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Enteroendocrine cells directly integrate signals of nutrient content within the gut lumen
with distant hormonal responses and nutrient disposal via the production and secretion
of peptides, including glucose-dependent insulinotropic polypeptide (GIP), glucagon-like
peptide 1 (GLP-1) and glucagon-like peptide 2 (GLP-2). Given their direct and indirect
control of post-prandial nutrient uptake and demonstrated translational relevance for
the treatment of type 2 diabetes, malabsorption and cardiometabolic disease, there
is significant interest in the locally engaged circuits mediating these metabolic effects.
Although several specific populations of cells in the intestine have been identified to
express endocrine receptors, including intraepithelial lymphocytes (IELs) and αβ and
γδ T-cells (Glp1r+) and smooth muscle cells (Glp2r+), the definitive cellular localization
and co-expression, particularly in regards to the Gipr remain elusive. Here we review
the current state of the literature and evaluate the identity of Glp1r, Glp2r, and
Gipr expressing cells within preclinical and clinical models. Further elaboration of our
understanding of the initiating G-protein coupled receptor (GPCR) circuits engaged
locally within the intestine and how they become altered with high-fat diet feeding can
offer insight into the dysregulation observed in obesity and diabetes.

Keywords: glucagon-like peptides, intestine, incretins, metabolism, glucose-dependent insulinotropic
polypeptide

Abbreviations: 5-HT, serotonin receptor; ApoB48, apolipoprotein B48; ATP, adenosine triphosphate; AUC, area under
curve; cAMP, cyclic adenosine monophosphate; ChAT, choline-acetyltransferase; CNS, central nervous system; DIRKO,
double incretin receptor knockout; DPP4, dipeptidyl peptidase 4; DS, dextrane sulfate; EGFR, tyrosine kinase IGF1R/ErbB;
eNOS, endothelial nitric oxide synthase; ER, endoplasmic reticulum; FABP5, fatty acid-binding protein 5; FFA, free
fatty acid; FFAR1, free-fatty acid receptor 1; FFAR2, free-fatty acid receptor 2; FFAR4, free-fatty acid receptor 4; GAL1,
galinin receptor; Gcg, preproglucagon; GCGR, glucagon receptor; GIP, glucose-dependent insulinotropic polypeptide; GIPR,
glucose-dependent insulinotropic polypeptide receptor; GLP-1, glucagon-like peptide 1; GLP-1R, glucagon-like peptide 1
receptor; GLP-2, glucagon-like peptide 2; GLP-2R, glucagon-like peptide 2 receptor; GPCR, G-protein coupled receptor;
GPR119, G-protein coupled receptor 119; GPR93, G-protein coupled receptor 93; GPRC6A, G-protein coupled receptor
family C group 6 subtype A; IEL, intraepithelial lymphocyte; IL-1β, interleukin 1 beta; IL-6, interleukin 6; KGF, keratinocyte
growth factor; LCFA, long-chain fatty acid; LPL, lipoprotein lipase; LPS, lipopolysaccharide; nNOS, neuronal nitric oxide
synthase; NOD, non-obese diabetic; OGTT, oral glucose tolerance test; PBS, phosphate-buffered saline; PC1/3, prohormone
convertase 1/3; PC2, prohormone convertase 2; Pdx1, pancreatic and duodenal homeobox 1; Rfx6, regulatory factor X6;
RYGB, Roux-en-Y gastric bypass; SCFA, short-chain fatty acid; SGLT1, sodium glucose co-transporter 1; SP, substance P;
STAT, subtherapeutic antibody therapy; T2DM, type 2 diabetes mellitus; TG, triglyceride; TPN, total parenteral nutrition;
TRL, triglyceride rich lipoprotein; VIP, vasoactive intestinal polypeptide; VSG, vertical sleeve gastrectomy; αSMA, smooth
muscle actin.
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INTRODUCTION

Extending between the stomach and the colon lies among the
most significant hormone-producing and immunological organs
responsible for nutrient digestion and absorption: the small
intestine. Within the small intestine lumen, the surface area is
ideally maximized to enhance nutrient absorption through villi
and microvilli, which increase intestinal surface area by 30–
600-fold (Kiela and Ghishan, 2016). A single layer of epithelial
cells lines the surface of each villus to serve as the gateway
for controlled nutrient absorption and a barrier to dietary
antigens and diverse microorganisms (Turner, 2009). Absorptive
enterocytes populate the villus tip and account for >80% of
intestinal epithelial cells. The remaining mature cell types include
mucin-producing goblet cells, antimicrobial defensins-producing
Paneth cells, peptide-hormone-producing enteroendocrine cells,
and cytokine-producing tuft cells which reside throughout the
epithelium (Ensari and Marsh, 2018). Shallow invaginations
surrounding each villus are intestinal crypts and the site of cell
division: highly mitotic stem cells that give rise to progenitor
cells, which in turn proliferate to become mature epithelial
cells (Gehart and Clevers, 2019). The continuous supply of
progenitor and new epithelial cells physically promotes the
transit of the latter from the crypts up to the villus tip,
where they populate the newly vacant area of previously shed
apoptotic epithelial cells (Gehart and Clevers, 2019). Therefore,
in addition to the maximized absorptive surface area, the
constantly renewing barrier protects the internal environment
from the harsh conditions of the intestinal lumen. This single
epithelial layer sits on a basement membrane surrounding a
connective tissue core called the lamina propria, which contains
lymphocytes and innate immune cells (Ensari and Marsh, 2018).
Each villus is supplied by an arteriole that forms a capillary
network, a venule that drains into larger vessels at the crypts
(Ensari and Marsh, 2018), and 1–2 lacteals, which are terminal
lymphatic vessels of the mesenteric network. Pericytes coat
villus blood vessels while smooth muscle cells coat lacteals.
The lamina propria also contains connective tissue scaffolds,
enteric nerves, fibroblasts, and smooth muscle cells (Bernier-
Latmani and Petrova, 2017). The lamina propria is encapsulated
by a myofibroblast shell that directly contacts the vascular
network. From the villus tip to the muscularis mucosa, onto
which villi are anchored, is considered the mucosal layer. The
submucosal layer contains blood and lymphatic vessels and a
plexus of parasympathetic nerves (Bernier-Latmani and Petrova,
2017), while the smooth muscle cell-rich muscularis propria
allows for contractile peristalsis (Collins et al., 2021). The final
outer layer of the intestine is the serosa, composed of loose
connective tissue and squamous epithelial cells (Collins et al.,
2021), which is continuous with the mesentery. The mesentery
supports the intestine in the peritoneum and also contains blood
vessels, nerves, and lymphatics (Argikar and Argikar, 2018). The
coordination of barrier function with nutrient absorption and
transit is governed by a complex integration of signals, including
local enteroendocrine production of peptide hormones, which
impacts both the dynamic and highly efficient process of
nutrient assimilation.

In addition to its expression in the pancreas, proglucagon is
also produced in enteroendocrine L cells throughout the small
and large intestine (Jorsal et al., 2018). Here, posttranslational
processing of the 160 amino acid proglucagon by prohormone
convertase 1/3 (PC1/3) yields active peptides glicentin, glucagon-
like peptide 1 (GLP-1), intervening peptide 2 (IP2), and glucagon-
like peptide 2 (GLP-2) (Mojsov et al., 1986; Orskov et al., 1986).
Evidence for gut-derived glucagon is observed in patients with
a total pancreatectomy during a glucose tolerance test (Lund
et al., 2016). GLP-1, first identified from amino acids 1–37 and
1–33 (Drucker et al., 1986), is active upon N-terminal truncation,
where GLP-1(7–37) and GLP-1(7–36)amide are physiologically
active with well-defined roles in promoting nutrient-stimulated
insulin secretion (Drucker et al., 1987; Holst et al., 1987). The
active form of GLP-2 in tissue and circulation is the complete
1–33 amino acid (Brubaker et al., 1997) upon C-terminal
truncation of 2 amino acids (Orskov et al., 1989b) with a well-
defined role of acting locally to promote nutrient uptake, barrier
function and gut growth.

Glucose-dependent insulinotropic polypeptide (GIP) is a
peptide hormone expressed and secreted by intestinal K
enteroendocrine cells. GIP is derived from a 144 amino acid
(rodent) (Higashimoto et al., 1992; Higashimoto and Liddle,
1993; Tseng et al., 1993) or 153 amino acid (human) (Takeda
et al., 1987) precursor, proGIP. Most K cells express PC1/3,
which cleaves proGIP at Arg65, resulting in the biologically
active GIP(1–42) (Ugleholdt et al., 2006) and stored in
secretory granules (∼450 nm) (Buchan et al., 1978). A small
population of K cells express PC2 instead of PC1/3, resulting in
GIP(1–31), which is amidated by peptidyl-glycine α-amidating
monooxygenase, resulting in GIP(1–30) (Fujita et al., 2010).
Initially discovered in 1973 for its role in inhibiting gastric acid
secretion in excised canine stomach pouches, and later shown
to not have this effect in humans (Meier et al., 2004a), GIP
promotes nutrient-stimulated insulin secretion and increases
glucagon secretion in the fasted state but not in patients with type
2 diabetes (Baggio and Drucker, 2007; Christensen et al., 2011).

The physiological concentrations of the peptide hormones
GIP, GLP-1, and GLP-2, are tightly controlled by the nutrient-
sensing abilities of their respective enteroendocrine cells.
Additionally, the serine protease dipeptidyl peptidase 4 (DPP4)
limits the bioavailability of GIP, GLP-1, and GLP-2 by cleaving
the first two amino acids, rendering them inactive (Deacon et al.,
1995a; Knudsen and Pridal, 1996; Hansen et al., 1999). In healthy
humans, GIP has a circulating half-life of 7 min (Meier et al.,
2004b), GLP-1 has a circulating half-life of 1–2 min (Deacon et al.,
1995b), and GLP-2 has a circulating half-life of 7 min (Drucker
et al., 1997; Hartmann et al., 2000). GIP concentrations are much
greater than GLP-1 in the postprandial state (Meek et al., 2021).
Prolonged activation of GLP-1, GLP-2, and GIP receptors is
achieved through receptor agonists resistant to DPP4 cleavage or
through compounds that inhibit DPP4 activity (Jeppesen et al.,
2005; Baggio and Drucker, 2007).

This review highlights the biology and paracrine roles of GLP-
1, GIP, and GLP-2 in integrating the response to food intake with
the maintenance of the structure and function of the gut as it
relates to nutrient absorption. We critically assess experiments
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reporting the identification and role(s) of GPCRs: GIP receptor
(GIPR), GLP-1 receptor (GLP-1R) and GLP-2 receptor (GLP-
2R) in intestinal physiology. We also emphasize both preclinical
and clinical studies identifying how agonists to these receptors
transduce their metabolic actions. We limit our discussion to
intestinal biology and the resulting metabolic phenotypes and
refer readers interested in other aspects of the GLP-1R, GLP-
2R and GIPR biology to access other excellent publications
(Campbell, 2021; Ghislain and Poitout, 2021; Gribble and
Reimann, 2021; McLean et al., 2021).

GUT HORMONAL RESPONSES TO
NUTRIENTS

Enteroendocrine cells are highly sensitized to nutrient intake
due to their polarized shape, direct contact with the lumen, and
proximity to the vasculature for peptide secretion. Upon ligand-
receptor binding and depolarization, hormone-containing
granules fuse with the lateral and basal membrane for discharge
into the villus capillaries (Paternoster and Falasca, 2018). This
idealistic design favors rapid and precise peptide delivery
in circulation to initiate signaling through their respective
receptors to control metabolism. Additionally, enteroendocrine
cells are equipped with GPCRs and transporters to sense
the macronutrients and release the appropriate hormones
(Spreckley and Murphy, 2015). These include: G-protein coupled
receptor (GPCR) family C group 6 subtype A (GPRC6A), Taste
Rs (amino acids), G-protein coupled receptor 93 (GPR93)
(peptones), free-fatty acid receptor 2 (FFAR2), free-fatty acid
receptor 3 (FFAR3), short-chain fatty acid (SCFA), free-fatty
acid receptor 1 (FFAR1), free-fatty acid receptor 4 (FFAR4),
long-chain fatty acid (LCFA) and G-protein coupled receptor
119 (GPR119) [oleoylethanolamide (oea)] are some of the
macronutrient-sensing receptors present on enteroendocrine
cells (Spreckley and Murphy, 2015). First, we begin with an
overview of the regulation of the synthesis, secretion, and
location of these peptides.

GIP Expression and Secretion
GIP mRNA (Tseng et al., 1993) and concentration (Bryant
et al., 1983) are enriched in duodenal and jejunal mucosal
tissues in rodents and humans compared to the distal ileum
(Figure 1). Forty-eight hours of fasting in rats significantly
decreases Gip mRNA (∼44%) in the proximal small intestine
compared to rats maintained on a chow diet. At the same
time, GIP peptide concentrations do not change with fasting
or feeding (Higashimoto et al., 1995), suggesting that synthesis
and secretion are relatively synchronized. K-cells in the proximal
small intestine contain more GIP protein and secrete more GIP
in response to intestinal lard oil perfusion than distal K cells
(Iwasaki et al., 2015). GIP expression is significantly greater in
both the small intestine and colon of patients with Type 2 diabetes
than healthy individuals (Jorsal et al., 2018). Interestingly, in
patients with type 2 diabetes, the density of PC1/3-positive
cells decreases while both the expression and density of PC-2
positive cells increases (Jorsal et al., 2018). Nutrient stimulation

of GIP secretion has also been reviewed here (Pais et al., 2016;
Reimann et al., 2020).

In K cells, regulatory factor X6 (Rfx6) is a transcription
factor that binds to the Gip promoter to increase Gip mRNA
expression (Suzuki et al., 2013). Intestine-specific gene transfer
experiments of pancreatic and duodenal homeobox-1 (Pdx1)
siRNA in 8–10-week-old mice reveal that posteriori suppression
of Pdx1 decreases K-cell number, intestinal GIP protein and
mRNA expression, and GIP secretion in response to an oral
glucose tolerance test (OGTT) (Ikeguchi et al., 2018). The
number of K cells and their Gip mRNA content increases with
age, which corresponds to the GIP hypersecretion observed in
1 year old mice compared to 3–4-month-old mice (Ikeguchi
et al., 2018). Moreover, transcription factor Pdx1, but not Rfx6
mRNA increases with age in K cells (Ikeguchi et al., 2018). Both
dietary fat and carbohydrate stimulate GIP secretion (Pederson
et al., 1975; Brown and Otte, 1979; McCullough et al., 1983).
Intraduodenal perfusion of 20% Lipomul significantly increases
duodenal Gip mRNA at 30 and 60 min compared to saline control
(Tseng et al., 1993). Both glucose (4-fold) and fat (2.5-fold)
ingestion increase Gip mRNA expression compared to chow-diet
feeding (Higashimoto et al., 1995). High-fat feeding does not
increase K-cell number in mice, instead, it increases GIP protein
content and mRNA expression, which correlates to increased
Rfx6 and Pdx1 mRNA expression (Suzuki et al., 2013). Therefore,
through different mechanisms, both diet-induced obesity and
aging act on the gut to increase GIP reserves for secretion
into circulation.

Nutrient Stimulated GIP Secretion
GIP secretion increases more rapidly in response to simple, fast-
absorbing carbohydrates compared to complex, slow-absorbing
carbohydrates (Collier et al., 1984). Plasma GIP levels rise
significantly higher upon oral fat consumption compared to
glucose in mice (Shibue et al., 2015) and in humans (Yamane
et al., 2012). Further, ingestion of a mixed carbohydrate and
fat meal significantly increases plasma GIP levels compared to
carbohydrates alone in healthy humans (Collier et al., 1984) but
this increase is not as great as ingestion of fat alone in healthy
humans (Creutzfeldt et al., 1978). GIP secretion in response to
oral fat is greater in patients with obesity and glucose intolerance,
and does not change with the addition of glucose to the meal
(Creutzfeldt et al., 1978).

GIP concentrations in the bloodstream are the highest in
hepatic portal plasma, however, lymph GIP concentrations are
∼3-fold higher upon the same stimulus (D’Alessio et al., 2007;
Lu et al., 2008), indicating peptide transit from K cells to villus
lacteals. Intraduodenal delivery of a bolus of dextrin and a bolus
of Liposyn (20%) in rats each induce ∼800 and ∼400 pg/mL
peaks, respectively, in lymph GIP concentrations at 60 min
(Lu et al., 2008). However, the peak secretion rate occurs at
30 min for Liposyn (1,159 ± 393 pg/h) and at 60 min for
dextrin (2,410 ± 566 pg/h). The combination of dextrin and
Liposyn delivery significantly increases GIP secretion at 30 min
(2,094± 241 pg/h) and at 60 min (8,027± 1,057 pg/h) compared
to saline, dextrose alone, and Liposyn alone (Lu et al., 2008).
These data suggest that glucose and lipids stimulate K cells
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FIGURE 1 | GLP-1R and GLP-2R-expressing cells in the small intestine identified in mice. Villus architecture is organized as fibroblast-like cells (Left), blood, lymph
and immune cells (Middle), enteric cells (Right). GLP-1R is expressed in somatostatin-secreting enteroendocrine cells, smooth muscle cells, pericytes, Paneth
cells, Tαβ cells, Tγδ cells, submucosal and myenteric neurons. GLP-1R is detected in neuronal nitric oxide (nNOS)+ neurons. GLP-2R is detected in smooth muscle
cells, subepithelial myofibroblasts, submucosal and myenteric neurons. Specifically, GLP-2R is expressed in nNOS+ cells, vasoactive intestinal polypeptide (VIP)+
cells, choline-acetyltransferase (ChAT)+ cells, and substance P (SP)+ cells. The relative receptor- and hormone- expression cell density within the small intestine is
depicted (inset). Studies highlighted here did not determine co-expression of GLP-1R and GLP-2R and specific identity of GIPR-expressing cells is unclear.

differently, therefore potentiating release when administered
together. Indeed, preventing micelle formation via common
bile duct ligation abolishes GIP secretion upon a lard gavage
compared to sham controls, independent of meal transit (Shibue
et al., 2015). As dietary fatty acids are assembled into lipoproteins
in intestinal enterocytes for subsequent circulatory transport,
blocking lipoprotein transit from endoplasmic reticulum (ER)
to Golgi by Pluronic L-81 in rats robustly reduces (∼4.5-fold)

lymph GIP levels and secretion rates in response to Liposyn to
levels similar to saline controls (Lu et al., 2012). Therefore, GIP
secretion from K cells in response to Liposyn requires post-Golgi
chylomicron transit in enterocytes, not lipid absorption alone (Lu
et al., 2012). GIP secretion increases in response to chylomicrons
alone and the presence of glucose in both murine and human
duodenal cultures in a dose-dependent fashion (Psichas et al.,
2017). Glucose stimulation of chylomicron secretion is well
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documented (Robertson et al., 2003; Stahel et al., 2019; Xiao et al.,
2019) where glucose promotes chylomicron secretion from lipid
stores in enterocytes (Stahel et al., 2019), which may provide
additional stimulus for GIP secretion. Co-intraduodenal infusion
of mixed nutrients (carbohydrate, dextrose) and lipid (20%
Liposyn) in rats significantly increase GIP secretion in lymph to a
greater extent than either nutrient at the same meal caloric value
alone, suggesting a synergistic effect (Lu et al., 2008). Consistent
with glucose-stimulated chylomicron secretion, lymph TG values
are the same when Liposyn accounts for half of the meal calories
(the other half being dextrose) compared to a full Liposyn
meal (Lu et al., 2008). Experiments measuring glucose-stimulated
GIP secretion after inhibiting chylomicron release (Pluronic 8–
18) or basolateral hydrolysis of chylomicrons (poloxamer-407)
may help delineate the exact contribution of each nutrient.
Nevertheless, the requirement of chylomicron formation for GIP
secretion from proximal K cells corresponds to a location-specific
stimulus. Taken together, these studies demonstrate the complex
integration of pathways governing GIP secretion and intestinal
lipid metabolism.

The free fatty acid receptor GPR120 is enriched in proximal K
cells while GPR40, GPR41, and GPR43 are significantly enriched
in distal K cells (Iwasaki et al., 2015). GIP secretion is unaffected
by FFA1 agonism (Am-1638) or antagonism (GW1100) in
primary murine duodenal cultures (Psichas et al., 2017). GIP
concentration in plasma over 120 min decreases by 75% in
Gpr120−/− mice upon lard oil gavage compared to wild-type
mice (Iwasaki et al., 2015). Correspondingly, intestinal perfusion
experiments in Gpr120−/− mice reveal that GIP secretion is
significantly reduced from both proximal and distal regions
of the small intestine compared to wild-type controls (Iwasaki
et al., 2015). Similarly, oral pretreatment with a GPR120 partial
antagonist, grifolic acid methyl ether, reduces GIP secretion by
80% in response to lard oil gavage (Iwasaki et al., 2015). All GIP+
cells express fatty acid-binding protein 5 (FABP5) (Shibue et al.,
2015). While whole-body elimination of FABP5 in mice does
not impact GIP content or K cell number, these mice secrete
significantly less GIP into plasma 60 min after a lard gavage
compared to wild-type controls (Shibue et al., 2015). Ex vivo
duodenal segments from Fabp5−/− mice secrete significantly
less GIP in response to oleic acid with 4 v/v% bile in media
than tissues isolated from wild-type mice (Shibue et al., 2015).
These data suggest that micelle-facilitated fatty acid uptake via
FABP5 in response to luminal lipids significantly contributes to
meal-stimulated GIP secretion (Shibue et al., 2015) (Figure 2).

Glucose stimulates GIP secretion only when administered
orally, therefore requiring apical exposure to K cells. Curiously,
intraduodenal infusion of glucose in healthy men does not
significantly increase plasma GIP levels from baseline (Herrmann
et al., 1995), suggesting a transit time dependency for glucose-
stimulated GIP secretion. Glucose injection in the upper intestine
significantly increases plasma GIP levels while glucose injection
in the colon does not (Moriya et al., 2009). Perfusion of
glucose, sucrose, galactose, maltose, 3-O-methylglucose, and
a- or B-methylglucoside significantly stimulate GIP secretion,
while mannose, 6-deoxygalactose, 2-deoxyglucose, myoinositol,
fructose or lactose do not (Sykes et al., 1980). Therefore,

active transport by the sodium-dependent hexose pathway is
required for GIP secretion (Sykes et al., 1980). Indeed, sodium
glucose co-transporter 1 (SGLT1) receptor is expressed only
on the apical side of K cells and oral gavage of SGLT1
substrate, a-methyl-D-glucopyranoside, stimulates GIP secretion
(Moriya et al., 2009). The necessity for apical glucose transport
is demonstrated in Sglt1−/− mice, where glucose-stimulated
GIP secretion is eliminated and levels rise only to the same
extent as observed in the saline control (Gorboulev et al.,
2012). Genetic elimination of KATP channels (Kir6.2−/− mice)
significantly increases glucose absorption and glucose-stimulated
GIP secretion, through a compensatory increase in duodenal
Sglt1 mRNA expression (Ogata et al., 2014). Preventing glucose
absorption with phloridizin abolishes glucose-stimulated GIP
secretion in healthy wild-type (Sykes et al., 1980) and Kir6.2−/−

mice (Ogata et al., 2014), even in the presence of a-methyl-D-
glucopyranoside (Moriya et al., 2009). Similar to humans, mice
and rats with diabetes secrete more GIP in response to oral
glucose. Fructose transporter, GLUT5, is expressed on K-cells;
however, fructose does not stimulate GIP secretion in healthy
humans, rats, or mice (Kuhre et al., 2014; Seino et al., 2015).
Fructose significantly increases GIP secretion in streptozotocin-
treated, hyperglycemic mice in a KATP-dependent manner (Seino
et al., 2015) and in ob/ob mice (Flatt et al., 1989). This is
further supported by the inability of phlorizin to prevent glucose-
induced GIP secretion in streptozotocin-treated, hyperglycemic
mice, where complete blockage of GIP secretion is only achieved
in these mice upon both phlorizin and KATP channel activation
(diazoxide) (Ogata et al., 2014).

Non-nutrient promoters of GIP secretion include oral
administration of ZnCl2 to non-fasted mice, which increases
GIP secretion 26% via K cell expression of GPR39 (Moran
et al., 2019). Additionally, associated metabolic improvements
with ZnCl2 administration are lost in Gipr−/− mice (Moran
et al., 2019). Galinin is a centrally and peripherally synthesized
neuropeptide and its receptor (GAL1) is expressed in K
cells (Psichas et al., 2016). Both galinin and GAL1 agonist
(M617) significantly inhibit IBMX−stimulated GIP secretion
from primary duodenal cultures (Psichas et al., 2016). Oral
administration of progesterone significantly increases glucose-
stimulated GIP secretion (5 min) in male wild-type and
Glp1r−/−Gipr−/− (double incretin receptor knockout; DIRKO)
mice, but not in Glp1r−/− mice (Flock et al., 2013) (Figure 2).

GIP Secretion and the Microbiome
Glucose-dependent insulinotropic polypeptide levels are
increased with subtherapeutic antibiotic therapy (STAT)
(Cho et al., 2012) while other hormones are unaffected.
It is suspected that levels are greater due to the increased
abundance of Firmicutes and subsequent SCFA production
(Martin et al., 2019), however, further studies to confirm this
hypothesis are required.

Expression and Secretion of GLP-1 and
GLP-2
GLP-1+ cells reside in crypts and the villus epithelium; their
density increases distally with the highest abundance in the ileum
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FIGURE 2 | Nutrient stimulation of GIP from K cells and GLP-1 and GLP-2 from L cells. Microvilli protrude from the apical side of the cell, extending toward the
lumen. Incoming macronutrients from the lumen are detected and sensed by receptors present on the apical border. Carbohydrates are divided into
monosaccharides and short-chain fatty-acids (SCFA). Glucose is transported through the sodium-glucose linked transporter (SGLT1). Glucose passes through the
glucose transporter 2 (GLUT2) present on the basolateral membrane, and into the bloodstream. GLUT5 is responsible for sensing fructose. Present on only L cells,
sweet receptors (T1R2/T1R3) also sense glucose. Short-chain fatty acids (SCFA) are derived from microbial fermentation, and are sensed by the free fatty acid
receptors (GPR40/FFAR1 and GPR120/FFAR4). Long-chain fatty-acids are sensed by GPR43/FFAR2 and GPR41/FFAR3, along with G-protein coupled receptor
119 (GPR119). GPR119 is also a receptor for oleoylethanolamide (OEA). Amino acids are detected by GPR9C6A. GPR39 and Takeda G-protein coupled receptor 5
(TGR5) detect luminal zinc and bile acids, respectively. Galanin receptor (GAL) acts to inhibit both GLP-1 and GIP secretion. Lipoprotein lipase is involved in the
production of LCFA and monoacylglycerols. Somatostatin receptors 2 and 5 (SSTR2&5) sense somatostatin from D cells. Regulatory factors x6 (Rfx6) and insulin
promoter factor 1 (Pdx1) influence GIP expression and secretion.

in rodents (Figure 1) and the colon in humans (Eissele et al.,
1992). Within L cells, GLP-1 is stored in granules (Eissele et al.,
1992) in its active form (7–36 amide) in the small (Orskov et al.,
1989a) and large intestine (Deacon et al., 1995b). Forty-eight
hours of fasting in rats significantly reduces ileal Gcg mRNA (25–
50%), which was associated with a 41–60% decrease in plasma
bioactive GLP-2 (Nelson et al., 2008). Both plasma GLP-2 and
ileal Gcg mRNA levels were restored upon 2 days of refeeding or
4 days of continuous intragastric, but not intravenous, refeeding
with total parenteral nutrition (TPN) solution (32% energy from
fat 68% energy from dextrose) (Nelson et al., 2008). Colonic
L cells contain twice as much GLP-1 peptide than proximal
intestine L cells (Reimann et al., 2008). Both colonic GCG
expression and GLP-1+ cell density increase in patients with
type 2 diabetes compared to healthy individuals (Jorsal et al.,
2018). By contrast, while PCSK1/3 mRNA increases in patients
with diabetes compared to healthy individuals, the density of
PC1/3-positive cells decreases (Jorsal et al., 2018), suggesting
a posttranslational impact on GLP-1 availability. GLP-1+ cells
are also found in the stomach fundus where concentrations
are higher than in the antrum in both diet-induced obese rats
and humans with obesity (Ribeiro-Parenti et al., 2021). In diet-
induced obese mice, IBMX-stimulated GLP-1 release ex vivo is

completely abrogated in the antrum (Ribeiro-Parenti et al., 2021).
Interestingly, the remodeling of the gastric mucosa following
Roux-en-Y gastric bypass (RYGB) bariatric surgery in humans
is accompanied by a ∼2-fold increase in fundic GLP-1 positive
cells; this increase is not observed in patients following vertical
sleeve gastrectomy (VSG) surgery (Ribeiro-Parenti et al., 2021).
This increase in fundic mucosal GLP-1 following RYGB but not
VSG was consistent in diet-induced obese rats, where instead,
VSG surgery induced a 50% increase in GLP-1+ cells in the
antrum (Ribeiro-Parenti et al., 2021). This increase was associated
with a 1.5-fold increase in portal plasma GLP-1 upon gastric
glucose stimulation in diet-induced obese VSG rats compared to
diet-induced obese sham controls, suggesting that antral GLP-1
producing cells contribute significantly to portal GLP-1 (Ribeiro-
Parenti et al., 2021). However, further experiments preventing
GLP-1 secretion from ileal L cells will be required to precisely
assess the contribution from the stomach after surgery.

Nutrient Stimulated GLP-1 Secretion
In healthy men, oral ingestion of corn oil induces a 1,000%
increase in the early phase of GLP-1 secretion, which does not
return to baseline even after 120 min (Herrmann et al., 1995).
In the same study, oral ingestion of a mixed meal containing

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 September 2021 | Volume 9 | Article 703966

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-703966 September 23, 2021 Time: 17:23 # 7

Morrow et al. Gut-Derived Signaling Circuits

soybean oil, casein, and glucose induces a rapid ∼6-fold increase
in GLP-1 levels, which is lower than corn oil alone and also leads
to a return to baseline (Herrmann et al., 1995). Ileal luminal
perfusion of a mixed meal in rats induces a rapid rise (2-fold) in
portal plasma GLP-1 in 30 min (Herrmann et al., 1995). A 20%
infusion of Intralipid in the perfused rat ileum, however, does
not significantly increase portal plasma GLP-1 from baseline
(Herrmann et al., 1995), suggesting that since orally ingested
fatty acids do not reach the ileum, a direct sensing mechanism
for this lipid composition does not exist in the ileum or that
GLP-1 in this experiment bypasses portal circulation. By contrast,
experiments directly administering corn oil into either duodenal
or ileal luminal compartments in anesthetized rats demonstrate
significantly increased plasma GLP-1 (obtained from carotid
artery) to the same extent from baseline (Roberge and Brubaker,
1993). Taken together, these studies demonstrate that either
higher fatty acid concentration, mechanical stimulation, or a
specific blood sampling pool is required to detect this response
from the distal gut. While not often measured, the GLP-1/GLP-2
ratio (detecting C-terminal of GLP-1 and N-terminal of GLP-
2) remains consistent throughout an oral fat tolerance test,
but interestingly significantly increases at 120 and 250 min
during an OGTT in obese men (Matikainen et al., 2016).
Additionally, in response to a meal, in patients with short bowel
syndrome with a preserved colon (jejuno-colonic anastomosis),
both baseline GLP-1 and GLP-2 are elevated with GLP-2 levels
threefold greater than control patients (average concentration of
72 pmol/L), which persists throughout the post-prandial period
(Jeppesen et al., 2000).

Lymph fistula experiments in rats reveal post-prandial levels
in intestinal lymph are 5–6 times higher for GLP-1 compared
to portal venous plasma (D’Alessio et al., 2007; Lu et al., 2007).
Similarly, GLP-2 concentrations in the lymph are significantly
higher (∼2-fold) than in blood at fasting and 2 h after (∼3-
fold) duodenal infusion of perilla oil (Sato et al., 2013). The
physiological advantage for lymph vs. blood secretion is not clear;
however, DPP4 activity is significantly higher during fasting (20-
fold) and post-meal (3-fold) in plasma than in lymph (D’Alessio
et al., 2007). Intraduodenal infusion of Liposyn significantly
increases lymph flow, lymph GLP-1 levels and secretion rates
before increases in lymph TG and lymph free fatty acid (FFA)
compared to saline control are observed (Lu et al., 2012). Pluronic
L-81 impairs lymphatic transport of TG without inhibiting fatty
acid absorption or TG assembly (Tso et al., 1981; Hayashi et al.,
1990), therefore leading to the accumulation of large apical lipid
droplets in enterocytes (Tso et al., 1981). The addition of pluronic
L-81 to the Liposyn infusion significantly reduces lymph flow
to rates observed in saline control. It completely abolishes TG
and FFA concentrations and delays the peak in lymph GLP-1
concentrations from 30 to 120 min, with a 75% reduction in the
rate at 30 min, but secretion was the same at 60 min (Lu et al.,
2012). Overall, the addition of L-81 to Liposyn did not reduce the
cumulative GLP-1 output to the same levels as saline controls,
whereas GIP secretion was abolished (Lu et al., 2012).

In the presence of glucose, chylomicrons (10 and 100 µg/mL)
significantly increase GLP-1 secretion from GLUTag cells, murine
duodenal cultures, and human duodenal cultures (Psichas et al.,

2017). Lipoprotein lipase (Lpl) is highly expressed in duodenal
L cells and GLUTag cells; both the lipase inhibitor orlistat
and siRNA-mediated knockdown of Lpl significantly inhibits
chylomicron-induced GLP-1 secretion in GLUTag cells (Psichas
et al., 2017). LPL-mediated hydrolysis of chylomicrons yields
long chain fatty acids and monoacylglycerols, which are ligands
for FFA1 and GPR119. Indeed, L cells express free acid receptors
Ffar1 and G-protein coupled receptor 119 (Psichas et al., 2017).
FFA1 receptor signaling increases GLP-1 secretion with or
without chylomicron treatment, as shown with FFA1 agonist
(AM-1638), FFA1 antagonist (GW110), and siRNA-mediated
knockdown experiments in GLUTag cells (Psichas et al., 2017).
While GPR119 activation stimulates GLP-1 secretion in primary
duodenal cultures, activation is not absolutely required for GLP-1
secretion as shown by L cell specific knockout (Psichas et al.,
2017). Additionally, inhibiting both FFA1 and GPR119 at the
same time does not impact GLP-1 secretion upon chylomicron
treatment in primary duodenal cultures (Psichas et al., 2017).
Also, orlistat does not significantly impact chylomicron-
stimulated GLP-1 secretion in duodenal cultures, suggesting
that LPL-mediated release of FFA1 and GPR119 ligands may
be restricted to GLUTag cells (Psichas et al., 2017). However, in
primary cultures, only the apical membrane of L cells are exposed
to chylomicrons (Psichas et al., 2017). Therefore, basolateral LPL
access to chylomicrons may be required.

In healthy men, oral glucose significantly increases plasma
total GLP-1 [GLP-1(1–36) and GLP-1(7–36)] levels after 30 min;
its rise is delayed compared to the rapid increase of circulating
GIP (Herrmann et al., 1995). Compared to oral glucose, oral
galactose and amino acids rapidly increase plasma GLP-1 levels
(Herrmann et al., 1995). In healthy men, intraduodenal infusion
of glucose induces a rapid 200% increase in GLP-1 that returns
to baseline by 30 min (Herrmann et al., 1995). Ileal luminal
perfusion of a 5% glucose dissolved in saline in rats induces a
rapid rise (∼2-fold) in portal plasma GLP-1 in 30 min (Herrmann
et al., 1995). This effect is lost when glucose is dissolved in
distilled water (Herrmann et al., 1995). While significantly lower
than portal GLP-1 secretion upon intraduodenally delivered
glucose, delivering glucose directly to the stomach in anesthetized
rats with a pylorus ligature induces a significant increase in
portal GLP-1 [+133 pM vs. phosphate-buffered saline (PBS)]
and gastric vein (+140 pM vs. PBS) at 15 min compared to
PBS control, where ∼1/2 of this total GLP-1 in the gastric
vein is the active peptide (Ribeiro-Parenti et al., 2021). Gastric
mucosal cells produce proglucagon, GLP-1, and GLP-2 (Ribeiro-
Parenti et al., 2021). Despite GLP-1 concentration being higher
in the fundus than the antrum, its release ex vivo upon IBMX
stimulation increases to the same extent in both the fundus
and antrum, suggesting a significant contribution to both portal
and gastric GLP-1 (Ribeiro-Parenti et al., 2021). Intraduodenal
administration of sucrose, sucralose, and the artificial sweetener
PALSWEET each significantly increase lymph GLP-2 output
compared to saline control (Sato et al., 2013).

A paracrine relationship exists between GLP-1-secreting L
cells and somatostatin-secreting D-cells (Jepsen et al., 2019).
Additionally, the somatostatin receptor Sstr5 expression is
present in GLP-1-immunoreactive cells (Jepsen et al., 2019).
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GLP-1 secretion in response to intraduodenal infusion of glucose
increases with somatostatin receptor antagonism (SSTr2 and
SSTr5) (Jepsen et al., 2019). Similarly, somatostatin secretion is
dependent on GLP-1R activation as its secretion is inhibited upon
GLP-1R antagonist (exendin-9) treatment (Jepsen et al., 2019).
Taken together, this relationship is regulated by L cell and D cell
expression of SSTr5 and GLP-1R, respectively. Additionally, these
findings explain the increased endogenous GLP-1 release upon
exendin-(9–39) treatment.

Hormonal Stimulation of GLP-1 Secretion
Plasma GLP-1 levels peak within 5–15 min of food ingestion,
where certainly these nutrients do not reach the ileum to directly
stimulate L cells (Borgstrom et al., 1957). A neuroendocrine
loop exists in proximal-distal intestine to stimulate ileal L cells
when dietary fat enters the duodenum (Roberge and Brubaker,
1993; Rocca and Brubaker, 1999). As previously mentioned,
administration of corn oil to duodenal luminal compartments
elicits the same plasma GLP-1 response compared to corn oil
administration to ileal luminal compartments (Roberge and
Brubaker, 1993). Despite the presence of L cells in the duodenum,
they are not responsible for the GLP-1 release as removing the
jejunum-ileum before infusing the duodenal compartment with
fat prevents the observed increase of plasma GLP-1 (Roberge
et al., 1996). Still, plasma GIP secretion in response to duodenal
luminal administration occurs earlier than GLP-1 secretion
(Roberge and Brubaker, 1993). Importantly, intravenous infusion
of post-prandial levels of GIP increases plasma GLP-1 levels
twofold, independent of blood glucose levels (Roberge and
Brubaker, 1993), suggesting that GIP stimulates early GLP-1
secretion in response to duodenal luminal nutrients. Indeed,
GLP-1 secretion is abolished upon corn oil infusion to the
proximal duodenal compartment in vagotomized rats (Rocca
and Brubaker, 1999). Electrical stimulation of the vagus nerve
stimulates GLP-1 secretion, even in the absence of nutrients
(Rocca and Brubaker, 1999). GIP can stimulate the first phase of
GLP-1 secretion independent of the vagus nerve, but only when
infused at suprapharmacological levels, as evidenced by the rapid
rise and fall in plasma GLP-1 upon supraphysiological infusion
of GIP in sham and vagotomized rats (Rocca and Brubaker,
1999). At physiological levels, infusion of GIP does not stimulate
GLP-1 secretion in vagotomized rats compared to the peak
observed at 10 min in the sham controls (Rocca and Brubaker,
1999). Curiously, ingestion of 200 mL of pure water increases
late phase plasma GLP-1, while GIP secretion is unchanged
(Herrmann et al., 1995), suggesting a GIP-independent and
potentially mechanically-mediated increase in GLP-1.

Leptin increases GLP-1 secretion in fetal rat intestinal cells,
GLUTag, and NCI-H716 human enteroendocrine cells, all of
which express a functional leptin receptor in GLP-1+ cells (Anini
and Brubaker, 2003). Leptin (1 mg/kg, i.p.) increases fasting
GLP-1 secretion 1.8-fold compared to saline control, reaching
6 pmol/L at 120 min, which increases even further in leptin-
deficient mice (ob/ob) (Anini and Brubaker, 2003). Therefore,
leptin appears to induce the later phase of GLP-1 secretion
compared to the early peak upon GIP treatment, which may
be important for potentiating the leptin-stimulated reduction in

food intake. Interestingly, leptin treatment significantly increases
water intake in healthy rats (Sivitz et al., 1997), which may
link the late-phase GLP-1 secretion induced by both leptin
and water. Additionally, while high-fat fed mice with leptin
resistance display increased GLP-1 content in the ileum and
the colon, both fasting and glucose-stimulated GLP-1 secretion
are significantly reduced in these mice (Anini and Brubaker,
2003), which may provide a link between leptin resistance in
L cells and the reduced late phase (60–160 min) total and active
GLP-1 secretion in patients with diabetes compared to healthy
individuals (Vilsboll et al., 2001).

Similar to K cells, L cells also express the Galinin receptor,
GAL1, and its activation via Galinin treatment or GAL1 agonist
(M617) treatment prevents the accumulation of cyclic adenosine
monophosphate (cAMP) in L cells within primary duodenal
cultures in response to the adenylyl cyclase activator, forskolin
and inhibits GLP-1 secretion from primary duodenal and ileal
cultures (Psichas et al., 2016).

Inflammation and GLP-1 Secretion
Links between inflammation, the gut microbiota and GLP-
1 secretion have also been reported (Everard et al., 2011;
Greiner and Backhed, 2016; Wu et al., 2018; Covasa et al.,
2019; Martchenko et al., 2020). Indeed, lipopolysaccharide (LPS)
acutely induces GLP-1 secretion (Nguyen et al., 2014). This
was demonstrated to be dose- and time-dependent, where LPS-
induced increases in circulating IL-6 (30 min) preceded that of
both total and active GLP-1 (120 min) (Kahles et al., 2014). LPS
also stimulates the release of IL-1β, where the latter also increases
plasma GLP-1 upon i.p. injection in mice to a greater extent
than IL-6 injection (Kahles et al., 2014). However, loss of IL-
1R signaling does not impact LPS-mediated GLP-1 secretion, as
shown in Il1r−/− mice while neither LPS nor IL-1β stimulate
GLP-1 secretion in Il6−/− mice (Kahles et al., 2014). Similarly,
IL-6, but not LPS or IL-1β, increases GLP-1 secretion from
GLUTag cells (Kahles et al., 2014). LPS induces GLP-1 secretion
to the same extent in both the fasted and fed state, where not
surprisingly, insulin is only increased in these mice during the
fed state. While these data demonstrate the glucose-dependency
for the insulinotropic role of GLP-1, they also reveal nutrient-
independent GLP-1R signaling pathways (Kahles et al., 2014).
Plasma total GLP-1 concentrations are significantly higher in
patients with sepsis than non-septic ICU patients; these levels
are positively associated with IL-6, C-reactive protein, and the
association of GLP-1 with plasma insulin is lost (Kahles et al.,
2014). Taken together, this study reveals an integral role for
the gut in systemic inflammation in pathways that remain
incompletely understood.

Hwang et al. (2015) demonstrate that the antibiotics,
vancomycin and bacitracin decrease the abundance of both
Bacteroidetes and Firmicutes, and increase Proteobacteria, which
is associated with increased GLP-1 secretion and improved
glucose tolerance and insulin resistance. Coriobacteriaceae
are involved in the metabolism of bile acids. This family of
bacteria are able to metabolize primary bile acids into secondary
bile acids, which then bind to TGR5 and stimulate GLP-1
secretion (Allin et al., 2015). Fourteen weeks of HFD-feeding
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supplemented with Akkermansia muciniphila significantly
increases the ileal expression of Gcg and Pcsk1, and oral
glucose-stimulated plasma GLP-1 compared to mice fed the
HFD alone (Yoon et al., 2021). The cell-free supernatant from
live A. muciniphila isolated from human feces significantly
increases GLP-1 secretion from human enteroendocrine L cells
(NCI-H716) in a dose-dependent manner and to a greater extent
than the microbial products acetate and propionate (Yoon et al.,
2021). Indeed, the authors identified, the protein P9 of the
peptidase S41A family robustly increases GLP-1 secretion from
human L cells in vitro and in mice after a single i.p. injection
compared to saline control and injection of SCFA (Yoon et al.,
2021). Mice fed a HFD supplemented with P9 display increased
ileal Gcg and Pcsk1 expression as well as compared to mice fed
the HFD-alone (Yoon et al., 2021). HFD-fed mice supplemented
with A. muciniphila also display increased ileal and colonic Il-6
mRNA expression, and while IL-6 treatment in GLUTag cells
does not stimulate GLP-1 secretion to the same extent as P9,
co-treatment of IL-6 and P9 induces an additive effect (Yoon
et al., 2021). Interestingly, P9 supplementation to a HFD does
not increase plasma GLP-1 in Il6−/− mice (Yoon et al., 2021).
A far lesser amount of studies have correlated populations of
microbiota with GLP-2 secretion (Utzschneider et al., 2016).
Already known to increase GLP-1 secretion, ingestion of
Lactobacillus reuteri demonstrates increased GLP-2 secretion as
well (Simon et al., 2015).

Exercise-Induced GLP-1 Secretion
Ninety minutes of exercise in mice induces a 2.5-fold increase in
plasma active GLP-1, mediated by skeletal-muscle-derived IL-6,
as shown by abolishing exercise-induced active GLP-1 levels in
Il6−/− mice and by treating wild-type mice with an antibody
to IL-6 (Ellingsgaard et al., 2011). Interestingly, injecting mice
with 400 ng of recombinant mouse IL-6 twice daily for 7 days
significantly increases fasting plasma active GLP-1, as well as ileal
Gcg and Pcsk1 mRNA, but not plasma GLP-2 (ELISA) or DPP4
activity (Ellingsgaard et al., 2011). Indeed, GLUTag cells express
the IL-6 receptor, and IL-6 treatment increases GLP-1 secretion in
a dose-dependent manner, where acute IL-6 treatment increases
GLP-1 exocytosis in a JAK2-STAT3-dependent manner, and
chronic IL-6 treatment increases GLP-1 content and glucose
uptake in a sodium glucose transporter 1-dependent manner
in the L cell (Ellingsgaard et al., 2011). Surprisingly, despite
increasing Gcg mRNA, chronic IL-6 treatment does not increase
plasma GLP-2 levels suggesting a difference in GLP-1 and GLP-2
transcript or protein stability.

RECEPTOR EXPRESSION WITHIN THE
GASTROINTESTINAL TRACT

GPCRs initiate the cellular responses to nearly all hormones
and neurotransmitters; they are grouped into six main classes
(A to F) by sequence homology and function. GCPRs have
7 transmembrane helices, and in the cases of GIPR, GLP-1R
and GLP-2R, signal via Gs-mediated cAMP production and
downstream signaling cascades. They are all class B1 GPCRs,

share significant sequence similarity (Usdin et al., 1993) and form
secretin-VIP receptor family (Campbell and Scanes, 1992).

GIPR Expression
The human GIP receptor (GIPR) gene is ∼13.8 kb long
containing 14 exons. The receptor is 466 amino acids in length,
including a signal peptide and 7 transmembrane domains; the
gene contains 14 exons (Yamada et al., 1995). The first 92 bp
of the GIPR gene contains 88% sequence identity between rat
and human; interestingly, neither promoter regions contains
a TATA box (Boylan et al., 2006). MZF1/Sp1-C (−75), Sp1-B
(−57), and Sp1-A (−45) transcription factor binding sites were
identified using radiolabeled synthetic probes and confirmed with
CHiP analysis (Boylan et al., 2006). Indeed, sequence deletion
between −85 and −40 decreases promoter activity by 88%
(Boylan et al., 2006).

The identification of cell-specific expression of Gipr in the
gastrointestinal tract remains largely unsolved; however, clues
are beginning to emerge. On a whole tissue level, Gipr mRNA
is expressed in rat stomach, duodenum, and proximal small
intestine (Usdin et al., 1993; Coon et al., 2013). GIPR mRNA
expression is detected in neuroendocrine tumors isolated from
the small bowel and colorectal tumors (Sherman et al., 2013;
Koehler et al., 2015) (Table 1). GIPR is faintly detected at
the protein level at multiple sizes (50, 55, 60, and 70 kDa)
in jejunal mucosal cells compared to the strong signal at
50 kDa in pancreatic homogenates (Coon et al., 2013). In this
same study, GIPR immunohistochemistry demonstrated positive
staining beneath the basolateral surface of epithelial cells of
the proximal jejunum (Coon et al., 2013). In the stomach,
RNAseq of purified gastric somatostatin-producing D-cells from
SST-Cre.ROSA26EYFP mice reveal Gipr expression in these cells
(Adriaenssens et al., 2015). A number of distinct neuronal
populations also express the Gipr (Adriaenssens et al., 2019).
Genetic elimination of Gipr in hematopoietic cell lineages,
including endothelial cells (GiprTie2−/− mice) does not impact
jejunal Gipr mRNA (Pujadas et al., 2020).

GLP-1R Expression in the Gut
The transcriptional start site of the GLP-1R does not contain a
TATA- or a CAAT-box element, however, it contains 3 putative
Sp1 binding sites (Lankat-Buttgereit and Goke, 1997). Within the
350 bp region, 74% of the sequence is GC nucleotides (Lankat-
Buttgereit and Goke, 1997). Glp1r expression determined by
RNAscope in situ hybridization reveals the highest expression in
duodenal Brunner’s glands and in stomach gland parietal cells
(Wismann et al., 2017). Consistent with this use of a reporter
mouse together with a number of validation approaches the
GLP-1R was identified in chief cells, parietal cells and Brunner’s
glands (Andersen et al., 2021). A well-validated antibody to the
GLP-1R (MAb 3F52) and corroborated with 125I-labeled GLP-
1 also demonstrated a strong signal in stomach parietal cells,
basolateral epithelial cells in the duodenum, Brunner’s glands and
the myenteric nerve plexus (Pyke et al., 2014). Glp1r expression
localizes to the basolateral side of enterocytes in the mucosal
layer, and its abundance increases distally (Wismann et al.,
2017). Glp1r mRNA is higher in mucosal cells from the ileum
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TABLE 1 | Summary of methods used to identify GIPR expressing cells within the gastrointestinal tract.

Cell/organ Species Method of identification References

Small bowel neuroendocrine tumors Human GIPR mRNA qRT-PCR analysis Sherman et al., 2013

Human colorectal tumors Human GIPR mRNA qRT-PCR analysis Koehler et al., 2015

Human hypothalamic cells (vascular, glial, neuronal cells) Human Single-cell RNA sequencing of GIPR+ cells Adriaenssens et al., 2019

T-cells, myeloid cells, myeloid precursors Mouse Gipr mRNA RT-qRT-PCR analysis Pujadas et al., 2020

and colon than in the non-epithelial fraction (Kedees et al.,
2013). Conversely, Glp1r mRNA expression is highest in the
jejunum within the epithelial fraction, followed by ileum then
colon (Kedees et al., 2013). Glp1r is not detected in GLP-1+
cells (L cells) (Grigoryan et al., 2012); however, it is detected
in chromogranin A+ enteroendocrine cells (Kedees et al., 2013;
Andersen et al., 2021). Glp1r is also detected in Paneth cells,
identified by lysozyme expression, in the jejunum and ileum
crypts but not colon, distinct from proliferating Ki67+ cells
(Kedees et al., 2013). Glp1r mRNA expression increases with age
from 2 to 12 weeks in murine jejunum, ileum, and colon (Campos
et al., 1994). Additionally, Glp1r expression in mice is detected
in a subset of neurons of the myenteric and submucosal plexus
(Andersen et al., 2021) that also express the neuron cytoplasmic
protein 9.5 (PGP9.5) (Kedees et al., 2013) (Table 2 and Figure 1).

Studies using the mouse Glp1r promoter to drive expression
of a fluorescent reporter protein reveal Glp1r expression in the
antral area of the stomach (near the gastric pylorus) as a fibrous
signal that does not overlap with smooth muscle α-actin (αSMA)
(Richards et al., 2014). Glp1r expression is also observed in the
arteries and arterioles of the intestine and colocalizes with αSMA
and the pericyte marker NG2 (Richards et al., 2014) (Figure 1).
In this model, Glp1r fluorescence is absent from the epithelial
layer. Instead, mRNA expression is detected in myenteric ganglia
in the intestinal mucosa, which are excitable by GLP-1 treatment
ex vivo (64% synaptic and 36% after-hyperpolarizing types)
(Figure 1 and Table 2). Indeed, 63% of Glp1r-fluorescent neurons
in primary small intestinal cultures and 19% in colonic cultures
are neuronal nitric oxide synthase (nNOS) positive markers
for inhibitory motor neurons (Richards et al., 2014). GLP-1
receptors are expressed in the enteric nervous system and in
the vagus nerve (Grasset et al., 2017), which allow for the
activation of the gut-brain-periphery axis. As such, the presence
of GLP-1R+ cell bodies in the enteric nervous system has been
proposed to provide the signaling route to the central nervous
system (CNS) required for distally secreted GLP-1. Consistent
with Glp1r mRNA expression, immunofluorescence analyses
in Glp1r.tdTomato reporter mice reveal GLP-1R expression in
various enteroendocrine cells (Table 1), but not GLP-1+ cells
(Andersen et al., 2021). Sequential collagenase digestion of the
gut reveals Glp1r expression to be within the epithelial fraction
instead of crypt, mesenchyme, or smooth muscle layer fractions
(Yusta et al., 2015). Within the epithelial compartment of the
small intestine, intraepithelial lymphocytes (IELs) (both the Tαβ

and Tγδ subsets) express Glp1r (Yusta et al., 2015; He et al.,
2019) (Figure 1 and Table 2). Additionally, GLP-1R-expressing
αβ and γδ T cells transit to the gut via integrin B7 (Itgb7)
(He et al., 2019). Indeed, IELs encode a functional GLP-1R as

exendin-4 treatment in sorted activated and non-activated IELs
increases cAMP levels. However, GLP-1R in IELs is not required
for IEL development or recruitment to the gut as their abundance
does not change in response to GLP-1R agonist treatment or in
Glp1r−/−mice (Yusta et al., 2015). These receptors are functional
as mice receiving exendin-4 i.v. exhibit an 84% increase in c-fos
mRNA expression in the ileal mucosa (Kedees et al., 2013). The
increased c-fos expression occurs in neurons as it is abolished
upon co-treatment with tetrodotoxin, a voltage-gated sodium
current blocker. Additionally, exendin-4 treatment increases c-
fos expression in in GLP-1R+ Paneth cells (Figure 1), which is
abolished when exendin-(9–39) is administered prior to exendin-
4 treatment (Kedees et al., 2013).

GLP-2R Expression in the Gut
The human GLP-2 receptor is localized to chromosome 17p13.3
and encodes a 550 amino acid G protein-coupled receptor,
processed to become a 486 amino acid receptor (Munroe
et al., 1999). The gene at chromosome 17p13.3 encoding for
the human GLP-2 receptor is also very well conserved as the
rat sequence is 80% of the same amino acid sequence (Shin
et al., 2005). The GLP-2 receptor is 14 exons long and has
seven transmembrane domains and, although similar in amino
acid sequence to both the glucagon and GLP-1 receptor, only
recognizes GLP-2 and not related members of the glucagon
family (Drucker and Yusta, 2014).

GLP-2R is expressed in the gastric mucosa in a subpopulation
of fundas gland cells (Li et al., 2017) (Table 3). In the rat jejunum,
Glp2r expression as a percentage of the expression in intact
intestine is 0.07, 33, 256, and 392% in the epithelium, mucosa,
smooth muscle layer, and the intestine devoid of epithelium,
respectively (Pedersen et al., 2015). GLP-2R transcripts are
expressed in human colorectal tumors (Koehler et al., 2015)
and GLP-2R protein is expressed in human colon neoplasms
(Koehler et al., 2008) (Table 3). In rats, mice, marmosets
and human intestinal tissue, GLP-2R localizes to cells residing
immediately below the basolateral membrane of enterocytes,
which are subepithelial myofibroblasts as marked by αSMA
(Orskov et al., 2005) (Figure 1 and Table 3). Glp2r expression
is most abundant in the lamina propria of duodenal and jejunal
villi (Wismann et al., 2017), where in the jejunum its expression
within the lamina propria stromal cells predominate in the
upper half of villi (Yusta et al., 2019) (Figure 1). The receptor’s
location in the lamina propria is consistent with evidence that
suggests the link between GLP-2 to KGF, IGF-1, and ErbB, as
these growth factors are produced and secreted from stromal
cells found in the lamina propria (Yusta et al., 2019). GLP-
2R protein in neonatal pigs colocalizes with chromogranin A+
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TABLE 2 | Summary of methods used to identify GLP-1R expressing cells within the gastrointestinal tract.

Cell/organ Species Method of identification References

Human colorectal tumors Human GLP-1R expression (qRT-PCR analysis of RNA). Koehler et al., 2015

Intestinal intraepithelial
lymphocyte (IEL)

Mouse Glp-1r Real-time qRT-PCR (mRNA), immunohistochemistry (rabbit
polyclonal anti-CD3 antibody and hematoxylin).

Used GLP-1R−/− model.
Glp-1r transcript identified in isolated RNA (qRT-PCR), southern blot

detects Glp-1r PCR product.

Yusta et al., 2015

Synaptic type neurons Mouse GLP-1R fluorescent cell population.
Whole cell current clamp.

Richards et al., 2014

After-hyperpolarizing type
neurons

Mouse GLP-1R fluorescent cell population.
Whole cell current clamp.

Richards et al., 2014

Inhibitory motor neurons Mouse Immunostained for nNOS (marker mainly restricted to inhibitory
motor neurons), most GLP-1R fluorescent neurons were nNOS+.

Richards et al., 2014

Intrinsic primary afferent
neurons

Mouse GLP-1R-fluorescent cells in culture stained for Calretinin (marker for
intrinsic primary afferent neurons)

Richards et al., 2014

Vagal afferent neurons Mouse GLP-1R-fluorescent cells.
Immunostained for RFP.

Richards et al., 2014

Intraepithelial lymphocytes Mouse Glp1r.tdTomato reporter mouse.
ISH of GLP-1R and tdTomato expression.

Glp-1r mRNA in situ hybridization.

Andersen et al., 2021

Neurotensin+ N-cells,
Somatostatin+ D-cells,
PYY+ L-cells, serotonin+
enterochromaffin cells (EC)

Mouse Glp1r.tdTomato reporter mouse.
ISH of GLP-1R and tdTomato expression.

Glp-1r mRNA in situ hybridization.

Andersen et al., 2021

Mucus cells (antrum) Mouse Glp1r.tdTomato reporter mouse.
ISH of GLP-1R and tdTomato expression.

Glp-1r mRNA in situ hybridization.

Andersen et al., 2021

Parietal cells Mouse Td.Tomato-positive cells.
ISH of GLP-1R and tdTomato expression.

Glp-1r mRNA in situ hybridization.

Andersen et al., 2021

Chief cells Mouse Td.Tomato-positive cells.
Immunohistochemistry.

Andersen et al., 2021

αβ, γδ T cells Mouse Expression of Glp-1r (mRNA). He et al., 2019

Myenteric neurons Mouse Glp1r-CRE fluorescent reporter. Richards et al., 2014

Neurons of the myenteric
and submucosal plexus

Mouse Expression of Glp-1r (mRNA).
Immunohistochemistry.

Kedees et al., 2013

Brunner’s gland (duo) Mouse Glp-1r.tdTomato signal.
ISH of GLP-1R and tdTomato expression.

Glp-1r mRNA in situ hybridization.

Andersen et al., 2021

Parietal cells
Brunner’s gland

Monkey MAb 3F52. Pyke et al., 2014

Parietal cells
Brunner’s glands

Mouse RNAScope in situ hybridization. Wismann et al., 2017

Myenteric nurons Monkey MAb 3F52 Pyke et al., 2014

Epithelial cells Mouse Expression of Glp-1r (mRNA).
Immunohistochemistry.

Kedees et al., 2013

Basolateral epithelial cells Monkey MAb 3F52. Pyke et al., 2014

enteroendocrine cells in the jejunal villus (∼58%) and crypt
epithelium (60%) (Guan et al., 2006) (Table 3). A rat polyclonal
antibody localized using immunohistochemistry the GLP-2R
to vagal afferents, enteric neurons, enteroendocrine cells, and
myenteric plexus nerve fibrils (Nelson et al., 2007). Isolated
rat intestinal mucosal cells expressing Glp2r transcripts also
expressed markers for enteroendocrine or neural cells (Walsh
et al., 2003) (Table 3). Isolated Human GLP-2R protein also

colocalizes to chromogranin A+ enteroendocrine cells in both
the villus and crypt epithelium (Guan et al., 2006). Human GLP-
2R protein colocalizes to 5-HT-containing cells in the epithelium,
a neurotransmitter released by enteroendocrine cells (Guan et al.,
2006). Human VIP+ enteric neurons in the submucosal plexus
and myenteric plexus express the GLP-2R (Guan et al., 2006)
(Table 3). In the mouse duodenal myenteric plexus, ∼18% of
GLP-2R+ are nNOS+, 10% are vasoactive intestinal polypeptide
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(VIP)+, ∼71% are choline-acetyltransferase (ChAT)+, and 27%
are SP+ (Cinci et al., 2011) (Figure 1 and Table 3). In
the submucosal plexus, only SP+ cells were GLP-2R+ (Cinci
et al., 2011) (Figure 1 and Table 3). Human eNOS+ enteric
neurons in the submucosa also express the GLP-2R, supporting
a direct role for GLP-2-mediated increase in eNOS protein
and NOS release through cAMP-dependent protein kinase A
(Guan et al., 2006) (Table 3).

DISTINCT AND OVERLAPPING
FUNCTIONAL ROLES OF GIPR, GLP-1R,
AND GLP-2R

Regulation of Post-prandial Lipid
Metabolism
Spearman correlations between GLP-1, GLP-2, GIP, and TG
responses in plasma during an oral fat tolerance test in obese men
reveal a small albeit significant positive correlation (r-squared
values close to zero) between all three hormone area under
curves (AUCs) for TG and apoB48 (Matikainen et al., 2016).
In this study, these gut hormones display small contributions
to explaining the variance in TG AUC, where instead fasting
TG values serve as the largest contributor for explaining this
variance (Matikainen et al., 2016). Still, the high concentrations
of GLP-1, GLP-2, and GIP within the gut circulation relative to
systemic circulation suggest that endogenous gut hormone action
on chylomicron secretion may be local and underestimated.

GIP Receptor (GIPR)
Chronic reduction in GIP secretion reduces obesity and
insulin resistance in high-fat fed mice (Nasteska et al., 2014).
Interestingly, dietary fat absorption and intestinal-TG secretion
are unchanged upon K cell destruction (Pedersen et al., 2013;
Holst et al., 2016). Similarly, GIP infusion i.v. does not impact TG
levels (Holst et al., 2016). Rather, GIP has been shown to increase
circulating lipid clearance via an increase in adipose tissue blood
flow. GIPR antagonist, GIP(3–30)NH2, and GIP co-infusion in
lean individuals prevented a fivefold increase in adipose tissue
blood flow induced by GIP infusion alone (Asmar et al., 2017).
Additionally, both TG and glucose uptake decrease in response
to GIP(3–30)NH2 alone and GIP co-infusion compared to GIP
infusion alone (Asmar et al., 2017).

Co-administration of triton-WR1339 infusion and D-Ala2-
GIP injection 20 min following oil gavage in mice significantly
increases TG accumulation in plasma at 60 and 90 min, and
ApoB-48 levels at 90 min compared to PBS control (Hsieh et al.,
2010), suggesting a role for GIP in plasma TG independent
of triglyceride rich lipoprotein (TRL) clearance. Additionally,
selective deletion of Gipr in brown adipose tissue significantly
increases both fasting (overnight) and fed (1h re-feed) TG levels
of high-fat fed mice (Beaudry et al., 2019). Furthermore, acute
lipid challenges in GiprBAT−/− mice fed a high-fat diet for
8–10 weeks housed at room temperature reveal significantly
increased TG excursion, an effect lost upon 28 weeks of high-
fat feeding (Beaudry et al., 2019). GIP, in the presence of

insulin, increases LPL gene expression in 3T3-L1 adipocytes via
PKB/LKB1/AMPK signaling (Kim et al., 2007a) mediated by
resistin (Kim et al., 2007b) and in human adipocytes by increasing
TORC2 and phospho-CREB nuclear localization to bind to
the CRE-II promoter region (Kim et al., 2010). GIP infusion
significantly increases LPL activity in obese (fa/fa) and lean (fa/-)
VDF Zucker rats (Kim et al., 2007a). Conversely, treatment of
rats with the GIPR antagonist, rat GIP (3–30)NH2, does not
modify food intake but significantly increases plasma TG and LPL
compared with controls (Baldassano et al., 2019). Alternatively,
D-Ala2-GIP treatment significantly reduces serum LPL activity
in both chow- and high-fat diet-fed mice (Szalowska et al., 2011).
However, the significance of endogenous GIP secretion as a
dominant regulator of LPL secretion is uncertain. In humans,
intravenous infusion of a somatostatin analog, octreotide, 30 min
prior to carbohydrate meal (Hycal) significantly impairs insulin,
GLP-1, and GIP secretion in both lean and obese women, yet
post-heparin LPL activity (contributions from adipose, skeletal
and cardiac tissue) is unchanged 1.5 h post-peak insulin in
lean and obese women (Ranganath et al., 1999). Therefore,
suppression of insulin, GIP, and GLP-1 does not impact plasma
LPL activity following oral carbohydrate.

GLP-1R
High-fructose feeding for 10 days in hamsters significantly
increases plasma TG and cholesterol levels (Hsieh et al., 2010),
where only the former can be significantly decreased after
3 weeks of systemic DPP4 inhibition (sitagliptin). This treatment
paradigm reduces post-prandial TRL-fraction TG levels and
ApoB48 production (Hsieh et al., 2010). Acute sitagliptin
administration to chow-fed mice significantly reduces plasma
cholesterol and TG at 90 min post-triton infusion and oil
gavage (Hsieh et al., 2010). Co-administration of triton by
infusion and exendin-4 by injection 20 min following oil gavage
in mice significantly decreases TRL-fraction TG accumulation
at 90 min, and ApoB48 levels at 60 and 90 min, an effect
significantly reversed by the co-administration of GLP-1R
antagonist exendin(9–39) 20 min prior to gavage (Hsieh et al.,
2010). While sitagliptin and exendin-4 significantly increase
plasma insulin levels 5-min post injection, these levels are not
significantly different from PBS control after 20 min, suggesting
that the GLP-1 mediated reduction in intestinal-TG secretion
is independent of the incretin effect. Indeed, the authors show
that in co-administration of insulin injection and triton infusion
20 min post-olive oil gavage in mice does not significantly change
the accumulation of TG in plasma (Hsieh et al., 2010). This effect
is significant given the studies in humans where acute insulin
treatment inhibits intestinal lipoprotein secretion in response
to hourly meals, an effect partially lost upon concomitant
Intralipid and heparin infusion (Pavlic et al., 2010), suggesting
mediation by FFA. Exendin-4 decreases TG and cholesterol in
the VLDL/chylomicron fraction of chow-fed hamsters while a
GLP-1R antagonist increases ApoB48 accumulation 120 min-
post oil in chow-fed hamsters (Hsieh et al., 2010). Despite
similar gastric emptying rates between Glp1r−/− mice wild-type
controls (Baggio et al., 2004), Glp1r−/− mice display significantly
increased TG accumulation in plasma and the TRL fraction
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TABLE 3 | Summary of methods used to identify GLP-2R expression throughout the gastrointestinal tract.

Cell/organ Species Method of identification References

Human colorectal tumors Human GLP-2R mRNA transcripts expressed qRT-PCR. Koehler et al., 2015

Human colon neoplasms Human Immunohistochemistry. Koehler et al., 2008

Gastric chief cells Human GLP-2R Fluorescence ISH.
GLP-2R by western blot.

Li et al., 2017

Myenteric plexus Human In vitro receptor autoradiography of human intestinal tissue. Pedersen et al., 2015

Lamina propria stromal cells Mouse ISH with RNAscope, Glp-2r mRNA detected.
GLP2R-driven LacZ expression.

Yusta et al., 2019

Vagal afferents Rat GLP-2R antibody localizing GLP-2R immunoreactivity.
ISH.

Nelson et al., 2007

Intestinal muscularis Mouse Glp-2r mRNA transcripts by RT-PCR. Shin et al., 2005

Jejunal enteroendocrine cells Pig Glp-2r mRNA transcripts by qRT-PCR of laser micro-dissected
tissue.

In situ hybridization.
Immunostaining.

Guan et al., 2006

Subepithelial myofibroblasts MouseRatMouse Glp-2r mRNA expression by qRT-PCR.
Immunohistochemistry (antibody 99077).

Orskov et al., 2005

Subepithelial myofibroblasts MouseRatMouse Glp-2r mRNA expression by qRT-PCR.
Immunohistochemistry (antibody 99077).

Orskov et al., 2005

Isolated intestinal mucosal cells Rat GLP-2R mRNA transcripts by RT-PCR. Walsh et al., 2003

Lamina propria of duodenal and
jejunal villi, submucosal nerve
plexuses

Mouse RNAScope in situ hybridization. Wismann et al., 2017

Smooth muscle layer, intestine
devoid of epithelium, respectively

Rat Glp-2r mRNA expression by qRT-PCR. Pedersen et al., 2015

as well as TRL ApoB48 post-oil gavage (Hsieh et al., 2010).
Furthermore, pulse-chase experiments in primary suspended villi
from chow-fed hamsters reveal that exendin-4 does not change
cellular ApoB48 levels, but significantly decreases 35S-labeled
ApoB48 secretion in the media (Hsieh et al., 2010).

Patients with type 2 diabetes treated with metformin and
the GLP-1R agonist exenatide for 1 year display significantly
reduced circulating TG, apoB48, and FFA following an early
meal (50 g of fat, 75 g of carbohydrates, 35 g of protein).
Interestingly, TG and apoB48 levels rapidly rise in the 2 h
following the second meal in these patients to levels similar
as pre-treatment responses (Bunck et al., 2010). In patients
with recent-onset type 2 diabetes, subcutaneous injection of
exenatide immediately prior to meal consumption (5,384 kJ)
significantly reduces serum insulin at 2, 4, 6, and 8 h post-
meal (Schwartz et al., 2010). Moreover, exenatide reduces post-
meal serum TG and remnant lipoprotein TG at 2-, 4-, and 6-h
post-meal, in particular preventing the 4-h peak in TG seen
in placebo controls (Schwartz et al., 2010). Plasma remnant
lipoprotein cholesterol is also significantly reduced 4 h post-
meal in these patients (Schwartz et al., 2010). Similarly, exenatide
significantly reduces serum apoB48 levels throughout the 8-h
sampling period (Schwartz et al., 2010). Meal-induced increases
in plasma apoCIII are also prevented by exenatide (Schwartz
et al., 2010). Two weeks of exenatide treatment twice daily, 1 h
before morning and evening meals, significantly reduces plasma
TG following these meals (∼50% carbohydrate, 20% protein,
and 30% fat) compared to placebo but TG levels rise to similar
levels as placebo following the midday meal, where no changes
in post-prandial FFA concentrations are observed (Schwartz

et al., 2008). Exenatide treatment and co-infusion of d3-leucine
5 h after starting continuous infusion of lipid/carbohydrate
formula in healthy fasted humans via nasoduodenal tube 2 h
after starting a pancreatic clamp does not significantly affect
plasma TG, FFA, or TRL-TG compared to placebo (Xiao et al.,
2012). However, this treatment paradigm demonstrates the acute
reduction in apoB48 concentrations in the TRL fraction for
10 h post-injection (−37%) compared to placebo controls with
a significant decrease in apoB48 production rate, no change in
fractional catabolic rate, and no changes in hepatic apoB100 levels
were observed (Xiao et al., 2012). Still, the precise mechanisms
through which GLP-1R signaling controls post-prandial lipid
metabolism remain unclear.

Genetic elimination of Itgb7 in mice decreases the expression
of Glp1r on αβ and γδ T cells yet increases fasting plasma GLP-
1, intestinal Gcg mRNA expression, and ileal L cell abundance
(He et al., 2019). Interestingly, these mice display improved
lipid tolerance (He et al., 2019). In vitro experiments reveal
GLP-1 concentration in media after 24 h of co-incubation of
GLUTag cells with αβ and γδ T cells negatively associate with
the level of Glp1r expression in the latter cells (He et al., 2019).
Moreover, high Glp1r expressing αβ and γδ T cells can further
decrease GLP-1 concentration in media from GLUTag cells in
the presence of exendin-4, suggesting that Glp1r-expressing αβ

and γδ T cells act as a sink for local GLP-1 production (He
et al., 2019). Additionally, this supports the increased circulating
GLP-1 levels observed in Glp1r−/− mice (Lamont et al., 2012),
albeit the intact receptor is required for improved post-prandial
lipid tolerance. These results are replicated ex vivo, where
media GLP-1 concentration from ileal tissue from Itgb7−/−
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mice is significantly higher than in the media from wild-
type tissue, and this increase can be replicated in wild-type
tissue upon GLP-1R antagonist (exendin-9) treatment (He et al.,
2019). Overall, this additional pool of GLP-1 during fasting
clearly plays an important role in GLP-1R-mediated control
of circulating lipoproteins, suggesting that the circuit engaged
occurs within the gut.

GLP-2R
Subcutaneous injection (15,000 µg) of GLP-2 5 h after the
start of a liquid mixed macronutrient formula infusion through
a nasoduodenal tube in healthy men significantly increases
peak plasma TG and TRL-apoB48 at 1 h and area under the
concentration curve for the first 3 h of treatment (Dash et al.,
2014). GLP-2 does not increase TRL apoB48 by increasing the
synthesis of new particles, nor does it decrease the clearance of
TRL apoB48, rather, GLP-2 stimulates the release of pre-formed
TRL apoB48 during the first hour of treatment (Dash et al.,
2014). Similarly, GLP-2 treatment significantly increases plasma
TG, TRL-TG, TRL retinyl palmitate, and retinyl palmitate in the
chylomicron fraction for 2 h when administered 7 h after a meal
containing retinyl palmitate (Dash et al., 2014).

Glp2r−/− mice display increased fasting and 10 min post-
olive oil gavage plasma active GLP-1 compared to wild-type
controls, despite similar fasting DPP4 activity levels in circulation
(Fuchs et al., 2020). Accordingly, plasma-TG excursion following
the olive oil gavage is not significantly different from wild-type
controls, although trends for decreased secretion are observed
(Fuchs et al., 2020). When administered 20 min after the oil
gavage, GLP-2 increases TRL-TG and TRL-cholesterol 3.5- and
3-fold, respectively, in hamsters (Hsieh et al., 2009). Radiolabeled
gavage experiments (3H-triolein) reveal that GLP-2 increases
the radiolabel incorporation into plasma TG at 60- and 90-min
post-gavage with no differences observed in plasma cholesterol
compared to control (Hsieh et al., 2009). Similar to hamsters,
GLP-2 treatment significantly increases plasma TG concentration
at 60- and 90-min post-oil gavage as well as TG and apoB48
accumulation in the chylomicron fraction of plasma in the
presence of triton WR-1339 (blocking lipoprotein catabolism)
(Hsieh et al., 2009). GLP-2 does not increase the protein
expression of FATP4 or MTP, rather it significantly increases the
expression of glycosylated CD36. CD36 localizes to the apical
membrane of enterocytes found on the tips of jejunal villi (Hsieh
et al., 2009). Assessing the requirement of CD36 for GLP-2-
mediated increases in intestinal-TG secretion are complicated
by the increased fatty acid absorption (as shown by appearance
of radiolabel in plasma), TRL-TG and TRL-apoB48 secreted by
Cd36−/− mice compared to wild-type controls (Hsieh et al.,
2009). Still, GLP-2 does not increase TRL-TG or TRL-apoB48
secretion in Cd36−/− mice compared to saline control (Hsieh
et al., 2009). 35S-methionine pulse-chase experiments of jejunal
fragments isolated hamsters 1 h after an olive oil gavage reveal
that GLP-2 treatment ex vivo increases the secretion of the
radiolabelled-apoB48 into the media with unchanged cellular
concentrations. However, since the GLP-2 treatment ex vivo was
for 45 min (Hsieh et al., 2009), and that GLP-2 treatment rapidly
induces the mobilization of pre-formed chylomicrons by 1 h

treatment in humans (Dash et al., 2014), this increase in apoB48
synthesis may be driven by clearing the preformed particles
earlier than vehicle controls. Still, this experiment demonstrates
that GLP-2R-expressing cell(s) mediating this indirect increase
reside near enterocytes in these jejunal fragments. As previously
mentioned, GLP-2 increases intestinal blood flow and stimulates
the expression of intestinal endothelial nitric oxide synthase
(eNOS) (Guan et al., 2003). Inhibiting nitric oxide synthase
with L-NAME does not impact intestinal-TRL secretion in
hamsters (Hsieh et al., 2015), likely due to the lymphatic fate
of these particles. Still, preventing GLP-2-mediated increases
in portal and intestinal blood flow via L-NAME, blocks the
GLP-2-mediated increase in apoB48 in the TRL fraction of
plasma (Hsieh et al., 2015). Mice lacking endothelial nitric oxide
synthase (eNOS−/− mice) display normal radiolabel appearance
into plasma as wild-type controls, however, GLP-2 treatment in
these mice did not increase plasma 3H compared to treatment
in wild-type mice (Hsieh et al., 2015). ApoB48 in the TRL
fraction is significantly lower in eNOS−/− mice compared to
wild-type mice, independent of GLP-2 treatment (Hsieh et al.,
2015). Additionally, jejunal TG mass is significantly greater in
eNOS−/− mice compared to wild-type mice, again independent
of GLP-2, suggesting that eNOS is involved in the release of
stored TG as large chylomicrons rather than absorbed dietary TG
and this is upregulated by exogenous GLP-2 (Hsieh et al., 2015).
Indeed, GLP-2 treatment 5 h after 200 µL of intraduodenally
administered olive oil significantly increases TRL-TG, which
is inhibited by co-treatment with L-NAME. Similar to acute
L-NAME treatment, L-NAME treatment alone 5 h post-oil
does not change TRL-TG secretion compared to saline control
(Hsieh et al., 2015), suggesting that GLP-2 may influence
the partitioning of dietary fatty acids from lymph to portal
circulation or that endogenous gut-hormone action by GLP-1R
and/or GIPR maintains normal intestinal-TRL secretion. GLP-
2 rapidly increases lymph flow and cumulative lymph volume
in cannulated rats 300 min after an intraduodenal bolus of
Intralipid 20% (Stahel et al., 2019). GLP-2 does not significantly
change lymph TG concentration, TG output (mL TG per hour)
or chylomicron size (TG:apoB48) compared to placebo control,
rather it increases the cumulative increase in lymph TG in 60 min
(Stahel et al., 2019).

Regulation of Intestinal Growth and
Response Injury
GLP-1R
Interestingly, Gcgr−/− mice have increased circulating GLP-1
and GLP-2 (Gelling et al., 2003; Ali et al., 2011; Grigoryan et al.,
2012). Unsurprisingly, Gcgr−/− mice have significantly increased
small and large intestinal length and weight due to the elevated
levels of gut-derived hormones (Koehler et al., 2015). Consistent
with this, co-administration of the GLP-2R agonist h(Gly2)GLP-
2 and exendin-4 increases small intestinal weight and length
to a greater extent compared to the agonists administered
alone (Koehler et al., 2015). However, using Gcgr−/−:Glp2r−/−

mice, the authors demonstrate that GLP-1R signaling can still
increase small intestinal length and weight compared to wild
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type, although not to the same extent as in Gcgr−/− mice
(Koehler et al., 2015). However, despite these potent effects,
increased large bowel weight and length in Gcgr−/−mice appears
to be driven by GLP-1R signaling as these parameters are
unchanged in Gcgr−/−:Glp2r−/− mice (Koehler et al., 2015).
Therefore, the trophic effects of GLP-1R signaling appear to
target the distal gut (small intestinal length, large bowel length
and weight) (Koehler et al., 2015). Indeed, exendin-4 and
liraglutide treatment for 1 week increases small intestinal length
and weight as well as large intestinal weight in wild-type mice
but not in Glp1r−/− mice (Koehler et al., 2015). Glp1r−/− mice
lose significantly more weight, exhibit significantly increased
disease activity scores and greater colon damage than wild-type
controls in response to DSS-induced colitis (Yusta et al., 2015).
Unlike GLP-2, which increases crypt cell proliferation and villus
elongation (Drucker and Yusta, 2014) exendin-4 treatment does
not enhance crypt-cell proliferation, which was demonstrated
by BrDU labeling and measuring crypt depth (Koehler et al.,
2015). Instead, chronic treatment of exendin-4 increases crypt
number in the proximal intestine and colon, leading to increased
intestinal circumference and length (Koehler et al., 2015). The
authors demonstrate that GLP-1R agonist treatment induces
expression of tyrosine kinase IGF1R/ErbB (EGFR) pathways,
however, agonist treatment can still increase intestinal growth
in the absence of intestinal epithelial IGF1 receptor as well as
EGF receptor signaling (Koehler et al., 2015). Acute, but not
chronic, exendin-4 treatment increases Fgf7 mRNA expression
in the small intestine (Koehler et al., 2015). The intestinotrophic
effects of exendin-4 are lost in Fgf7−/− mice, effects that were
not observed upon GLP-2 treatment in these mice (Koehler
et al., 2015). Despite the role of IELs in mediating intestinal
mucosal repair through Fgf7/KGF (Boismenu and Havran, 1994),
reconstituting Glp1r+ IELs into Glp1r−/− mice via bone marrow
transplant does not rescue the intestinotrophic effects of exendin-
4 in these mice (Koehler et al., 2015).

Plasma GLP-1 levels increase in response to intestinal injury
or mucosal inflammation (Zietek and Rath, 2016). IELs protect
the epithelial barrier by promoting pathogen clearance and lysing
pathogen-infected cells (Cheroutre et al., 2011). Treatment with
exendin-4 significantly attenuates proinflammatory cytokines
IL-2, IL-17a, interferon γ, tumor necrosis factor-α mRNA
and protein in IELs activated by immobilized anti-CD3
and soluble anti-CD28, an effect partially blocked by GLP-
1R antagonist exendin (9–39) (Yusta et al., 2015). Colonic
mRNA expression analysis in Glp1r−/− mice at baseline reveal
significant reductions in trefoil factor (Tff-1 and -2), transforming
growth factor (Tgf-b1 and Tgf-3), epidermal growth factor
receptor (Egfr), keratinocyte growth factor (Fgf7), hepatocyte
growth factor (Hgf ) (epithelial protection and repair), Il6, Il1b
(innate immune response), Il12b (inflammation) (Yusta et al.,
2015). Upon dextrane sulfate (DS)-induced colitis, colonic Tff2,
Tff3, Tgfb1, and Tgfb3 mRNA levels are significantly lower in
Glp1r−/− mice compared to wild-type controls (Yusta et al.,
2015). By contrast, colonic Tgfb2 and Ifng mRNA levels are
significantly higher in Glp1r−/− mice compared to wild-type
controls (Yusta et al., 2015). Genes involved in innate immunity
and inflammation, which are lower in Glp1r−/− at baseline,

increases in both WT and Glp1r−/− in DSS-induced colitis, but
differences between genotypes are lost (Yusta et al., 2015). Bone
marrow transplantation, and therefore re-establishment of wild-
type IELs in the intestinal mucosa, from wild-type donor mice to
wild-type and Glp1r−/− recipient mice, normalizes colonic gene
expression in response to DSS-induced colitis (Yusta et al., 2015).
Exendin-4 increases mRNA expression of Il1b, Il6, Il22, Il12b,
Tnfa, Ccl2, Cxcl1, and Cxcl2 (innate immunity), regenerating
islet-derived protein 2, RegIIIy and RegIIIB (anti-microbial
proteins), as well as Il-5, Il-13 (pathogen clearance) within 4 h
of administration, returning to baseline expression by 24 h
(Yusta et al., 2015), suggesting that GLP-1R activation engages
a cytoprotective response. Exendin-4 treatment following DSS-
induced colitis does not prevent weight loss, colon length
shortening, or improve colon damage score, however, reductions
in colon weight are attributable to a reduction of edema
(Yusta et al., 2015).

GLP-2R
The intestinotrophic effects of GLP-2 have been well-described
since its initial characterization (Drucker et al., 1997). GLP-2
increases intestinal cell proliferation while inhibiting apoptosis,
leading to increased villus height and expanding the absorptive
mucosal surface (Drucker et al., 1997). GLP-2 decreases mucosal
injury by stimulating intestinal growth; specifically, increasing
villus height, crypt depth, improving nutrient absorption and
nutritional status (Estall and Drucker, 2005). Mice fasted for
24 h exhibit small intestinal atrophy, a decrease in intestinal
weight, a decrease in crypt-villus height, and an increase in
villus apoptosis (Shin et al., 2005). Refeeding restored all
parameters, while co-administration of GLP-2R antagonist, GLP-
23−33, prevents adaptive changes to refeeding (Shin et al., 2005).
Similarly, the restoration of jejunal mucosal mass, protein, and
DNA 25–65% by ad libitum or intragastric infusion for 2–
4 days is blunted with 2.5 or 50 µg/kg body weight GLP-
23−33, but not 10 µg/kg body weight GLP-23−33, compared to
the baseline fed group (Nelson et al., 2008). Mucosal growth
following refeeding is associated with increased circulating GLP-
2 and jejunal Igf-1 mRNA expression. Interestingly, GLP-23−33

at any dose prevents restoration of plasma IGF-I levels in
response to refeeding (Nelson et al., 2008). There is evidence
for both paracrine and neuronal mechanisms for GLP-2-
mediated gut growth. GLP-2R+ myofibroblasts in the small
intestine and colon contain keratinocyte growth factor (KGF),
whereby immunoneutralization of KGF abolishes the trophic
effects of GLP-2 treatment in the colon, but not the small
intestine in mice (Orskov et al., 2005). Mechanistically, GLP-2
activates its receptors on subepithelial myofibroblasts, which in
turn increase expression and secretion of IGF-1 (Dube et al.,
2006). Gut growth coincides with increased IGF-1 and IGF-2,
particularly in the mucosal and muscularis regions (Dube et al.,
2006). GLP-2-mediated increases in IGF-1 activates the IGF-1
receptor on intestinal epithelial cells to stimulate proliferation
(Rowland et al., 2011). Chronic GLP-2 treatment does not
increase crypt-cell proliferation, and growth of the crypt-villus
is reduced in intestinal epithelial-specific IGF knockout mice
(Rowland et al., 2011).
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Treatment of mice with DS-induced colitis (resembling
human ulcerative colitis) with the human GLP-2 analog
h(Gly2)GLP, twice daily for 10 days, reverses weight loss
independent on food intake, decreases interleukin-1 expression
and increased colon length, crypt depth, and mucosal area
compared to treatment with saline (Drucker et al., 1999).
h(Gly2)GLP-2 treatment also improves survival in drug-induced
enteritis (non-steroidal anti-inflammatory drug - indomethacin)
survival, reduces disease activity, decreases occurrence of
intestinal ulcerations, and lowers cytokines and myeloperoxidase
activity in mice (Boushey et al., 1999). In Glp2r−/− mice, levels
of various Paneth cell genes are lower in the jejunum and
ileum, some specifically in charge of defensin activity suggesting
alterations in gut barrier function. The bacterial translocation
and Paneth cell defect alter host-bacterial interactions within
the intestine, further enhancing morbidity in Glp2r−/− mice
(Lee et al., 2012). In the non-obese diabetic (NOD) mouse, a
model of type 1 diabetes, treatment with h(Gly2)GLP-2 once
daily for 14 days, increases small intestine length and weight,
while also improving jejunal transepithelial resistance compared
to treatment with saline. NOD mice treated with a single injection
of h(Gly2)GLP-2 appear to have significantly decreased ion
conductance in the jejunum (Hadjiyanni et al., 2009).

DISCUSSION

Agonism of GIPR, GLP-1R, and GLP-2R has a clear clinical
impact on nutrient absorption and utilization; however,
unraveling endogenous circuits’ location in mediating this
beneficial effect has been challenging. Clearly, gut hormones
represent a signal produced by cells in direct contact with

nutrients, bacteria and circulation. Evaluation of models of
metabolic disease and aging describe resistance to signaling
through established GLP-1R+ circuits (Grasset et al., 2017; Varin
et al., 2020). It is currently unclear if the resistance to GLP-
1 is primarily due to impaired receptor expression, reduced
signaling in the gut-brain axis and/or intestinal dysbiosis.
It is also unknown how much of resistance of endogenous
signaling contributes to the heterogeneity observed in metabolic
disease and the variable patient responses to pharmacological
treatments including DPP4 inhibitors, GLP-1R agonists and
bariatric surgery.

As co-agonists are developed and proposed to have greater
glycemic and intestinotrophic effects, further understanding of
the endogenous signaling and target cells can only improve
tailoring and outcomes.
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