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Abstract. Interactions between adhesion molecules, 
agglutinins, on the surfaces of the flagella of mt+ and 
mt- gametes in Ch/amydomonas rapidly generate a 
sexual signal, mediated by cAMP, that prepares the 
cells for fusion to form a zygote. The mechanism that 
couples agglutinin interactions to increased cellular 
levels of cAMP is unknown. In previous studies on the 
adenylyl cyclase in flagella of a single mating type 
(i.e., non-adhering flagella) we presented evidence that 
the gametic form of the enzyme, but not the vegetative 
form, was regulated by phosphorylation and dephos- 
phorylation (Zhang, Y., E. M. Ross, and W. J. Snell. 
1991. J. Biol. Chem. 266:22954-22959; Zhang, Y., 
and W. J. Snell. 1993. J. Biol. Chem. 268:1786-1791). 
In the present report we describe studies on regulation 
of flagellar adenylyl cyclase during adhesion in a cell- 
free system. The results show that the activity of ga- 
metic flagellar adenylyl cyclase is regulated by adhe- 
sion in vitro between flagella isolated from rat + and 
nat- gametes. After mixing rat + and rot- flagella to- 
gether for 15 s in vitro, adenylyl cyclase activity was 

increased two- to threefold compared to that of the 
non-mixed (non-adhering), control flagella. This indi- 
cates that the regulation of gametic flagellar adenylyl 
cyclase during the early steps of fertilization is not 
mediated by signals from the cell body, but is a direct 
and primary response to interactions between mt ÷ and 
nat- agglutinins. 

By use of this in vitro assay, we discovered that 50 
nM staurosporine (a protein kinase inhibitor) blocked 
adhesion-induced activation of adenylyl cyclase in 
vitro, while it had no effect on adenylyl cyelase activ- 
ity of nowadhering gametic flagella. This same low 
concentration of staurosporine also inhibited adhesion- 
induced, increases in vivo in cellular cAMP and 
blocked subsequent cellular responses to adhesion. 
Taken together, our results indicate that flagellar 
adenylyl cyclase in Ch/amydomonas gametes is cou- 
pled to interactions between mt+ and rot- agglutinins 
by a staurosporine-sensitive activity, probably a pro- 
tein kinase. 

THOUGH one result of an interaction between two 
developmentally primed cells can be the formation 
of a stable cell-to-cell adhesion, an equally impor- 

tant consequence often is the generation of a cellular signal. 
Cell contact-induced cellular signaling has been shown to be 
important during fertilization (Snell, 1990), in development 
of the nervous system (Kapfhammer and Schwab, 1992), in 
eye development in Drosophila (Hart et al., 1993), and in 
the immune system (Hynes, 1992; Dustin and Springer, 
1991). During fertilization, cell-cell contacts between sperm 
and egg initiate G protein signaled responses in both cell 
types Gaffe, 1990; Kopf, 1990; Ward and Kopf, 1993). Al- 
though several molecules involved in cell-cell adhesion have 
been identified, the molecular mechanisms coupling adhe- 
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sion to signal transduction are only beginning to be under- 
stood. Presumably, cell-cell signaling involves molecular 
events similar to those that occur during more fully charac- 
terized receptor-ligand interactions in which the receptor is 
an integral membrane protein and the llgand is soluble. In 
cell-cell signaling, however, both of the interacting mole- 
cules are on the cell surface. During development of the 
compound eye in Drosophila, for example, interactions of 
the receptor tyrosine kinase, sevenless, on an R7 pho- 
toreceptor cell with its transmembrane ligand, bride of 
sevenless, on an adjacent R8 photoreceptor cell are required 
for normal retinal development (Hart et al., 1993). 

Our laboratory has been interested in identifying the mol- 
ecules responsible for signal transduction induced by cell 
contact during fertilization in the biflagellated alga, Chla- 
mydomonas reinhardtii. Upon mixing, mt + and nat- gametes 
of Chlwnydomonas adhere to each other via adhesion mole- 
cules, agglutinins, on the surfaces of their flagella. Flagellar 
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adhesion is followed by a rapid increase of intracellular 
cAMP (Pijst et al., 1984; Pasquale and Goodenough, 1987; 
Kooijman et al., 1990) leading to several cellular responses 
required for continued adhesion as well as for preparation of 
the interacting cells for fusion and zygote formation (Good- 
enough, 1989; Snell et al . ,  1989; Kooijman et al., 1989; 
Tomson et al., 1990). This specific, cell-cell adhesion and 
signaling system is unique to gametes, and many of the sig- 
naled responses that occur in the cell body can be induced 
by incubation of gametes of a single mating type in dibutyryl 
cAMP (rib-CAMP) l (Pasquale and Goodenough, 1987; Snell 
et al., 1989; Goodenough, 1989; Hunnicutt et al., 1990). 
Vegetatively growing cells, on the other hand, do not express 
agglutinins and are unresponsive to incubation with db- 
cAMP (for reviews see Goodenough, 1991; van den Ende, 
1992; and Snell, 1993). 

With the goal of identifying and characterizing molecules 
in this signaling pathway, recently we began to study the 
adenylyl cyclase in Chlamydomonas flagella. Work from 
other laboratories (Pasquale and Gcx~enough, 1987; Kooij- 
man et al., 1990) as well as our own (Zhang et al., 1991; 
Zhang and Snell, 1993) has suggested that, like the enzyme 
in sea urchin and mammalian sperm (Hildebrandt et al., 
1985; Bookbinder et al., 1990), this adenylyl cyclase is not 
regulated by G proteins. Rather, our results are consistent 
with the idea that the adenylyl cyclase in gametic flagella is 
regulated by phosphorylation and dephosphorylation. The 
gametic flagellar adenylyl cyclase is inhibited by prior incu- 
bation of flagella with ATP and activity re-appears if the 
flagella are washed out of the ATP and incubated at room 
temperature in ATP-free buffer (Zhang et al., 1991). In more 
recent work we found that the ATP-dependent regulatory 
mechanism was unique to the adenyl cyclase of gametic 
flagella and was not present in vegetative flagella (Zhang and 
Snell, 1993), results that since have been confirmed by Saito 
et al. (1993). The existence of novel, gamete-specific mecha- 
nisms for regulating the flagellar adenylyl cyclase suggested 
that this enzyme might play a role in signal transduction in- 
duced by adhesion. 

One model for this signaling pathway in gametes is that the 
events induced by agglutinin interactions, including the ini- 
tial generation of cAMP, occur in the flagella. Consistent 
with this idea, Saito et al. (1993) showed that the adenylyl 
cyclase in flagella isolated from mt + and rot- gametes that 
had been adhering for 3 rain was increased twofold over 
flagella isolated from non-adhering gametes. Although these 
data support the model that activation of flagellar adenylyl 
cyclase is a primary event in signal transduction induced by 
agglutinin interactions, the results are indirect and other in- 
terpretations cannot be ruled out. Gametes respond to adhe- 
sion rapidly, and within seconds to minutes the cell bodies 
undergo changes involving Ca 2+ utilization (Snell et al., 
1982; Bloodgood and Levin, 1983; Kaska et al., 1985; 
Schuring et al., 1990; Goodenough et el., 1993) and changes 
in cAMP levels. The responses in cell bodies to these signals 
include secretion of a serine protease, loss of the cell wall, 
erection of an actin-filled mating structure, and movement of 

1. Abbreviations used in this paper: App(NH)p, 5"adenylylimidodiphos- 
phate; db-cAMP, dibutyryl cAMP; PEP, phosphoenolpyruvate; PK, pyru- 
vate kinase; TLCK, N-tosyl-L-lysine chloromethylketone; TPCK, N-tosyl- 
L-phenylalanine chloromethylketone. 

agglutinin molecules from the cell body onto the flagella 
(reviewed in Snell, 1993). Thus, is it possible that the in- 
crease in flagellar adenylyl cyclase shown by Saito et al. 
(1993) was not a primary effect of flagellar adhesion, but was 
one of the many responses to adhesion-induced signals from 
the cell body. 

To examine this adhesion-induced signaling pathway di- 
rectly we have begun to study the effects of flagellar adhesion 
on flagellar adenylyl cyclase activity in a cell-free system. In 
this report we show that the adenylyl cyclase activity of ga- 
metic flagella was activated nearly threefold simply by mix- 
ing isolated mt + and mt- flagella together in vitro. Activa- 
tion of adenylyl cyclase was detected within 15 s after 
mixing, indicating that regulation of this enzyme is a direct 
and immediate consequence of flagellar agglutinin interac- 
tions. Furthermore, we discovered that adhesion-induced 
activation was blocked by 50 nM staurosporine, a protein 
kinase inhibitor. Significantly, this low concentration of 
staurosporine also blocked adhesion-induced signaling in 
vivo. Our results indicate that interaction between aggluti- 
nins on flagella of opposite mating types rapidly activates 
flagellar adenylyl cyclase, probably via a multi-step pathway. 
This may be a novel example of regulation of this enzyme by 
membrane-membrane interactions in a cell-free system. 

Materials and Methods 

Materials 
Hepes was from Research Organics Inc. (Cleveland, OH); pyruvate kinase 
(PK) was from Boehringer Mannheim GmbH (Mannheim, FRG); 
[3H]cAMP was from ICN Biomedicals Inc. (Boston, MA; dimethyl sulfox- 
ide was from J. T. Baker, Inc. (Phillipsburg, NJ); H-7 was from Calbio- 
chem-Behring Corp. (Indianapolis, IN); H-8 was from Seikagalm Kogyo 
Co. (Tokyo, Japan); all other reagents were from Sigma Chemical Co. (St. 
Louis, MO). 

Cells and Cell Culture 

Chlamydomonas reinhardtii strains 21gr (mt +) and 614c (mr-) (available 
from the Ch/amydomonas Genetics Center, Duke University, Durham, NC) 
were cultured at room temperature in medium I or medium II of Sager and 
Granick (1954; Harris, 1989) on a 13-11-h light-dark cycle and gametic 
cells were obtained as previously described (Snell, 1976). 

Isolation of Flagella 
Vegetative and gametic flagella were harvested by a modification of the pH 
shock method of Witman et al. (1972) as described earlier (Zhang et al., 
199D. The sedimented flagella were resuspended to give a final concentra- 
tion of 3-8 mg/ml flagellar protein in flagella buffer, which was 20 mM Na- 
Hepes, pH 7.2, 4% sucrose, I mM EDTA, 0.5% BSA, 2.5 mM MgC12, 
0.05 mM GTR 0.1 mM papaverine or0.1 mM Rff20-1724. A mixture of pro- 
tease inhihitors (7 ~M leupeptin, 3.2 ~g/ml trypsin inhibitor from lima 
bean, 60 ~tM N-tosyl-L-phenylalanine chiommethylketone fYPCK), 60/~M 
N-tosyl-L-lysine chloromethylketone (TLCK), and 0.13 mM PMSF) was 
added to the suspension of flagella; samples were stored in small aliquots 
in liquid N2. 

Adhesion In Vitro Between mt+ and mr- Flagella 
Equal volumes of freshly isolated mt+ and rot- flagella were mixed to- 
gether on ice in flagella buffer for 15 s and immediately frozen in liquid 
N2. In experiments with protein kinase or protein phosphatase inhibitors, 
the inhibitors were added before the flagella were mixed. 

Assay for Loss of Cell Walls 
Cells that have lost their walls during the mating reaction become sensitive 
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Rgure L In vitro adhesion of gametic mt + and mt- flagella. The 
top left panel is a phase-contrast micrograph of freshly isolated 
mt + gametic flagella and the top right panel is of freshly isolated 
mr- gametic flagella before mixing. The bottom panel is a micro- 
graph of a mixture of freshly isolated mt+ and rot- flagella. 

to lysis by detergent and release their chlorophyll, which can be detected 
spectrophotometrically at 435 rim. To carry out the assay 100/A of cells 
atadensityof0.5-1 x 107 cells/ml was mixed with 500 /~l of detergent so - 
lution contAinin~ 0.075 ~ Triton X-100 and 10 mM EDTA. The sample was 
vortexed briefly, non-disrupted cells were sedimented by centrifugetion in 
a microfuge for 15 s, and the OD43s of the supernatant was determined. 
Results shown are the averages of duplicate samples. 

Protein Determination 
Protein was determined with the Coomassie blue protein essay reagent of 
Pierce Chemical Co. (Rockford, IL) using crystalline BSA as standard. 

Adenylyl Cyclase Assay 
Adenylyl cyclaso activity was measured essentially according to the 
methods of Ross et al. (1977) as described earlier (Zhang et al., 1991). 
Results shown are the averages of dupficate samples, which usually varied 
by less than 10%. 

cAMP Assay 
Relative cellular cAMP levels were determined based on the method de- 
scribed by Salomon (1991). Mt + gametes (1-5 x 107 cells/rid in N-free 
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Hgure 2. Adhesion-induced activation of adenylyl cyclase. Freshly 
isolated mt + and mr- gametic flagella were mixed on ice in buffer 
containing 20 mM Na-Hepes, pH 7.2, 4% sucrose, 1 mM EDTA, 
0.5% BSA, 2.5 mM MgC12, and 0.1 mM RO20-1724. After 15 s 
the samples were quick-frozen in liquid N2. After thawing, 
adenylyl cyclase assays were performed at 30"C for the indicated 
times. The adenylyl cyclase activity in the mixture of mt+ and mt- 
flagella (o) and the average of the activities of non-mixed mt + and 
mr- flagella (o) are plotted against the indicated assay times. 55 
~tg of mt+ flagellar protein and 50 #g of mr- flagellar protein were 
used in the assays. 

medium) were preincubated in [31-1]adenine (I0 ~tCi/ml) at room tempera- 
ture with aeration for 2 h. After preincubation cells were ~tashed once with 
N-free medium to remove unincorporated [sI-I]adenine. To determine 
changes in intracellular cAMP level during mating, labeled mt + gametes 
were mixed with non-labeled mr- gametes for varying times, and the reac- 
tion was terminated by addition of an equal volume of stop solution (10% 
TCA containin~ 0.2 mM cAMP). Samples were kept at 4°C for 30 rain with 
occasional vortexin 8 to extract nucleotides, cenuifiq~ at 3,000 g for 5 rain 
and the supernatants were loaded onto Dowex 50 and alumina columnx to 
separate cAMP from ATP as described for the adenylyl cyclase assay above. 
Recovery of cAMP, typically about 50%, was determined by comparing the 
O1)259 of the samples before and after chromatography. 

Results 

Adhesion-induced Activation of FlageUar Adenylyl 
Cyclase In Vitro 
As originally described by Kohle et al. (1980) and confirmed 
by Goodenough (1986) flagella isolated from mt + and mt- 
gametes adhered avidly to each other via their flagellar ag- 
glutinins and formed large aggregates when mixed together 
in vitro (Fig. 1, bottom). The upper panels in Fig. 1 show 
that there was no adhesion within samples of flageLla isolated 
from gametes of a single mating type (mt +, upper left; mr-, 
upper right). To determine if in vitro adhesion was coupled 
to changes in adenylyl cyclase activity, freshly isolated 
flagella were mixed together and then assayed for adenylyl 
cyclase activity. Fig. 2 shows that the flagella that had been 
mixed (closed circles) exhibited increased adenylyl cyclase 
activity compared to the average of the non-mixed mt+ and 
mt- flagella (open circles). At the 15-rain point of the assay 
the amount of cAMP formed by the mixed samples was 
threefold greater than the average of the non-mixed samples. 
This activation of adenyl cyclase required mixing of freshly 
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Table I. Effect of Protein Kinase and Protein 
Phosphatase Inhibitors on Adhesion-induced Activation of 
Adenylyl Cyclase 

Adenylyl cyclaso 
activity 

Treatment Non-mixed Mixed Inhibition of activation 

pmol/mg/min % 
Control 230 575 0 
Calyculin A (1 ~tM) 241 583 5 
Okadaic acid (1/~M) 244 538 19 
NaF (10 raM) 271 608 17 
Vanadate (0.1 raM) 274 642 11 
H-8 (1 raM) 258 610 9 
H-7 (1 raM) 235 581 2 
Staurosporine (50 nM) 237 348 69 

Freshly isolated mt+ and mr- gametic flagella were mixed in the presence of 
the inhibitor for 15 s, quick-frozen, and then assayed at 30°C for 8 mill as 
described in Fig. 2. Assays contained 120 ttg of mP" flagellar protein and 98 
/tg of mt- flagellar protein. 
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Figure 4. Effect of staurosporine and H-8 cell signaling during mat- 
ing. Mt + and rot- gametes (2 x 107 cells/ml) were pretreated with 
H-8 and staurosporine at the indicated concentrations at room tem- 
perature for 30 min. Equal volumes of gametes of opposite mating 
type.s then were mixed together and wall loss was determined as de- 
scribed in Materials and Methods. In the control, non-treated sam- 
ples about 90% of the cells lost their walls. 

isolated, gametic flagella. Mixing of freshly isolated vegeta- 
tive flagella of opposite mating types did not lead to activa- 
tion of adenylyl cyclase and no increase in adenylyl cyclase 
activity was detected if gametic flagella of opposite mating 
types were frozen and thawed before mixing (data not 
shown). These results indicated that activation of flagellar 
adenylyl cyclase does not require signals from the cell body, 
but is a direct consequence of interactions between aggluti- 
nins on mt + and mt- flagella. 

Regulation of Adhesion-induced Activation of Adenylyl 
Cyclase by Staumsporine 
To learn about possible regulatory events in adhesion- 
induced activation of adenylyl cyclase we tested the effects 
of inhibitors of protein klnases and protein pbosphatases. 
Several protein phosphatase inhibitors including calyculin 
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Figure 3. Dose dependence of activation of non-mixed flagella by 
staurosporine. The adenylyl cyclase activity of isolated gametic 
flagella was assayed as described in Materials and Methods in the 
indicated concentrations of stanrosporine at 30°C for 10 rain. The 
amount of protein of each assay was 90 pg. 

A, okadaic acid, NaF and vanadate had little or no effect on 
adhesion-induced activation (Table I). Similarly, the pro- 
tein kinase inhibitors H-8 and H-7 were without effect on 
adhesion-induced activation of flagellar adenylyl cyclase (Ta- 
ble I). On the other hand 50 nM staurosporine blocked about 
70% of the activation of the enzyme in adhering samples, 
while the activity in non-mixed samples was unaffected by 
this drug treatment (Table I). These results suggested that a 
protein kinase was required at an early step in adhesion- 
induced regulation of adenylyl cyclase. 

This inhibition of adhesion-induced activation by stau- 
rosporine was somewhat surprising because earlier experi- 
ments from our laboratory showed that gametic adenylyl 
cyclase in isolated flagella of a single mating type (i.e., non- 
adhering flagella) was stimulated by staurosporine (Zhang et 
al., 1991; Zhang and Snell, 1993). Our earlier experiments, 
however, were done with 1 ttM staurosporine, whereas the 
experiments reported in Table I were performed with 50 nM 
staurosporine. To examine further the sensitivity to stau- 
rosporine of the adenylyl cyclase in non-adhering flagella, 
we determined the effects of varying concentrations of this 
inhibitor on adenylyl cyclase activity in flagella of a single 
mating type. As shown in Fig. 3, the stimulation of adenylyl 
cyclase in non-adhering flagella occurred only at high con- 
centrations (500 nM and above) of inhibitor and stimulation 
was not detectable at 50 nM. The results in Fig. 3 and "Illble 
I confirmed our earlier report of a 1 ItM staurosporine- 
sensitive regulation of adenylyl cyclase in non-adhering fla- 
gella, but also indicated that a second protein kinase activity, 
which was sensitive to 50 nM staurosporine, acted at an 
early step in the signaling pathway that coupled interactions 
between mt + and mt- agglutinins to activation of flagellar 
adenylyl cyclase. 

Staurosporine Inhibition of 
Adhesion-induced Signaling In Vivo and Rescue of 
Signaling by Dibutyryl cAMP 
To evaluate the effects of protein kinase inhibitors on signal- 
ing in vivo we mixed mr* and rot- gametes together in the 
presence of varying amounts of H-8 or staurosporine and 
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Figure 5. Rescue of the staurosporine-induced inhibition of signal- 
ing by db-cAMP. 1 ml of nat+ and mt- gametes (2 x 107 cells/ml) 
were pretreated without (4) or with 50 nM (e) or I #M staurospo- 
rine (o) at room temperature for 30 min. At the end of the incuba- 
tion, 150 #1 of mt + cells were mixed with the same volume of mt- 
cells for 10 rain at room temperature and then db-cAMP was added 
to yield the indicated concentrations. All samples contained 0.1 
mM papaverine. Samples were incubated for another 45 rain at 
room temperature with shaking. Subsequently, 180 /d portions 
were mixed with 520 #1 of the detergent solution described in 
Materials and Methods. The OD435 of the control ceils treated 
with 20 mM db.-cAMP represented about 85% waft loss. 

then determined the extent of cell wall loss as a measure of 
cell signaling. Confirming earlier reports (Pasquale and 
Goodenough, 1987; Goodenough, 1993), 0.5-1 mM H-8 
substantially inhibited wall loss (Fig. 4, triangles). Tiffs in- 
hibition of signaled events by H-8 in vivo at first might seem 
to be inconsistent with the lack of effect of H-8 in vitro on 
adenylyl cyclase activity reported earlier (Zhang et al., 1991) 
and also shown in Table I. But Pasquale and Goodenough 
(1987) and Goodenough 0993) showed that H-8 blocked at 
a late step in signaling in vivo because the inhibition by H-8 
could not be overcome by addition of db-cAMP, results also 
confirmed by us (data not shown). 

Staurosporine, on the other hand, inhibited wall loss at 
low concentrations (Fig. 4, circles), half-maximal inhibition 
being observed at about 50 nM. This low concentration was 
similar to the concentration that produced nearly 70% inhi- 
bition of adhesion-induced activation of adenylyl cyclase in 
vitro (Table I). Also unlike the results with H-8, the inhibi- 
tion of wall loss by 50 nM staurosporine could be rescued 
by addition of rib-cAMP as shown in Fig. 5. In this experi- 
ment mt+ and mr- gametes were separately incubated with 
buffer alone (Fig. 5, triangles) or with 50 nM (closed circles) 
or 1 #M stanrosporine (open circles) for 30 rain at room tem- 
perature. The pretreated gametes of opposite mating types 
were mixed together for 10 rain and then the indicated con- 
centrations of db-cAMP (and papaverine) were added. After 
45 rain the samples were assayed for wall loss, which was 
measured as the appearance of chlorophyll (OD435) in su- 
pematants of detergent-treated cells as previously described 
(Snell, 1980; Buchanan and Snell, 1988). In the absence of 
db-cAMP, cell wall loss and cell fusion (data not shown) 
were blocked by both 50 nm and 1 #M staurosporine. 

db-cAMP and papaverine had little effect on wall loss in 
the control cells not treated with staurosporine (Fig. 5, open 
triangles), although 10 raM and higher concentration of db- 
cAMP gave some increase of wall release. In addition db- 
cAMP did not rescue signaling in cells that were pretreated 
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Figure 6. Effect of staurosporine on intracellular cAMP levels dur- 
ing the mating reaction. 12 ml of mt + gametes (5 × 10 ~ cells per 
ml in N-free medium) were incubated with pH]adenine as de- 
scribed in Materials and Methods and pretreated without (o) or 
with 1 #M staurosporine (e) or 1 mM H-8 (A) at room tempera- 
ture for 30 mira Subsequently, 250-#1 portions of these radiola- 
beled, staurosporine-treated mt + gametes were mixed with 250-#1 
portions of non-treated or staurosporine-treated rot- gametes for 
the times indicated. The reactions were terminated by addS'on of 
500 #1 of stop solution and relative levels of cAMP were determined 
as described in Materials and Methods. 

with 1 #M staurosporine (Fig. 5, open circles). Even at 20 
raM rib-cAMP no release of cell walls occurred. This inabil- 
ity to rescue wall loss in gametes in 1 #m staurosporine indi- 
cated that at high concentrations this inhibitor was blocking 
a late step in signaling. In contrast, however, db-cAMP res- 
cued signaling in cells pretreated with 50 nM staurosporine 
(Fig. 5, closed circles). At 5 mM db-cAMP wall loss reached 
about 40% of control levels and at 20 mM db-cAMP wall 
loss was nearly 90 % of controls. Cells treated with db-cAMP 
also recovered their ability to undergo cell fusion (data not 
shown). 

Although these results were consistent with an effect by 
staurosporine on a step before (upstream of) activation of 
adenylyl cyclase, we wanted to determine more directly if 
adenylyl cyclase activity was blocked by staurosporine and 
not affected by H-8, a putative downstream inhibitor. To do 
this we measured changes in cellular cAMP levels at various 
times during the mating reaction in the presence and absence 
of H-8 or staurosporine. Confirming earlier reports by Pijst 
et al. (1984) and Pasquale and Goodenough (1987) there was 
a rapid, 8-10-fold increase of cellular cAMP within 2 rain 
after non-pretreated, control mt+ and mt- gametes were 
mixed together (Fig. 6, open circles). Cells pretreated with 
1 mM H-8 and then mixed together in the continued pres- 
ence of the inhibitor showed a similar increase in cAMP 
(Fig. 6, open triangles), indicating that although H-8 blocked 
late stages of signaling (Fig. 4), this inhibitor had no effect 
on the initial events in this signaling pathway. 

In cells pretreated with 1 #M staurosporine (Fig. 6, closed 
circles), however, we obtained different results. Although 
this treatment led to nearly a twofold increase in basal levels 
of cAMP, the adhesion-induced increase of intracellular 
cAMP was blocked completely. Similar results were ob- 
tained with 100 nM staurosporine (data not shown). Thus, 
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both the in vivo and in vitro results were consistent with the 
idea that a staurosporine-sensitive protein kinase acts early in 
adhesion-induced signaling, at a step in the pathway that cou- 
ples agglutinin interaction to activation of adenylyl cyclase. 

Discussion 

Adhesion-induced Activation of Flagellar Adenylyl 
Cyclase in a Celi-free System 
In this report we have shown that adhesion in vitro between 
isolated mt+ and mr- gametic flagella of Chlamydomonas 
activated the flagellar adenylyl cyclase severalfold (Fig. 2). 
While soluble ligands regulate adenylyl cyclase activity in 
other systems, we believe that this is a novel demonstration 
of activation of this signal-transducing enzyme by interac- 
tions between endogenous, membrane-bound, cell adhesion 
molecules in a cell-free system. The data shown here provide 
direct evidence that the flagellar adenylyl cyclase is one site 
of regulation of cAMP levels during adhesion. In our experi- 
ments the increase in adenylyl cyclase occurred within 15 s 
after flagella were mixed together, indicating that adhesion- 
induced activation was a direct and primary response to ag- 
glutinin interactions and did not require signals from the cell 
body. 

Because the agglutinin may not be a transmembrane pro- 
tein (reviewed in Adair, 1985), coupling of agglutinin inter- 
actions to the adenylyl cyclase could require intermediate 
transmembrane components (Kooijman et al., 1989; van den 
Ende, 1992). This observation, along with the evidence cited 
above suggesting that G proteins do not play a role in this 
adhesion-induced signal transduction pathway, has com- 
pelled US to search for a novel mechanism of regulation of 
adenylyl ~clase in Chlamydomonas. Previously we pre- 
sented eviden~ ~a t  gametic flagella from non-adhering 
cells containa n.ovd, ATP-dependent mechanism for regula- 
tion of adenyly!~clase. Ouruse of this cell-free system for 
activation of ade~lyl cyclase has permitted us to search for 
an adhesion-dependent mechanism that regulates adenylyl 
cyclase during fertilization in Chlamydomonas. 

A PossibleRolefor a Protein Kinase in the 
Pathway Coupling Agglutinin Interactions to 
Activation of F!agel~r Adenylyl Cyclas e 
By use of this in vit~ system we discovered a new step in 
the signal transduction pathway, between agglutinin interac- 
tions and'activation of adenylyl cyclase. The results in Table 
I show that the adhesion-dependent activation of flagetlar 
adenylyl cyclase in vitro was inhibited by low concentrations 
(50 nM) of the protein kinase inhibitor staurosporine. This 
suggests that interactions between mt+ and mr- agglutinins 
activate a protein kinase that is required for activation of 
adenylyl cyclase. This Chlamydomonas signaling pathway is 
not the only one in which protein kinases have been impli- 
cated in regulating.adenylyl cyclase. Nair and Patel (1993) 
have reported that the tyrosine kinase activity of the epider- 
mal growtl~ factor receptor is essential for stimulation of 
cardiac adenylyl cyclase by epidermal growth factor. And re- 
cent work from several laboratories has indicated that mam- 
malian adenylyl cyclases are regulated by protein kinase C, 
a stanrosporine,sensitive protein kinase, although it is not 
known if the adenylyl cyclase itself is phosphorylated in 

these systems (Jacobowitz et al., 1992; Yoshimura and 
Cooper, 1993; Lustig et al., 1993; Frings, 1993; Choiet al., 
1993). 

Our previous studies (Zhang et al., 1991; Zhang and Snell, 
1993) on gametic flagella of a single mating type (i.e., non- 
adhering flagella) indicated that they contain an ATP-depen- 
dent inhibitor of the flagellar adenylyl cyclase. This inhibitor 
had the properties of a heat-labile, 1 /tM staurosporine- 
sensitive protein kinase whose action constitutively inhibited 
the adenylyl cyclase in non-adhering flagella. The results 
shown in Fig. 3 indicated that this putative protein kinase 
was not inhibited by the low concentration of staurosporine 
(50 nm) that blocked the adhesion-induced activation of 
adenylyl cyclase in vitro (Table I). 

The in vitro results that 50 nm staurosporine inhibited 
adhesion-induced activation of adenylyl cyclase were con- 
firmed by the in vivo studies shown in Fig. 4. Low concentra- 
tions of staurosporine blocked signal transduction when 
mt + and mr- gametes were mixed together; inhibitor-treated 
cells did not undergo cell fusion (not shown) nor did they un- 
dergo cell wall loss, one of the cellular responses to in- 
creased levels of intracellnlar cAMP. 

A Staurosporine-sensitive, Early Step during Signaling 
In Vivo 
Our results on inhibition of adhesion-induced events by stau- 
rosporine are consistent with data reported earlier by other 
workers. Goodenough (1993) showed that 1 ~tM stauro- 
sporine inhibited cell fusion. These workers, however, did 
not determine the effects of staurosporine on the adhesion- 
induced increase in cAMP. Since the block to cell fusion 
could not be rescued by db-cAMP, they concluded that this 
inhibitor acted primarily on "downstream" events (Good- 
enough, 1993; Saito et al., 1993). 

We confirmed that the 1/~M staurosporine inhibition of 
adhesion-induced events could not be rescued by db-cAMp, 
but we also found that the inhibition by 50 nM staurosporine 
could be rescued by db-cAMP (Fig. 5). These results are 
consistent with the idea that at least two steps in the signaling 
pathway are blocked by this inhibitor. An early step, adhe- 
sion-induced activation of adenylyl cyclase, is inhibited both 
by high and low concentrations of staurosporine; whereas a 
later step, which requires cAMP, is unaffected by low con- 
centrations of this inhibitor, but is blocked by 1/~M stauro- 
sporine. Similar to the effect of 1/~M staurosporine and as 
reported earlier (Pasquale and Goodenough, 1987; Good- 
enough, 1993) another protein kinase inhibitor, H-8, also 
blocked cell wall loss and other signaled events and could not 
be rescued by db-cAMP. In contrast to staurosporine, how- 
ever, H-8 had no effect on the adhesion-induced increase in 
cAMP (Fig. 6), indicating that H-8 acts only on later steps 
in the pathway. 

A Working Model for Regulation of Flagellar Adenylyl 
Cyclase in Gametes 
Chlamydomonas gametes are faced with the not uncommon 
problem of using a single second messenger, in this case 
cAMP, for more than one regulatory function. The motility 
of flagella of non-adhering gametes and vegetative cells 
(Pasquale and Goodenough, 1988; Hasegawa et al., 1987) 
as well as the motility of flagella and cilia from several other 
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species (reviewed in Tash, 1989; and Stepbens and Stommel, 
1989) can be regulated by cAMP. But Ch/amydomonas also 
uses this cyclic nucleotide as a signaling molecule during 
flagellar adhesion between gametes, when cAMP levels in- 
crease 8-10-fold over normal levels. Our evidence suggests 
that gametic flagella accomplish this exquisite, dual control 
of cAMP levels in gametes by regulating the activity of 
flagellar adenylyl cyclase. Data from this and previous 
reports are consistent with the following working model for 
regulation of gametic flagellar adenylyl cyclase. In non- 
adhering gametes, flagellar adenylyl cyclase activity is kept 
at a low level by the action of a protein kinase that is sensitive 
to 1 ttM staurosporine. The presence of this putative, inhibi- 
tory protein kinase was indicated by the twofold increase in 
the activity of adenylyl cyclase resulting from incubating ga- 
metes (Fig. 6) or isolated flagella (Fig. 3) in 1/~M staurospo- 
title. Full activation of the flagellar adenylyl cyclase during 
flagellar adhesion, however, requires the activation of a 
different protein kinase that can be inhibited by 50 nM 
staurosporine. This newly described activator of adenylyl 
cyclase is stimulated by interactions between mt+ and mt- 
flagellar agglutinins both in vivo (Fig. 6) and in vitro (Fig. 
2, Table I). The relationship between the adhesion-depen- 
dent activator of adenylyl cyclase and the constitutive, ATP- 
dependent inhibitor of adenylyl cyclase is unclear. The 
adhesion-dependent activator could regulate the constim- 
five, ATP-dependent inhibitor of adenylyl cyclase, or it could 
act directly on the adenylyl cyclase. Further investigations of 
these putative protein kinases will be required to understand 
the molecular mechanisms underlying this signal transduc- 
don pathway. 

By analogy with receptors for growth hormones or 
cytokines (Davis et al., 1993; Murakami et al., 1993), it may 
be that binding of agglutinins induces aggregation of an ag- 
glufinin-anchor protein complex (Kooijmau et al., 1989; 
Kalshoven et al., 1990; Bloodgood and Salomonsky, 1991), 
thereby initiating the signaling pathway. Saito et al. (1993) 
have shown that lectins and anti-flagellar antibodies, which 
should cross-link flagellar surface molecules, can activate 
the flag¢llar adenylyl cyclase about twofold. These workers 
and Goodenough et al. (1993) have proposed that adhesion- 
induced activation of the flagellar adenylyl cyclase requires 
both this twofold enhancement as well as Ca2+-dependent 
stimulation. Further studies should reveal the relationship, 
if any, between this putative Ca2+-dependent activator pro- 
posed by these other workers and the 50 nM staurosporine 
sensitive, adhesion-dependent activator described in this 
report. 
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