensive validation studies
will be then conducted when the computational model
will be proposed for its final regulatory use: reduce
clinical human experiments and/or the duration of the
clinical experiments and accelerate TB drug develop-
ment.

An iterative and stepwise approach process is pro-
posed for the qualification advice request to the regu-
latory agency. A first intermediate step is presented in
this work as a proof-of-concept test to consolidate the
main blocks of the model credibility framework and
the definition of the model acceptability criteria.
Among the main challenges reported by sponsors/de-
velopers are in fact lack of guidance for the definition
of the methodology that can be used to establish
credibility plans that strongly depend on modelling
approach and applications.25 Both the Food and Drug
Administration and the European Medicines Agency
suggest adopting a step-by-step approach and consid-
ering early interaction between developers and regu-
latory authorities to facilitate the evaluation of the
proposed rationale for credibility and prevent the
definition of inappropriate data generation plan.8 A
prospective adequacy assessment of the credibility plan
stating if and why the evidence and goals are consid-
ered sufficient for the proposed CoU model is also
recommended before performing the V&V activities.

The guidelines reported in the recently published
FDA draft document5 are considered in this study to
identify and categorise some of the proposed credibil-
ity evidence. Non-CoU related validation studies are
also included in the plan to provide a more in-depth
understanding of the predictive capability of the
computational model demonstrating the ability of the
model to reproduce general pathophysiological beha-
viours in TB.

This study presents the first steps required for the
regulatory evaluation of UISS-TB-DR. A credibility
plan inspired by the ASME V&V40 standard has been
described and applied for the first time to an in silico
agent based model that will be used to support inno-
vation in the context of drug development against
tuberculosis.

ACKNOWLEDGMENTS

This study was supported by the European Com-
mission through the H2020 project ‘‘STriTuVaD: In
Silico Trial for Tuberculosis Vaccine Development’’
(topic SC1-PM-16-2017, grant ID 777123) and the
H2020 project ‘‘In Silico World: Lowering barriers to
ubiquitous adoption of In Silico Trials’’ (topic SC1-
DTH-06-2020, grant ID 101016503).

CONFLICT OF INTEREST

The authors declare that they do not have any
financial or personal relationships with other people or
organisations that could have inappropriately influ-
enced this study.

FUNDING

Open access funding provided by Alma Mater
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