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ABSTRACT: Evidence indicates that short-chain fatty acids (SCFAs) generated from the gut microbiota play crucial roles in host metabo-
lism. They contribute to metabolic regulation and energy acquisition of the host by influencing the development of metabolic disorders. 
This review aims to synthesize recent advances from the literature to investigate the implication of SCFAs in the modulation of obesity and 
diabetes pathologies. For a better understanding of the relationships between SCFAs and host metabolism, we need to answer some ques-
tions: What is the biochemistry of SCFAs, and how they are generated by gut microbiota? What are the bacteria producing of SCFAs and 
from which routes? How SCFAs are absorbed and transported in the gut by different mechanisms and receptors? How SCFAs involved in 
obesity and diabetes pathologies?
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Introduction
Short-chain fatty acids (SCFAs) are the major end products of 
bacterial fermentation. They are produced by anaerobic micro-
organisms primarily from protein, peptide, oligosaccharide, 
glycoprotein precursors, polysaccharide, and carbohydrates 
progenitors.1-4 Acetate, propionate and butyrate are the major 
SCFAs that are produced through the fermentation of both 
carbohydrates and amino acids.5,6 These SCFAs that are trans-
ported across the intestine, can reach the bloodstream and have 
a direct impact on metabolism or peripheral tissue function.7-9 
Recent data suggest that SCFAs may play a crucial role in the 
etiology of several diseases, with systemic effects linked to 
human food and intestinal microbiota.10

SCFAs are thought to have a favorable rather than a harmful 
influence on host metabolism, according to rodent research.9,10 
However, evidence on the therapeutic benefits of SCFAs on 
glucose homeostasis in humans is conflicting, and more well-
controlled long-term intervention studies are required to vali-
date SCFA’s beneficial involvement in metabolic diseases.9,11-13 
SCFAs appear to have 3 main mechanisms for influencing 
health: inhibition of HDAC (Histone deacetylase) activity, par-
ticular fatty acid-sensing G protein-coupled receptors (GPCRs) 
signaling, and anti-inflammatory mechanisms in the tissues and 
periphery resulting from to first 2 mechanisms.10,14-16 According 
to emerging data, SCFAs have an important physiological 
impact on a variety of organs, including the pancreas, liver, and 
adipose tissue.7 This hypothesis is confirmed by animal and 
human research which demonstrates that dysbiosis of the intes-
tinal microbiota is linked to metabolic pathologies, such as type 
1 diabetes (T1D) and obesity,12,17 which become one of the 
most serious health issues linked to type 2 diabetes mellitus and 
a wide range of pathological abnormalities in metabolic organs 
prone to insulin resistance.9

Herein, we outline the current knowledge about the involve-
ment of the main SCFAs, acetate, propionate and butyrate in 
intestinal microbiota-metabolism interaction. We also high-
light how the development of future treatments for metabolic 
diseases can take advantage of the mutual interactions of the 
intestinal microbiota with other organs by exploring the role of 
SCFAs in the regulation of metabolic function.

Biochemistry of SCFAs
Short-chain fatty acids are organic monocarboxylic acids com-
posed of an aliphatic chain of 1 to 6 carbons, derived from the 
bacterial fermentation of undigested dietary fiber in the human 
small intestine.1,7 The main SCFAs produced by colonic anaer-
obic bacteria are acetic acid (C2:0), propionic acid (C3:0), and 
butyric acid (C4:0) (Table 1), which represent 90% to 95% of 
the SCFAs, with a proportion of about 60%, 20%, and 20% 
respectively.18,19

In addition to dietary fiber fermentation, SCFAs can also be 
produced from peptide and amino acid metabolism.23 However, 
amino acid metabolism is only used by the gut microbiota to a 

degree of less than 1%.7,24,25 Moreover to the production of 
SCFAs, acetate, butyrate, and propionate,26,27 this metabolism 
leads to the production of potentially harmful metabolites such 
as branched-chain fatty acids including isobutyrate (iC4), 
valerate (C5), or isovalerate (iC5) (Table 1), phenolic and 
indolic chemicals, ammonia, and amines.2,7,28 The production 
of SCFAs varies according to several factors including the 
composition of bacterial species of the microbiota, the quantity 
and quality of substrates8,17,29 as well as the time of intestinal 
transit, stress, and aging.1,7 According to these factors, approxi-
mately 500 to 600 mmol of SCFAs are produced daily by the 
human colon.30

Metabolic Routes of SCFAs
The primary precursor of SCFAs is pyruvate, which most bac-
teria synthesize after carbohydrate glycolysis.17,31,32 Main 
SCFAs, acetate, propionate and butyrate are generated from 
non-digestible carbohydrates by specific types of gut bacteria, 
via 4 metabolic pathways (acetyl CoA, lactate, succinate, pro-
panediol) (Figures 1 and 2).31,33,34

Acetate metabolic pathways

The most abundant SCFA in the colon is acetate, which accounts 
for more than half of the total SCFAs found in feces.45 The 
intestinal bacteria have been shown to produce acetate from 
pyruvate via 2 different metabolic pathways (Figure 1).2,35 The 
enteric bacteria produce the majority of acetate from acetyl-CoA 
as a result of CHO fermentation.2 Furthermore, the acetate pro-
duced by the acetogenic bacteria can account for about a third of 
total colonic acetate. It is synthesized via the Wood–Ljungdahl 
pathway, which includes 2 branches: (1) the C1-body branch via 
reduction of CO2 to formate and (2) the carbon monoxide 
branch via reduction of CO2 to CO, which is combined with a 
methyl group to form acetyl-CoA (Figure 1).2,21,31

Propionate metabolic pathways

The succinate pathway, acrylate pathway, and propanediol 
pathway are used by colonic bacteria to produce propionate 

Table 1.  Main short-chain fatty acids and branched-chain fatty acids.20-22

Trivial name Number of 
carbon atoms

Chemical formula

Acetate 2 C2H4O2

Propionate 3 C3H6O2

Butyrate 4 C4H8O2

Isobutyrate 4 C4H8O2

Valerate 5 C5H10O2

Isovalerate 5 C5H10O2
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(Figure 1).10,36,37,46 The production of this latter by succinate 
pathway involves the conversion of succinate to methylmalo-
nyl-CoA, then methylmalonyl-CoA to propionyl-CoA by 
decarboxylation.2,22,37,45 This route uses a four-carbon pathway 

made up of the 4 intermediates, malate, fumarate, succinate, 
and methylmalonyl-CoA, and generates for 2 molecules of 
propionate 1 molecule of acetate.21 In the acrylate pathway, lac-
tate is used like a precursor,2,31 and is converted easily to 

Figure 1.  Pathways for the biosynthesis of short-chain fatty acids by gut microbiota. Acetate, propionate, and butyrate are the most SCFAs that are 

generated from the fermentation of dietary fiber by gut microbiota, through different pathways. Acetate is produced from pyruvate via acetyl-CoA and via 

the Wood-Ljungdahl pathway. Butyrate is formed from acetoacetyl-CoA after the condensation of 2 molecules of acetyl-CoA, it also can be synthesized 

from lactate and acetate. Propionate can be formed via the acrylate and succinate pathway from phosphoenolpyruvate and also via the propanediol 

pathway from deoxyhexose sugars, like fucose and rhamnose.

Figure 2.  Intestinal microbiota producing SCFAs through different routes.
Source: Koh et al,2 van der Hee and Wells,10 Smith and Macfarlane,24 Louis and Flint,27 Louis et al,35 Nogal et al,36 Reichardt et al,37 Neri-Numa and Pastore,38 Ashaolu,39 
Barker et al,40 Hayashi et al,41 Chiu et al,42 Fu et al,43 and Murugesan et al.44
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propionate through the lactoyl-CoA dehydratase’s activity 
(Figure 1).45 Propionate can also be synthesized by the propan-
ediol pathway by the conversion of deoxy-sugars, fucose, and 
rhamnose.2,27 It has been suggested that the conversion of pro-
pionaldehyde to propionyl-CoA via Co-dependent propional-
dehyde dehydrogenase, is a marker of the propanediol route.45

Butyrate metabolic pathways

The last major SCFA, butyrate can be produced mostly via gly-
colysis from carbohydrates47 and formed by 2 different path-
ways (Figure 1).48 Butyrate is formed from acetoacetyl-CoA by 
phosphotransbutyrylase and butyrate kinase (butyrate kinase 
pathway) after condensation of 2 molecules of acetyl-CoA.38,39 
Moreover, the acetate can be converted to butyrate via the 
butyryl-CoA: acetate CoA-transferase route, which is used by 
mainly butyrate-producing bacteria.49,50 Butyrate can also be 
synthesized from lactate to stabilize the intestinal environment 
and prevent its accumulation.50,51 Lysine pathway was suggested 
such as the route to produce butyrate too.2,40 An in vitro study 
showed that butyrate was produced from lysine, glutamate, 
cysteine, serine, and histidine, whereas propionate was a major 
fermentation product from alanine, aspartate, methionine, and 
threonine.24,27,52 The 3 major SCFAs can also be further metab-
olized from lactate by many cross-feeding organisms.26,38,51,53

SCFAs Production by Intestinal Microbiota
The identification of bacteria that produce SCFAs was facili-
tated by metagenomic approaches and bioinformatics tools.26,36 
Well-known SCFA-producing bacteria in the gut include 41 
families and are summarized in Table 2.3,23,37,41,54-60 Acetogenic 
bacteria such as Blautia hydrogenotrophica, are expected to con-
tribute little to acetate production but play an essential role in 
gas clearance in the digestive tract, which improves intestinal 
health.61,62 Probiotics like Bifidobacterium and Lactobacillus 
have enhanced lipid metabolism in the liver by increasing the 
generation of SCFAs.63 Akkermansia muciniphila transforms 
dietary fiber to SCFAs, making it a promising probiotic for 
lowering metabolic syndrome risk.64 In humans and animals, 
Akkermansia muciniphila also helps to reverse metabolic dysbi-
osis caused by antibiotics or a high-fat diet, such as insulin 
resistance.12,65

Acetate, which represents 50% to 60% of SCFAs, is synthe-
sized by the genera Bifidobacteria and Lactobacilli 29,66 and other 
bacteria such asClostridium spp., Lachnospira, Anaerotruncus, 

Parabacteroides, Roseburia17,67 Blautia hydrogenotrophica, 
Akkermansia Muciniphila, and streptococcus spp.2,56,62,66 Most 
enteric bacteria use the acetyl-CoA pathway to produce acetate 
from pyruvate.2,68

Propionate is produced by the Bacteroidetes and Negativicutes 
class of Firmicutes via a succinate pathway by using vitamin B12 
to convert succinate to propionate.27,29,46 Other Negativicutes 
bacteria formed propionate from lactate via the succinate like 
Veillonella spp64 or acrylate pathways such as Megasphaera elsde-
nii, Lachnospiraceae, and Coprococcus catus.21,37 Propionate and 
propanol can also be produced from deoxy sugars by 
Lachnospiraceae, including Roseburia inulinivorans and Blautia 
species.27 Dialister, Lactobacillus paracasei, Odoribacter, 
Salmonella spp., Megasphaera esdenii, and Ruminococcus are also 
propionate-producing bacteria.2,17,21

Butyrate can be synthesized by Roseburia spp. and 
Eubacterium rectale, which belong to the Clostridium coccoides 
group (clostridial cluster XIVa), and Faecalibacterium praus-
nitzii, which belongs to the Clostridium leptum group (clostrid-
ial cluster IV).10,17,33,56,69 In addition to these 2 abundant 
clusters in humans, butyrate can also be synthesized by clostrid-
ial cluster I, III, XV, and XVI.10 We should note that butyrate 
can also be formed from amino acids by lysine, glutamate, and 
4-aminobutyrate pathways.10,70 These routes are found in 
Firmicutes such as Fusobacterium spp., Peptostreptococcus asac-
charolyticus, Clostridium sporosphaeroides, Acidaminococcus fer-
mentans, and Clostridium symbiosum27 and other phyla which 
including Spirochaetes, Fusobacteria, and Bacteroidetes.40,42,43 
Amino acids metabolism has been overlooked as a possible 
butyrate-producing pathway in intestinal environments.70 
Figure 2 summarizes all the bacterial genera and species pro-
ducing the 3 main SCFAs as well as the metabolic pathways 
involved.

Metabolism of SCFAs in Host
Absorption of SCFAs in the gut

About 60% to 70% of the energy needs of colon cells and 
enterocytes are provided by SCFAs, the remaining SCFAs 
enter the bloodstream to cover 5% to 15% of the body’s total 
energy needs.17 SCFA absorption in the colon is effective and 
rapid, with only 5% to 10% of the SCFAs excreted in the 
feces.9,71 SCFAs are absorbed by the apical membrane of 
colonocytes through different mechanisms: (a) non-ionic dif-
fusion, (b) SCFA/HCO3

− exchange, (c) active transport, via 

Table 2.  SCFA-producing bacteria families.3,23,37,54,60.

SCFA-producing bacteria

Lachnospiraceae, Streptococcaceae, Peptostreptococcaceae, Lactobacillaceae, Clostridiaceae, Erysipelotrichaceae, Eubacteriaceae, 
Enterococcaceae, Pasteurellaceae, Pseudomonadaceae, Fusobacteriaceae, Bacteroidaceae, Porphyromonadaceae, Aerococcaceae, 
Veillonellaceae, Verrucomicrobiaceae, Alcaligenaceae, Alicyclobacillaceae, Oxalobacteraceae, Defluviitaleaceae, Christensenellaceae 
Bifidobacteriaceae, Rhodospirillaceae, Synergistaceae, Acidaminococcaceae, Rikenellaceae, Prevotellaceae, Enterobacteriaceae, 
Micrococcaceae, Coriobacteriaceae, Burkholderiaceae, Nocardiaceae, Carnobacteriaceae, Peptococcaceae, Flavobacteriaceae, 
Erysipelotrichaceae, Actinomycetaceae, Leuconostocaceae, Desulfovibrionaceae, Streptococcaceae, and Ruminococcaceae
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hydrogen-coupled monocarboxylate transporter 1 (MCT1) 
or via sodium-coupled monocarboxylate transporter 1 
(SMCT1).2,31 This latter transporter coupled to Na+ has a 
preference for butyrate but transports propionate and acetate 
at a slower rate21,53,72,73

SCFAs signaling through GPCRs

SCFAs act as signal transduction molecules by binding and 
activating cell surface GPCRs, like G-protein-coupled recep-
tors 41 (GPR 41) and G-protein-coupled receptors 43 (GPR 
43).22,74 This activation might affect the intestine and host 
metabolism. GPR 43 is activated at a similar rate by all 3 
SCFAs, but propionate remains the most important GPR 43 
activator, while propionate and butyrate are the most potent 
activator of GPR 41, followed by acetate.15,44,53,75 Both recep-
tors are expressed in human colonic tissue and also in adipo-
cytes, skeletal muscle, and liver.14,36 All this suggests that 
SCFAs may have an effect on substrate and energy metabolism 
in peripheral tissues.14,36,76

The third SCFAs receptor, G protein-coupled receptor 109a 
(GPR109a) which is activated by butyrate, was found in the 
intestinal tract, partial immune cells, brain, prostate, spleen and 
adipocytes.9,14,77 Colonocytes are used local butyrate as an energy 
source, whereas other SCFAs that escape colonic metabolization 
are transported by the portal vein.53,69 Propionate is transported 
to the liver, metabolized by hepatocytes, and serves as a precursor 

of gluconeogenesis, protein synthesis, liponeogenesis, and an 
inhibitor of fatty acid production. Propionate consequently only 
exists in low amounts in the peripheral circulation, leaving ace-
tate as the most abundant SCFAs, which can control appetite by 
crossing the blood-brain barrier (Figure 3B).2,17,21,78 Figure 3A 
schematizes the different mechanisms of absorption and trans-
port of SCFAs.

SCFAs-Metabolic Pathologies Axis
Dietary fiber confers a lot of metabolic benefits in the host, 
such as a decreased incidence of obesity and diabetes.10 SCFAs 
and their receptors are becoming better known as a key media-
tor that connects diet and intestinal microbiota to host physiol-
ogy through modulating activity of enzymes, development and 
functioning of leukocytes, endocrine responses, and transcrip-
tion factors.77,79 Thus, it is necessary to investigate and define 
the role of SCFAs receptors in the effectiveness of dietary 
therapy and gut microbiota alterations in the treatment of obe-
sity, metabolic energy syndrome, and diabetes.77,79

SCFAs and obesity

Recent evidence indicates that SCFAs play an essential role in 
human health.23 Studies have revealed that on enteroendocrine 
cells, activation of GPR41 boosts the hormone peptide YY 
(PYY) production and secretion, which promotes satiety by 
slowing gut motility, reducing stomach emptying and boosting 

Figure 3.  Absorption and transportation of SCFAs. (A) SCFAs are utilized in the enterocytes through different pathways: nonionic diffusion; SCFA/

HCO3
− exchange; active transport via SMCT1 and MCT1; and binding GPR41, GPR43, and GPR109a. After their absorption, SCFAs are transported into 

the portal vein and dispersed to peripheral tissues. (B) Acetate is largely absorbed going to the periphery and the liver. Propionate is transported to the 

liver, and metabolized by hepatocytes. Almost all of the butyrate produced remains in the colonic mucosa and it is used as an energy source by 

colonocytes. Abbreviations: GP, G-protein-coupled receptors; MCT1, hydrogen-coupled monocarboxylate transporter 1; SCFA, short-chain fatty acids; 

SMCT1, sodium-coupled monocarboxylate transporter 1.
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insulin sensitivity (Figure 4A).53,78,80 While SCFA-dependent 
GPR43 signaling has been suggested to mediate host insulin 
sensitivity secretion by promoting glucagon-like peptide-1 
(GLP-1) (Figure 4A).19,81,82 Pingitore et al83 show that insulin 
secretion is dependent on GPR43 and it is stimulated by ace-
tate and propionate via the phospholipase C/protein kinase C 
pathway.

It has been shown that body weight, insulin resistance and 
dyslipidemia, which are metabolic markers associated to obesity 
can be reduced by dietary fiber supplementation.84-86 Human 
studies have confirmed the molecular mechanisms of SCFA 
receptor-mediated metabolic responses by finding that admin-
istrating propionate to obese patients resulted in increased pro-
duction and secretion of PYY and GLP-1 with a reduction in 
adiposity and overall weight gain.87,88 Butyrate has received a lot 
of attention in recent studies because it seems to play a key role 
in the pathogenesis of obesity and diabetes.81,89-91

Propionate and butyrate may contribute to metabolic health 
by activation of intestinal gluconeogenesis (IGN).84,92 This 
activation permitted to explain of the anti-obesity and anti-
diabetic effects of dietary fibers.92 The expression of IGN 
genes could be directly induced by butyrate and propionate via 

a cAMP-dependent mechanism, whereas the gut-brain axis 
that involves GPR41 was proposed to be the mediator of IGN 
activation by propionate (Figure 4B).17,84,93,94 Butyrate upregu-
lates the adiponectin-mediated AMPK pathway that stimu-
lates mitochondria biogenesis and fatty acid oxidation by 
inhibiting histone deacetylases (HDACs) and increasing per-
oxisome proliferator-activated receptor alpha (PPAPα) (Figure 
4D).73,84,95,96 All of this demonstrated that SCFAs regulate the 
epigenome by modifying HDACs in addition to acting as sign-
aling molecules.17,96-100

GPR109a activated by butyrate has been shown to induce 
lipid homeostasis by promoting local macrophage growth in 
adipose tissue.77 Wang et al demonstrated that GPR109a 
which is expressed in human isolated β cells, prevented the 
insulin secretion stimulated by glucose and was down-regu-
lated in type 2 diabetic patients.101 In contrast, the treatment of 
the isolated β cells with a GPR43-specific agonist enhances 
the glucose-stimulated insulin secretion, β cell proliferation 
and gene expression.77,81 GPR41 and GPR43, when expressed 
in the adipose tissue, function to stimulate leptin secretion and 
serves to suppress insulin signaling and adipogenesis, respec-
tively (Figure 4C).87,102,103 Acetate and propionate are notified 

Figure 4.  Mode of action of SCFAs: (A) activation of GPR41 and GPR43 boosts the hormone peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) 

production and secretion, which promotes satiety by slowing gut motility, reducing stomach emptying, and boosting insulin sensitivity, (B) SCFAs activate 

IGN via GPR 41, whereas the expression of IGN genes could be directly induced by butyrate and propionate via a cAMP-dependent mechanism, (C) 

SCFAs act on insulin signaling and adipogenesis by increasing the production and secretion of leptin via GPR 41 and GPR 43, and (D) butyrate stimulates 

fatty acid oxidation by inhibiting HDAC and PPARα via the AMPK pathway. Abbreviations: AMPK, AMP-activated protein kinase; GP, G-protein-coupled 

receptors; GLP-1, glucagon-like peptide-1; HDAC, inhibiting histone deacetylases; IGN, gluconeogenesis; PPARα, peroxisome proliferator-activated 

receptor alpha; PYY, hormone peptide YY; SCFA, short-chain fatty acids.
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to induce adipogenicity through GPR43.44 Therefore GPR41/
GPR43 signaling mediated by SCFAs has been shown to 
modulate insulin secretion directly in pancreatic β cells.77,104,105 
Also, it has been shown that genetically modified mice defi-
cient in GPR43 are overweight on a normal diet.74

Body weight can be controlled by propionate via sympa-
thetic nervous system activity.10,106 In addition, the increase of 
oxidative metabolism in the liver and adipose tissue as well as 
the reduction of body fat accumulation, hepatic steatosis and 
increasing insulin sensitivity are a result of the decreasing 
expression of PPARα by SCFAs.10 Divers studies have shown 
that SCFAs can protect against obesity by increasing appetite 
control and energy expenditure.9,84,107,108 Other reports sug-
gested that increased fecal concentrations of SCFAs are associ-
ated with obesity.85,109 However, Lu et al74 showed that dietary 
supplementation of SCFAs can prevent body weight gain 
induced by high-fat diet feeding in overweight humans, this 
supplementation caused significant changes in GPR43 and 
GPR41 expressions and was characterized by increases in the 
adipose tissue and reductions in the colon.

Studies have shown that the binding of SCFAs to GPCRs 
as signal transduction molecules may be reduced in the pres-
ence of high-carbohydrate meals and obesity, which could 
increase intestinal energy absorption and hepatic lipogene-
sis.109,110 Furthermore, and in contrast to obesity, dietary 
SCFAs have an impact on the structure of the bacterial com-
munity in feces, with an increase in the percentage of 
Bacteroidetes and a reduction in the percentage of Firmicutes.85 
Globally, body weight reduction is related to enhancing triglyc-
eride hydrolysis and free fatty acid oxidation in the adipose tis-
sue, stimulating mitochondrial biogenesis and increasing beige 
adipogenesis.74

Further exploration of SCFAs and their receptors, could 
open new possibilities for treating obesity and associated health 
risks by stimulating or disrupting SCFA signaling in combina-
tion with their potential as epigenetic modulators.85,100 High 
fecal SCFAs concentrations may be associated with gut dysbi-
osis.109,111 some bacterial components related to the latter, have 
altered the gut microbiota and have caused low-grade inflam-
mation in adipose tissue, which has both been correlated to the 
development of obesity and other metabolic diseases.109,111 
Because SCFAs may contribute to the pathophysiology of obe-
sity, they may also have a significant impact on obesity-related 
illnesses like type 2 diabetes mellitus (T2DM), by influencing 
body weight control across effects on energy expenditure, 
energy intake, systemic low-grade inflammation, and insulin 
sensitivity.9,45,64,72

SCFAs and diabetes

It’s known that SCFAs can protect from diabetes via the 
engagement of metabolite-sensing GPCRs, like GPR43, on 
enteroendocrine-producing cells and pancreatic β cells, which 

are crucial for glucose tolerance.112 Mechanistic insight into 
the protective effects of SCFAs against type 1 diabetes (T1D) 
has been suggested using non-obese (NOD) mice. Diabetes-
free NOD mice had effectively higher SCFAs levels in their 
peripheral blood than diabetes-prone NOD mice. T1D was 
more likely to develop in germ-free mice than in conventional 
mice, showing a favorable function for microbiota in T1D sup-
pression.10,113,114 Furthermore, acetate-fed mice via drinking 
water developed T1D at a lower rate.113 Acetylated or butyl-
ated resistant starches decreased T1D better than SCFAs pro-
vided via drinking water.10,114 So, high-fiber diets and the 
microbiota may cooperate to minimize the risk of T1D in sus-
ceptible individuals.10

Suppressing of T1D development by fecal transfer of the 
expanded bacteria into NOD recipients indicated that a change 
in bacterial composition is crucial for SCFA-mediated T1D 
protection.10,113,114 Butyrate- and acetate-yielding diets 
decreased the frequency of autoreactive T cells in lymphoid tis-
sue and reduced CD86 expression in IL-12-producing mature 
marginal-zone B cells, a sub-assembly implicated in autoim-
mune disease pathogenesis.113 While acetate was more effec-
tive at suppressing T1D than butyrate, butyrate and propionate 
were more effective at generating T regs, probably due to their 
HDAC inhibition activity.98,113,115

Furusawa et al115 demonstrated that butyrate stimulates 
regulatory T-cell differentiation via increased histone H3 
acetylation in the Foxp3 locus promoter and the conserved 
non-coding sequence region. On pancreatic β cells and enter-
oendocrine-producing cells which are crucial for glucose tol-
erance, SCFAs may have a role in the engagement of 
metabolite-sensing GPCRs to protect from T1D.10 Compared 
to lean people, obese and type 2 diabetic patients had consid-
erably lower levels of gut microbiota diversity and GPR41 
promoter region methylation, showing a link between a 
higher body mass index and less GPR41 methylation.100,116 
SCFAs binding to GPCRs may contribute to the regulation 
of the microbiota and epigenetic processes.100 Thus, epige-
netic regulation may also be related to the positive impact of 
SCFAs on host metabolism.10,100 Figure 5 shows the effects 
of SCFAs on host metabolism and physiology through differ-
ent receptors.

Conclusion and Future Perspectives
In summary, there is evidence suggesting that SCFAs have a 
crucial role in preventing pathological diseases, such as obesity 
and diabetes. This effect results from different tissues express-
ing SCFAs receptors, which are capable of responding to the 
beneficial effects induced by these molecules. Furthermore, 
studies evaluating the potential effects of SCFAs in metabolic 
diseases are needed, due to inconsistent findings regarding the 
impact of various SCFAs. According to recent evidence, poten-
tial effects of SCFAs could occur through metabolic pathways 
other than those mediated by a specific receptor, and they 
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might cause distinct reactions in physiological versus patho-
logical conditions.

Butyrate has been the subject of the majority of studies so 
far, even though, in contrast to acetate and propionate, it nor-
mally exists in very undetectable amounts in the body. As more 
is learned about the beneficial functions of the microbiota and 
SCFAs, there is a need to demonstrate how they increase or 
decrease the risk of metabolic diseases. Additionally, a better 
understanding of the molecular interactions between intestinal 
metabolites and host signaling pathways will lead to new treat-
ment and prevention options for a variety of metabolic syn-
dromes, especially T2DM.

The potential for wide impacts of SCFAs on GPCRs signal-
ing as well as epigenomic changes make figuring out the par-
ticular mechanisms by which SCFAs enhance intestinal 
homeostasis, and protect from ameliorate illnesses, even more 
difficult. In addition, little is currently known about how SCFAs 
affect transcription factors’ function, activity, and stability as a 
result of HDAC-mediated post-translational modification.

In the future, it will be benefic to clarify how to supplement 
SCFAs, which administration routes, and what doses ought to 
be advised in clinical practice. Therefore, devise strategies to 
increase SCFAs in the colon, and develop pharmacological 
drugs that are selective for the SCFAs receptors to investigate 
the potential for metabolic pathologies prevention and treat-
ment. Also, the development of drug therapy targeting the 
physiological factors responsible for insulin resistance will be 
beneficial in the treatment and prevention of obesity and 
T2DM.
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