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Abstract: Brown adipose tissue (BAT) plays an essential role in maintaining body temperature and
in treating obesity and diabetes. The adult BAT (aBAT) and neonatal BAT (neBAT) vary greatly in
capacity, but the characteristics and differences between them on the molecular level, as well as the
related features of BAT as it develops post-delivery, have not yet been fully determined. In this study,
we examined the morphological features of aBAT and neBAT of mice by using hematoxylin-eosin
(H&E) staining, transmission electron microscopy (TEM), and scanning electron microscopy (SEM).
We found that neBAT contains a smaller number and size of lipid droplets, as well as more abundant
mitochondria, compared with aBAT. The dynamic morphological changes revealed that the number
and size of lipid droplets increase, but the number of mitochondria gradually decrease during the
post-delivery development, which consisted of some differences in RNA or protein expression levels,
such as gradually decreased uncoupling protein 1 (UCP1) expression levels and mitochondrial genes,
such as mitochondrial transcription factor A (Tfam). The adipocyte differentiation-related genes,
such as transcription factor CCAAT enhancer-binding protein β (CEBPβ), were also continuously
upregulated. Additionally, the different features of aBAT and neBAT were analyzed from the global
transcription (RNA-Seq) level, which included messenger RNA (mRNA), microRNA, long non-coding
RNA (lncRNA), circRNA, and DNA methylation, as well as proteins (proteomics). Differentially
methylated region (DMR) analysis identified 383 hyper- and 503 hypo-methylated genes, as well as
1221 new circRNA in ne-BAT and 1991 new circRNA in a-BAT, with significantly higher expression
of circRNA in aBAT compared with neBAT. Gene ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that mitochondrial activity,
protein synthesis, and cell life activity levels were higher in neBAT, and pathways related to ribosomes,
spliceosomes, and metabolism were significantly activated in neBAT compared to aBAT. Collectively,
this study describes the dynamic changes occurring throughout post-delivery development from
the morphological, molecular and omics perspectives. Our study provides information that may be
utilized in improving BAT functional activity through gene regulation and/or epigenetic regulation.
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1. Introduction

Brown adipose tissues (BATs), which are abundant in mammals and neonates with abundant
mitochondria and high thermoregulatory demands [1], have been recognized as a great potential star
target organ for the treatment of obesity and related metabolic diseases. Previously, it was widely
believed that BATs are present only in small mammals and human infants. Currently, there is growing
evidence demonstrating that functional BATs are present in adult humans and its activity is negatively
correlated with body mass index [2–4]. BATs play a role in maintaining body temperature against a cold
environment by activating mitochondrial uncoupling protein 1 (UCP1) and are crucial to mammalian fetal
development. The amount and distribution range of BATs gradually decrease with age. The recruitment
and activation of BATs can be modulated by external stimuli, including environmental factors and
endogenous factors [5]. The activity of BATs is higher during fetal development than in adulthood.
However, no comparative analysis of BATs in the fetal and adult stages has been conducted to date.

Numerous studies have shown that the development of BATs is regulated by transcriptional
control [6–12]. Peroxisome-proliferator-activated receptor γ(PPARγ) [13] and CCAAT/enhancer-binding
proteins, including C/EBPα/β/δ(C/EBPs) [14], have been established as essential in the formation
of both mature brown and white adipocytes [12]. While PPARγco-activator 1α (PGC1α), a nuclear
co-activator [15], and PR-domain-containing 16 (PRDM16), which physically interacts with C/EBPβ[16,17],
specifically regulate brown adipogenic programming, PRDM16 determines the switch between BAT
and skeletal muscles [18]. The developmental ancestry of BAT has been extensively studied and
collectively indicates that BAT has a closer relationship to skeletal muscles rather than white adipose
tissues [8,18–22]. Furthermore, Myf5+ and EN1+ progenitor cells generate classic brown adipocytes
as well as myoblasts [18,23,24]. Several studies suggested that Myf5 is a location marker rather than
a specific cell lineage maker [25–27]. EN1 is not only a progenitor marker but also an activator of brown
adipogenesis [24]. Also, there are several morphogenic signals, including bone morphogenetic protein
(BMP), fibroblast growth factor (FGF), Wnt, and Hedgehog signaling pathways involved in the formation
of brown adipocytes [28–33]. Moreover, several studies reported that members of the TGFβ(transforming
growth factor β) superfamily hold distinct regulatory effects on brown adipogenesis [34,35]. In addition
to the regulation of transcription levels, epigenetic regulation, including microRNA [36], lncRNA [37–40],
and methylation [41,42], also play essential roles in the formation and activation of BAT [43]. Although
circRNA has been rarely reported in the regulation of brown adipogenesis and functions, we believe it is
also a very promising potential regulator.

In the current study, we examined the internal and surface morphology of aBAT and neBAT through
transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively, and
checked the expression of brown adipogenic and thermogenic genes. We found a variety of significant
differences between aBAT and neBAT at the morphological and molecular levels, which provided
enough value to continue to explore their differences in protein, and epigenetic changes, including
mRNA, microRNA, lncRNA, circRNA, and DNA methylation, were analyzed by proteomics, whole
transcriptomics, and reduced representation bisulfite sequencing (RRBS), respectively.

In summary, we comprehensively analyzed the characteristics and differences in adult and
newborn brown adipose tissues and found numerous differences and interesting findings, which
may provide new insights into the treatment of metabolic diseases, such as reprogramming the
low-active adult BAT into the more active newborn-like BAT. Importantly, our study analyzed the
complete transcription and proteome of two kinds of BATs, which provides important information for
understanding the feature of BATs and/or for developing a new method for improving BATs’ functional
activity through gene regulation and/or epigenetic regulation.
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2. Materials and Methods

2.1. Animal Care and In Vivo Experiment Procedures

C57BL/6 breeding pair mice (8-week-old) were obtained from Beijing Vital River Laboratory
Animal Technology. For the experiments, the 0-, 2-, 4-, 6-, and 8-week-old male C57BL/6J mice were
obtained from the breeding pair mice, and all post-weaning mice were housed (≤5 animals/cage) at
22 ± 2 ◦C and 55% ± 10% humidity with a 12-h light-dark cycle in an office of a Laboratory Animal
Welfare-certified animal facility. Water and food were provided ad libitum. In this study, the following
groups were used: BAT in 0-week-old (1–2 days after delivery) male mice, which refers to the newborn
and kept-suckling group, named neBAT; BAT in 8-week-old (after delivery) male mice, which refers
to the adult group, designated as aBAT; and BAT in mice with an embryonic stage of about 19 days,
which refers to the embryonic group, named ME-BAT. The number of mice in each group was 6. After
sacrificing the mice, we collected the BAT samples from the interscapular region. All experimental
procedures and use of animals were conducted according to the Guide for the Care and Use of
Laboratory Animals published by the US National Institute of Health and approved by the Animal
Ethics Committee of China Agricultural University, Beijing (the approval ID is KY1700014).

2.2. Hematoxylin and Eosin Staining

Tissues fixed with 4% paraformaldehyde were sliced in paraffin. Hematoxylin-eosin staining
was used for the preparation of multiple sections. Slices were placed into hematoxylin solution and
dyed for several minutes, and color separation in acid water and ammonia water occurred for several
seconds, respectively. Slices were rinsed with running water for 1 h and then distilled water was
added for a while. Slices were dehydrated in 70% and 90% alcohol for 10 min, respectively, then dyed
in eosin staining solution for 2 to 3 min. The stained section was dehydrated by pure alcohol and
then penetrated by xylene. Finally, the transparent section was dropped with gum and sealed with
a cover glass.

2.3. Transmission Electron Microscopy

BAT sections were fixed with 2% (vol/vol) glutaraldehyde in 100 mM phosphate buffer (pH 7.4)
for 12 h at 4 ◦C. Sections were then post-fixed with 1% osmium tetroxide, dehydrated in ascending
gradations of ethanol, and embedded in fresh epoxy resin 618 [44]. Ultrathin sections (60–80 nm)
were cut and stained with lead citrate before being examined on a Hitachi H-7500 transmission
electron microscope.

2.4. Scanning Electron Microscopy

BAT sections were fixed with 2% (vol/vol) glutaraldehyde in 100 mM phosphate buffer (pH 7.2) for
12 h at 4 ◦C. Sections were then adhered to the double-sided adhesive, adhered to the copper table, and
then coated with conductive adhesive (nano gold) before being examined on a Hitachi H-7500 scanning
electron microscope [45]. The size of lipid droplets and mitochondria were presented in the form of
a particle size distribution map, which was completed by software Image-pro plus and OriginPro 8.

2.5. Quantitative Real-Time Reverse-Transcription PCR

Total RNA was isolated using a total tissue RNA isolation kit (ET101-01, TransGen Biotech, Beijing,
China). Equal amounts of total RNA were used to synthesize cDNA with the transScript One-Step
gDNA Removal and cDNA Synthesis SuperMix kit (AT311-03, TransGen Biotech, Beijing). Quantitative
real-time reverse-transcription PCR (qRT–PCR) was performed in triplicate using SYBR Green, 96-well
plates, and the Real-Time PCR System (Bio-Rad, Hercules, CA, USA). Each well was loaded with
a total of 20 µL containing 2 µL of cDNA, 0.4 * 2 µL of target primers, 7.2 µL of water, and 10 µL
of SYBR Fast Master Mix. Hot-start PCR was performed for 45 cycles, with each cycle consisting of
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denaturation for 5 s at 94 ◦C, annealing for 15 s at 58 ◦C, and elongation for 10 s at 72 ◦C. The CFX
manager software (version 2.0, Roche Bio-Rad, USA) was used for data analysis. Relative quantification
was done using the 2−∆∆CT method [46]. Expression was normalized against the housekeeping gene
β-globin. The primers used are shown in Table 1.

Table 1. Primer Sequences.

Primer Forward (5′–3′) Reverse (5′–3′)

ACC AGCTGATCCTGCGAACCT GCCAAGCGGATGTAAACT
AP2 GAAGACTGCGAGGACCTC GAAGTGCCGTAATCCCCACAC
CEBP/α GCGGGAACGCAACAACATC GTCACTGGTCAACTCCAGCAC
CEBP/β TGACGCAACACACGTGTAACTG AACAACCCCGCAGGAACAT
CEBP/δ CGACTTCAGCGCCTACATTGA GAAGAGGTCGGCGAAGAGTT
CPT1α GACTCCGCTCGCTCATTCC GACTGTGAACTGGAAGGCCA
CyclophilinA CAAATGCTGGACCAAACACA GCCATCCAGCCATTCAGTCT
EN1 CTCACAGCAACCCCTAGTGT CCGCTGCTCCGTGATATAG
Fasn TAGAGGGAGCCAGAGAGACG CCGACATACCGGCTATCACC
Myf5 GCCTTCGGAGCACACAAAG TGACCTTCTTCAGGCGTCTAC
NRF1 CAACAGGGAAGAAACGGAAA GCACCACATTCTCCAAAGGT
NRF2 TAGATGACCATGAGTCGCTTGC GCCAAACTTGCTCCATGTCC
PGC1α ACCGCTTTCTGGGTGGATT TGAGGACCGCTAGCAAGTTT
PGC1β CGTATTTGAGGACAGCAGCA TACTGGGTGGGCTCTGGTAG
PPARα AGCCTCAGCCAAGGTTGAACT TGGGGAGAGAGGACAGATGG
PPARγ2 TCGCTGATGCACTGCCTATG GAGAGGTCCACAGAGCTGATT
PRDM16 GAAGTCACAGGAGGACACGG CTCGCTCCTCAACACACCTC
Tfam GTCCATAGGCACCGTATTGC CCCATGCTGGAAAAACACTT
UCP1 GGCAAAAACAGAAGGATTGC TAAGCCGGCTGAGATCTTGT

2.6. Western Blot Analysis

An equal amount of protein (30 mg) from cell lysate was loaded into each well of a 12%
SDS-polyacrylamide gel after denaturation with SDS loading buffer. After electrophoresis, proteins
were transferred to a PVDF membrane, incubated with blocking buffer (5% fat-free milk) for 1 h
at room temperature, and blotted with the following antibodies overnight: Anti-GAPDH (Cell
Signaling Technology) and other antibodies (Abcam). The membrane was incubated with horseradish
peroxidase-conjugated secondary antibodies for 1 h at room temperature. All signals were visualized
and analyzed by Clinx ChemiCapture software (Clinx, Shanghai, China)

2.7. Analysis of Proteomic

Proteomic analysis was performed by Beijing Qinglian Baiao Biotechnology Co., Ltd.
MaxQuant software was used to process the MS raw data. The MS data were searched against

the cabbage genome database (http://www.ocri-genomics.org/bolbase/). Parameters of MaxQuant
searches referred to predecessors’ practices [47]. In order to extract the quantified information of the
whole replica, the identification transfer protocol (“match-between-runs” feature in MaxQuant) was
implemented in the experimental replica [48].

Quantitative data acquisition methods for all peptides in samples also referred to previous practices.
The peak strength of the whole set of measurements was compared with Perseus (Version 1.4.1.3) [47].

2.8. Analysis of the Whole Transcriptome

Transcriptome analysis was performed by Beijing Zhongke Jingyun Technology Co., Ltd.

2.8.1. Transcriptions of lncRNA and circRNA

In total, 1 ug of total RNA extracted from each BAT tissue was used for both mRNA and circRNA
library construction. First, the total RNA was subjected to poly-d(A)-RNA isolation using NEBNext

http://www.ocri-genomics.org/bolbase/
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Magnetic Oligo d(T)25 Beads (NEB, S1419). The isolated poly-d(A)-RNA was used for mRNA library
preparation using an NEBNext UltraTM RNA Library Prep Kit for Illumina (NEB, E7530) according to
the instruction manual while the remaining RNA was further utilized for circRNA library preparation.
After rRNA depletion using an NEBNext rRNA Depletion Kit (NEB, E6310) and linear RNA digestion
with RNase R (epicenter, RNR07250), the circRNA was ethanol precipitated and reverse transcripted
using random primers. Purified cDNA was then used for library construction using a KAPA Hyper
Prep Kit (KAPA Biosystems, KK8504).

All of the RNA-seq libraries were subjected to 150 bp pair-end sequencing on an Illumina HiSeq X
Ten platform. After sequencing, all reads passed through the filter were trimmed to remove low-quality
bases and adaptor sequences. Reads then were aligned to the mm10 reference genome using tophat2
(v2.0.13). The results from mRNA-seq were also utilized for lncRNA analysis, which could reveal the
poly-d(A)-lncRNA information.

For mRNA analysis, FPKMs were calculated and normalized using cufflinks (v2.2.1). The differentially
expressed genes were calculated using the default parameter of cuffdiff (v2.2.1). Hierarchical clustering
was carried out on log2(FPKM+1) across samples. Genes used for clustering were selected by maximum
FPKM ≥ 1 and with a top 10% standard deviation of log2(FPKM + 1). The differentially expressed
genes (DEGs) were further analyzed based on GO biological processes, molecular functions, and the
KEGG pathway.

The lncRNA screening, function prediction, and novel lncRNA identification were achieved based
on an lncRNA calling protocol [49] and the CNCI program [50]. The differentially expressed lncRNAs
between samples were further calculated using cuffdiff (v2.2.1). Their corresponding target genes
further undergwent GO enrichment and KEGG analysis.

2.8.2. Transcriptions of microRNA

In total, 1 ug of total RNA extracted from each BAT tissue was used for miRNA library construction
using an NEBNext Small RNA Library Prep Set for Illumina (NEB, E7330) according to the instruction
manual. Briefly, the 3′ SR adaptor was first ligated followed by hybridization of the reverse transcription
primer. The reverse transcription was performed after the ligation of 5′ SR adaptor, and then followed
by 12 cycles of PCR enrichments (94 ◦C 30 s; 94 ◦C 15 s, 62 ◦C 30 s, 70 ◦C 15 s for 12 cycles; 70 ◦C 5 min).
After amplification, ~140 bp DNA fragments were size-selected and recovered after resolving on the
6% PAGE gel.

The miRNA libraries were then sequenced on an Illumina HiSeq 2500 platform with 50 bp
single-end read. After sequencing, all reads passed through the filter were trimmed to remove
low-quality bases and adaptor sequences. Reads were then aligned with miRBase (miRBase20,
http://www.mirbase.org/) of a mouse using Bowtie2 (version 2.3.4.1). Identification of the precursors
of miRNA and prediction of novel miRNAs were achieved using the miRDeep2 (version 0.0.2).
The miRanda tools (version 3.3a) were further used for the prediction of miRNA targets and their
target genes were further analyzed based on GO and the KEGG database.

2.8.3. Transcriptions of DNA Methylation

In total, 100 ng genomic DNA extracted from each BAT tissue were used for RRBS library construction
following the protocol of Guo et al. [51]. The brief procedure included MspI digestion, end repair/dA
tailing, and adapter ligation, which were accomplished by adding the corresponding reaction components
sequentially and inactivating the enzymes by heating. Next, the ligation was performed by overnight
incubation using the premethylated sequencing adapters and highly concentrated T4 DNA ligase.
The ligated DNA fragments were directly processed until bisulfite conversion, and after this step,
the DNA was purified. Consequently, the DNA was PCR-amplified and the fragments between 200 and
700 bp were gel-selected and purified for sequencing. Then, 150-bp pair-end sequencing was performed
on an Illumina HiSeq X Ten platform.

http://www.mirbase.org/
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After sequencing, raw reads were trimmed to remove low-quality bases and adaptor sequences
and were mapped to the mouse reference genome (mm10, downloaded from the UCSC genome
browser) using BS-Seeker2 (v2.1.1). Additionally, the lambda DNA genome was rebuilt as an extra
reference for later calculation of the bisulfite conversion rate of each sample. The bulk methylation
levels were analyzed for cytosine sites with ≥10X in each sample using CGmapTools [52]. A heatmap
showing the average methylation levels of CG in bins across whole genomes (bin size, 500,000 bp) was
generated by CGmapTools. Furthermore, differentially methylated region (DMR) analysis was carried
out by CGmapTools using the dynamic region strategy. The differentially methylated regions related
genes (DMGs) were further analyzed based on GO biological processes and molecular functions using
the PANTHER classification system (http://www.pantherdb.org/).

2.9. Statistics

All of the qPCR results used a single-factor analysis of variance (ANOVA) followed by a two-tailed
Student’s t-test for comparisons. All qPCR data are presented as means ± SEM. Significant differences
were considered when p < 0.05. Graph-Pad Prism7 (GraphPad Software, San Diego, CA, USA) was
used for data analysis.

3. Results

3.1. The Morphology of aBAT and neBAT

In order to understand the differences in the morphology of aBAT and neBAT, we first examined
the internal and surface morphology through H&E staining, TEM, and SEM. We clearly observed
that adipocytes in neBAT are denser and smaller (Figure 1A). Interestingly, neBAT contains small
lipid droplets of a relatively uniform size compared with aBAT (Figure 1A). However, the adipocytes
in aBAT were larger and the size of the lipid droplets varied from small to large lipid droplets.
It can be seen from the droplet particle size distribution diagram (Figure 1A) that the particle size
distribution of neBAT is 2 to 14 µm while that of aBAT is 10 to 40 µm. The lipid droplet size of neBAT
is obviously smaller than that of aBAT (p < 0.0001). Furthermore, in order to further understand the
dynamic changes during BAT development after delivery, especially the number of mitochondria;
we observed the internal morphology of BAT from 0 to 8 weeks by TEM (Figure 1B). We found that
neBAT had smaller adipocytes with smaller and less numerous lipid droplets but with a higher density
of mitochondria (Figure 1B). Adipocytes, with the increased volume of lipid droplets in BAT, grew
larger during post-delivery development (Figure 1B). Correspondingly, the number of mitochondria in
BAT gradually decreased during post-delivery development. Interestingly, the volume of mitochondria
increased in aBAT in comparison to neBAT (Figure 1B). This result is further shown in the particle
size distribution map (Figure 1B). In the same area selected randomly, there were 45 mitochondria
in neBAT but only 6 mitochondria in 8-week-old BAT. The size distribution of mitochondria in the
BAT of newborn mice was 0.1 to 0.8 µm while with the increase of the age and size distribution of
mitochondria in BAT of 8-week-old mice was 1.5 to 4 µm. The mitochondrial size of BAT in neBAT
(W0) was dramatically smaller than that in aBAT(W8) (p < 0.0001). These changes may be compatible
with the energy intake and utilization during post-delivery development.

http://www.pantherdb.org/


Cells 2020, 9, 201 7 of 30

Figure 1. The morphology of aBAT and neBAT. (A) H&E staining (scale bars, 100 µm) of neBAT and aBAT. (B,C) The size distribution of the lipid droplets is shown in
the white box of the figure (A). (D) SEM (scale bars, 30 µm) of neBAT and aBAT (the second right-hand image is a local enlargement of the second image on the right).
(E) TEM of BAT on week 0 (W0), week 2 (W2), week 4 (W4), week 6 (W6), and week 8 (W8) after pregnancy. The first row is 3000 × (scale bars, 10 µm). (F,G) The
mitochondrial particle size distribution in the white box of the figure above, respectively. Data are presented as the mean ± sem. The significance of the difference was
set at **** p < 0.0001 relative to W0.
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3.2. Brown Adipogenesis and Activation during Post-Delivery Development

To explore the features of brown adipogenesis and activation in BAT during post-delivery
development, we performed the quantitative real-time PCR (qRTPCR) and western blot (WB).
First, we examined the expression of UCP1, the critical thermogenic element in BAT. As expected,
the expression of UCP1 gradually decreased with increasing age (Figure 2A), which is consistent
with the above morphological features. Interestingly, other thermogenic genes, including PRDM16,
PGC1α, PGC1β, and CPT1α, showed a tendency to increase in week 2 and 4 before decreasing in week
6 and 8 while PPARα expression decreased during post-delivery development (Figure 2C). In addition,
the mitochondrial genes (Tfam and NRF1) were also downregulated during post-delivery development
(Figure 2D). Furthermore, we found that the expression levels of brown adipogenic genes, PPARγ
and CEBPα, decreased and were significantly lower in W8-BAT (8 weeks after delivery) than W0-BAT
(neonatal BAT) (Figure 2E), whereas the adipocyte differentiation-related genes (CEBPβ and CEBPδ)
were upregulated (Figure 2E). The expression of lipid synthesis genes, including FASN, ACC, and
FABP4, gradually increased during post-delivery development (Figure 2F). We further characterized
the mRNA expression levels of EN1 and Myf5 by qRTPCR and observed a decreasing expression
trend (Figure 2G). This may be due to the presence of more progenitors in the BAT of newborns,
which may be one of the reasons why we extracted brown primary adipocytes from newborn mice.
Consistent with the mRNA expression, the protein expression levels of UCP1 and OXPHOS, including
ATP5A, UQCRC2, MTCO1, SDHB, and NDUFB8, in neBAT and aBAT, were significantly higher in
neBAT compared with aBAT (Figure 2H). This indicates that neBATs are more active than aBAT, and
the activity and function in BAT maintain a decreasing trend during postnatal development except
the beginning of the puberty (in week 2 and/or week 4 after delivery, the expression level of some
thermogenic genes increased).
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Figure 2. The molecular dynamic changes in BATs during development post-pregnancy. (A) mRNA and (B) protein expression levels of ucp1, (C) mRNA expression
levels of other thermogenic genes (pgc1α, pgc1β, prdm16, pparα, and cpt1α), (D) mitochondrial genes (tfam, nrf1), (E) brown adipogenic synthesis (pparγ and cebpα), and
adipocyte differentiation genes (cebpβ and cebpδ), (F) lipid synthesis genes (fasn, fabp4, and acc), and (G) brown adipocyte progenitor markers (myf5 and en1). (H)
Protein expression levels of ucp1 and oxphos (atp5a, uqcrc2, and sdhb). Data are presented as the mean ± sem. n = 6 per group. The significance of the difference was set
at * p < 0.05, ** p < 0.01 and *** p < 0.001 relative to W0.
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3.3. NeBATs Are More Active Than Embryonic BAT in Mice

To further study the function and molecular characteristics of neBAT, we also examined the
activation and function of BAT in the embryonic period of mice (E19–20) (ME-BAT) and neBAT at the
molecular level (Figure 3). We found that the protein expression of UCP1 and OXPHOS in BAT was
significantly upregulated in neBAT (day 1 and day 3 after delivery) compared to ME-BAT (Figure 3A);
this may be due to the differences in the substrates of energy intake and consumption in neonatal
mice. Correspondingly, the expression levels of brown adipogenic genes, thermogenic genes, and
mitochondrial genes were all upregulated in neBAT compared with ME-BAT (Figure 3B–D). These
may be adaptive changes due to cold stimulation and breastfeeding after birth, which also contributes
to the maintenance of the body temperature during the fetal period. Interestingly, we also found that
the expression levels of Myf5 and EN1 were significantly downregulated in neBAT compared with
ME-BAT (Figure 3E). Combined with the results from the previous section, these findings suggest
that the activity of neBAT was not only higher than aBAT but also higher than ME-BAT. However,
the progenitor markers (Myf5 and EN1) in BATs gradually decreased during development from
embryonic to adult. Further investigations on the dynamic process of BAT from stem cells to mature
BAT cells are warranted.

Figure 3. neBAT is more active than embryonic BAT in mice. (A) The protein expression levels of
ucp1 and oxphos (including atp5a, uqcrc2, mtco1, sdhb, and ndufb8. The molecular weight of each band
is marked on the right) in neBAT (D1 and D3) and ME-BAT. (B) The mRNA expression levels of
mitochondrial genes (including tfam, nrf1, and nrf2), (C) thermogenic genes (including ucp1, pgc1α, pgc1β,
cpt1α, cpt1β, and pparα), (D) brown adipogenic synthesis pparγ, and (E) brown adipocyte progenitors
(including myf5 and en1). Data are presented as the mean ± sem n = 6 per group. The significance of the
difference was set at * p < 0.05, ** p < 0.01, and *** p < 0.001 when compared to ME-BAT, respectively.

3.4. Analysis of Proteomic Data in neBAT and aBAT

In order to further understand the difference between the neBAT and aBAT, we analyzed the
features of neBAT and aBAT by proteomics. A total of 3071 proteins were identified, showing a good
reproducibility based on the heat map (Figure 4A). Differentially expressed proteins (DEPs) are
represented by a heat map (Figure 4B) and volcano map (Figure 4C) containing 911 downregulated
proteins and 482 upregulated proteins by a comparative analysis of the aBAT to neBAT ratio (Figure 4D).
The distribution of proteins between neBAT and aBAT are shown by the Venn diagram (Figure 4E).
Among these proteins, a total of 2272 co-differential proteins (expression in both neBATs and aBATs)
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and 594 specific expression proteins in neBAT in contrast to 205 specific expression proteins in aBAT
were found (Figure 3E). The distribution of DEPs determined by PCA (principal component analysis)
showed obvious differences (Figure 4F). To reveal the annotations and classification of DEPs, gene
ontology (GO) enrichment analysis was performed and presented in three forms, including the
biological process (BP), cellular component (CC), and molecular function (MF). In the CC category,
enriched GO terms were mainly associated with the ribosome, mitochondrion, plasma membrane,
and membrane (Figure 4G). In the MF category, GO terms enriched for DEPs in neBAT and aBAT
included rRNA binding, signal transducer activity, metal ion binding, and receptor binding (Figure 4H).
The most frequent GO terms of BP were associated with signal transduction, vesicle-mediated transport,
cell motility, and cell cycle (Figure 4I). Notably, the top four terms in the three categories (CC, MF, and
BP) almost kept a higher countdown number in aBAT. To some extent, these results indicate that neBAT
may maintain stronger biological activity in the newborn period. To reveal the significant enrichment
of DEPs in the pathway terms, we performed pathway annotation of DEPs though the KEGG database.
The DEPs were enriched mainly in the pathways of ribosomes, spliceosome, biosynthesis of antibiotics,
RNA degradation, pyruvate metabolism, fatty acid biosynthesis, propanoate metabolism, and citrate
cycle (TCA cycle) (Figure 4J). Consistently, we can clearly see that the top four terms, but not the
biosynthesis of antibiotics, also possess a higher countdown number in aBAT to neBAT (Figure 4J).
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Figure 4. Cont.
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Figure 4. Analysis of proteomics data in neBATs and aBATs. (A) Heat map of the total proteins and (B) differentially expressed proteins (DEPs) with fold change >1.5
and p value <0.05 in neBAT and aBAT. (C) Volcano plot of the proteome. The volcano plots show significance on the y-axis (−log10, p value) against the protein
expression ratio (log2, fold change of aBAT vs. neBAT). The FDR cutoff of <0.05 is indicated by the blue dashed horizontal lines. The red plots represent upregulation
of proteins and the green plots indicate downregulation of proteins. (D) Number of proteins upregulated and downregulated in neBATs and aBATs. (E) Venn diagrams
of neBAT vs. aBAT. (F) Principal component analysis (PCA) results are shown in red (neBAT) and blue (aBAT). (G–I) GO categories for DEPs in the proteome. (J) KEGG
pathway analysis of DEPs. Numbers and p-values of DEPs in each pathway.
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3.5. Comprehensive Analysis of Whole Transcriptome Data in neBAT and aBAT

To further explore the features of BATs during post-delivery development, the characteristics
and differences between aBATs and neBATs were comprehensively analyzed by whole transcriptome
analysis, including mRNAs, microRNAs, lncRNAs, circRNAs, and DNA methylation.

First, we analyzed mRNA expression levels. Differentially expressed genes (DEGs) are represented
by a heat map (Figure 5A) and volcano map (Figure 5B), which contain 1823 downregulated genes and
1821 upregulated genes by a comparative analysis of neBAT and aBAT (Figure 5C). The distribution
of genes between neBATs and aBATs is shown in the Venn diagram (Figure 5D). Among these genes,
a total of 3645 co-differential genes and 231 specific expression genes in neBAT as well as 22 specific
expression genes in aBAT were identified (Figure 5D). GO enrichment analysis was performed, and in
the CC, DEGs in the neBAT and aBAT category were mainly associated with the cytoplasm, membrane,
and mitochondrion (Figure 5E). In the MF category, GO terms enriched for DEGs in neBAT and aBAT
included protein binding, identical protein binding, and RNA binding (Figure 5F). The most enriched
GO terms of BP were associated with translation (Figure 5G). To reveal the significant enrichment of
DEPs in pathway terms, we performed pathway annotation of DEGs through the KEGG database.
The DEGs were enriched mainly in the metabolic pathways, cancer pathways, ribosome, and PI3K–Akt
signaling pathways (Figure 5H). This result is compatible with the pathway analysis of the proteome,
indicating that the genes involved in metabolism and differentiation are active in neBATs compared
with aBATs.

DNA methylation is an essential modification for the regulation of gene expression and cessation,
which is involved in many diseases, such as cancer, aging, and Alzheimer’s disease. DNA methylation is
one of the important components of epigenetics. In this study, we identified a total of 50,133 differentially
methylated regions (DMRs) in neBAT and aBAT, which were mostly localized to the CG site (Figure 6A,B).
The heat map of the methylation of the CG site (mCG) shows a high abundance of methylation regions
in neBAT (43.7%) compared with aBAT (38.6%) (Figure 6C). Furthermore, we identified 1247 hyper- and
1667 hypo-DMRs while 932 hyper- and 1041 hypo-DMRs were related to promoters by differentially
methylated region analysis (Figure 6D). Furthermore, compared with aBATs, we found 383 hyper-
and 503 hypo-DMR-related genes in neBATs by DMR analysis. Although we found that methylation
modification is more abundant in neBAT compared with aBAT, the level of hyper-DMRs is indeed lower
(Figure 6C,D). This event was further verified at the more intuitive methylation levels in bins (Figure 6).
As we can observe in the figures, all of the methylation levels of the CG, CHG, and CHH sites located
on different chromosomes show a high level in aBAT compared with neBAT (Figure 6E). These results
suggest that more gene activity may be inhibited by methylation in aBAT than in neBAT, which may
indicate that neBATs are in a more biologically dynamic state than aBAT.

In recent years, CircRNA, a new class of single-stranded and covalently closed circular RNA,
which aroused widespread concern among researchers, could regulate the activity of miRNAs as
efficient miRNA sponges and play an important regulatory role in some diseases by interacting with
miRNAs [53]. In our study, we thoroughly analyzed the expression characteristics of circRNA in neBAT
and aBAT. The filter circRNA and candidate circRNA in each tissue of neBAT and aBAT are shown in
Figure S1C. Interestingly, we found that there are more novel circRNAs compared with overlapped
circRNAs as identified in circBase when analyzed in neBAT and aBAT (Figure 7C). The length of the
most exonic circRNAs was less than 1500 nucleotide (nt), and the median length was about 400 nt
(Figure S1A,B). About 60% of the circRNAs consisted of exons, whereas smaller fractions aligned
with introns and intergenic spacers (Figure 7E). Moreover, there are 944 circRNAs that were explicitly
expressed in neBAT, and 1361 circRNA that were specifically expressed in neBAT. By contrast, only 107
circRNAs overlapped in neBAT and aBAT (Figure 7B,C).
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Figure 5. The analysis of mRNA-seq data from neBAT and aBAT. (A) Heat map showing expression profiles of mRNA. (B) Volcano map of mRNA. The volcano plot
shows significance on the y-axis (−log10, p-value) against the gene expression ratio (log2, fold change of neBAT versus aBAT), and the FDR cutoff <0.05 is indicated.
(C) Number of upregulated and downregulated genes in neBAT and aBAT. (D) Venn diagrams of neBAT versus aBAT. (E–G) GO categories for DEGs. (H) KEGG
analysis of DEGs. Count number and p-value of DEGs in pathways.
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Figure 6. Cont.
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Figure 6. Analysis of DNA methylation patterns of aBATs and neBATs. (A) Bulk methylation levels in aBATs and neBATs. The bulk methylation levels were analyzed
for cytosine sites with ≥10X in each sample using CGmapTools. (B) Methylation contributions in aBATs and neBATs. The methylation contributions indicate chances
that an observed site could be in a specific context. This analysis was applied to cytosine sites with ≥10X in each sample using CGmapTools. H = {A, C, T} and W = {C,
T}. (C) This heat map shows the average methylation levels of CG in bins across whole genomes. The color indicates the average methylation levels in bins across the
whole genome (bin size: 5 Mb). Green bars on the right indicate the global average DNA methylation levels. (D) Differentially methylated region (DMR) analysis was
conducted by CGmapTools using the dynamic region strategy. (E) Distribution of mCG, mCHG, and mCHH in bins for neBATs and aBATs.
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Figure 7. Cont.
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Figure 7. Analysis of circRNA data of neBAT and aBAT. (A) Violin plot of circRNA. The circRNA specifically expressed in each tissue was pooled and used in a Violin
map. The vioplot shows the abundance on the y-axis. (B) Number of specific circRNAs in neBAT and aBAT. (C) Venn diagrams of neBAT versus aBAT. (D) New
circRNAs and known circRNA in circBase. (E) Break point location for each circRNA. (F) GO categories for host genes of circRNAs. (G) KEGG analysis of host genes
of circRNAs. Count number and p-value of host genes of circRNAs in pathways.
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In order to explore the feature of the parental gene for circRNAs, gene ontology and KEGG pathway
analysis of the host genes of differently expressed circRNAs was performed (Figure 7F,G). In the
BP category, enriched GO terms were mainly associated with positive regulation of the phosphorus
metabolic process, muscle cell differentiation, and regulation of the cell cycle process (Figure 7F). In the
CC category, GO terms enriched for host genes in neBAT and aBAT included the cytoplasm, ESC/E (Z)
complexes, pronucleus, PcG protein complexes, and intracellular parts (Figure 7F. Moreover, most GO
terms of MF were associated with enzyme activator activity, carbohydrate response element binding,
protein heterodimerization activity, and primary miRNA binding (Figure 7F). Regarding pathway
terms, the host genes were enriched mainly in renal cell carcinoma, prostate cancer, phospholipase D
signaling pathway, microRNA in cancer, melanoma, and glycerolipid metabolism (Figure 7G).

We also showed a solicitude for the differences between microRNA and LncRNA between neBAT
and aBAT. The transcriptome of microRNAs contained a total of 486 microRNAs and identified 236
differentially expressed microRNAs between neBATs and aBATs, including 90 upregulated and 146
downregulated microRNAs by filtering analysis of fold change≥2.0, p < 0.05, and FDR < 0.05 (Figure S2B).
Meanwhile, a total of 5321 lncRNAs were detected, whereas 271 lncRNAs appeared to be differentially
expressed, with fold changes ≥2.0, p < 0.05, and FDR < 0.05. Among these, 168 and 102 lncRNAs
were upregulated and downregulated, respectively (Figure S3B). More information on lncRNAs and
microRNAs can be found in the Supplementary Material (Figures S2 and S3). By performing GO and
KEGG analyses of the target genes of microRNAs and/or lncRNAs, it was indicated that the biological
processes of these two types of non-coding RNA were related to specific cellular and metabolic processes
(Figures S2E and S3E), whereas the pathways were mainly related to cancer (Figures S2F and S3F).
This finding was based on the analysis of the top 200 differentially expressed lncRNA as shown in the
heat map (Figure S3C), in addition to the top 20 most enriched KEGG pathways (Figures S2F and S3F).

3.6. Interaction among Transcriptome Factors

This study identified major differences between neBATs and aBATs at the RNA level. To further
explore the relationship between these transcriptome factors, we pioneered a ceRNA network using our
transcriptome data, including the differential expression elements of mRNA, miRNA, and circRNA in neBAT
and aBAT (Figure 8A). We selected differentially expressed mmu-circ-0000866 and chr5_135597375_135599887,
sharing a common binding site of microRNA response elements and interacting with mRNA, including
dnajc28, ldhd, and svip (Figure 8A).

Furthermore, we pioneered an interaction network, including mRNA, circRNA, and methylation,
all of which are differentially expressed (Figure 8B). From the obtained visual network diagram, we can
identify that circRNA, including mmu-circ-0000866, chr5_135597375_135599887, and mmu_circ0001447,
participate in the regulation of mRNA based on the methylation level, including trip6, clasp, bub1b,
and accsl (Figure 8B). These RNA interactions may provide a novel mechanism for the development
and/or activation mechanisms of BAT during postnatal development. We also constructed a regulatory
network, which includes the differential expression elements of circRNA, lncRNA, and mRNA in
neBAT and aBAT (Figure 8C), as well as a more complex regulatory network that involved all of
the differential expression elements in this study, including circRNA, lncRNA, microRNA, mRNA,
transcription factors, and DNA methylation (Figure 9). Co-expression regulation analysis showed
that some lncRNAs are located at the core of the interaction network and regulate the expression of
numerous mRNAs. For example, lnc-NONMMUG024827 regulates the expression of genes that are
related to glucose and fatty acid metabolism genes, including Adipoq and Acadsb. Compared to neBATs,
the expression of these two genes in the aBATs was downregulated. These results indicate that some
pathways related to glucose and fatty acid metabolism may be more active in neBATs, which was
mutually confirmed by RNA-Seq analysis (Figure 5H). Although the development and function of
BAT has a very complicated regulatory network, this work provides a preliminary exploration.
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Figure 8. Competing endogenous RNA network (A) with mRNA, circRNA and DNA methylation regulation networks (B,C) in neBAT and aBAT. (A) The competing
endogenous RNA network was based on miRNA, circRNA, and mRNA interactions. (B) The mRNA, circRNA, and DNA methylation regulation network was based
on mRNA, circRNA, and DNA methylation interactions. (C) The regulation network of circRNA, lnc RNA, and mRNA in aBAT and neBAT.
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Figure 9. A complex regulatory network that involved all of the differential expression elements in this study, including circRNA, lncRNA, microRNA, mRNA,
transcription factors, and DNA methylation.
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Collectively, these results provide a foundation for a better understanding of BAT function and
development. Our findings provide novel perspectives on neBATs and provide a basis for future research
of the potential roles of neBATs, and show that the activity of aBATs is similar to that of neBATs due to
epigenetic modifications.

4. Discussion

In recent years, BAT has received a high degree of attention because of the potential therapeutic
effects on obesity and related metabolic diseases [54]. However, the characteristics and function of
neBAT are much less understood, and the specific differences between neonatal BAT and adult BAT
have not been clearly explored. In this study, we provided evidence that neBATs are more dynamic BAT
than aBAT through a comprehensive analysis from morphology, molecular, and omics perspectives.
Despite these findings, there are still many details awaiting further research.

We comprehensively revealed the internal and surface morphology of neBAT though H&E
staining, TEM, and SEM. Compared with aBAT, neBAT shows bright features that contain smaller
lipid droplets (Figure 1A) and more mitochondria (Figure 1B), which is compatible with the known
function of neBAT in the neonatal period. As is known, mitochondria are the major sources of heat and
oxidative phosphorylation in BAT. To further understand the mitochondria changes in BAT, we detected
the morphological and molecular features of BAT by TEM (Figure 1B), RT-PCR, and western blot.
(Figure 2). We demonstrated that the number of mitochondria decreases (Figure 1B) and the expression
level of UCP1 also gradually decreases during post-delivery development (Figure 2A). Interestingly,
the mitochondria volume in BAT increases during post-delivery development (Figure 1B). Based on
this discovery, we hypothesize that there may be an adaptive developmental process in mitochondria.
Specific differences in mitochondria between neBAT and aBAT remain to be further studied.

In addition, previous studies on post-delivery BAT were limited to phenotypic studies. We first
revealed the dynamic changes of molecular features of BAT during post-delivery development. As a result,
the brown adipogenic genes, thermogenic genes, and mitochondrial genes were significantly upregulated
in neBAT compared with aBAT. Lipid synthesis genes demonstrated significantly elevated expression
in aBAT. Notably, the expression of adipocyte differentiation genes (C/EBPβand C/EBPδ) also gradually
increased during post-delivery development (Figure 2D). C/EBPβand C/EBPδare crucial for adipogenesis,
which has been confirmed by a double-knockout C/EBPβand C/EBPδmice study with a further decline
in adipose tissue mass [55]. Some studies indicate that the effect of C/EBPβis less evident in embryonic
fibroblasts [9], which may explain the reason for the minimal expression in neBAT compared with aBAT.
In addition, the expression levels of thermogenic genes, including PGC1α, PGC1β, and CPT1α(p = 0.075),
and mitochondrial genes, Tfam and NRF1, were increased in week 2 and/or 4 after delivery (Figure 2C).
This may be related to adolescent development [56,57] or breastfeeding. Furthermore, we incidentally
observed that the expression levels of Myf5 and EN1 gradually decreased during post-delivery development,
and there was a significant difference between neBAT and aBAT. This suggests a decrease of progenitor
cells in BAT during post-delivery development. Finally, we also examined the activation and function of
BAT in the embryonic period and the first few days after delivery (Figure S1). The protein expressions
of UCP1 and OXPHOS were significantly upregulated in neBAT compared with ME-BAT (Figure S1A).
Notably, Myf5 and EN1 were significantly downregulated in neBAT compared with MEBAT. This further
validates our hypothesis that the amount of progenitor cells in BAT would gradually decrease from the
embryonic period to adulthood. Combining all the results above, we can conclude that neonatal BAT may
be the most active and functional BAT.

The results of proteomics further reveal the differences between neBATs and aBATs. Compared
with neBAT, there were more downregulated DEPs than upregulated DEPs in aBAT. The enrichment
analysis of GO also reveals an attractive phenomenon: The functional categories of cellular components
(ribosome, mitochondrion, plasma membrane, and membrane), molecular function (rRNA binding,
signal transducer activity, metal ion binding, and receptor binding), and biological processes (signal
transduction, vesicle-mediated transport, cell motility, and cell cycle) (Figure 3G–J) were all enriched
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in aBATs compared to neBATs. These phenomena may reveal the reason why neBATs are more active
than aBATs at the protein level: Mitochondrial activity, protein synthesis, and cell life activity levels
were higher in neBAT. Consistently, KEGG analysis showed that the pathway of ribosomes possessed
the highest countdown number in aBAT compared to neBAT (Figure 3J).

To further explore the features of neBAT and aBAT, the characteristics and differences of each were
comprehensively analyzed using whole transcriptome data, including mRNA, microRNA, lncRNA,
circRNA, and DNA methylation. Thousands of significantly different lncRNAs and mRNAs were
identified in neBAT and aBAT. Furthermore, we found 383 hyper- and 503 hypo-DMR-related genes in
aBATs by DMR analysis compared to neBAT. Importantly, we found 1221 new circRNA in neBATs
and 1991 new circRNAs in aBAT. Using full transcriptome analysis, we thoroughly explored the
characteristics and differences of neBAT and aBAT on a transcriptome level, and obtained many
interesting findings. In particular, an analysis of the circular RNA and DNA methylation showed
a more intuitive difference between neBAT and aBAT (Figures 5 and 6). These differences indicate that
both circular RNA and DNA methylation are involved in the post-delivery developmental regulation
of BAT and further confirmed that neBATs are more active/dynamic compared with aBAT.

To further analyze the biological significance of these DEGs/DEPs, enrichment analysis of
KEGG was performed, which revealed many key metabolic pathways related to BAT’s dynamic
changes during post-delivery development. Among the top 20 enriched KEGG pathways (Figure 4H),
24 upregulated DEGs that are related to glycolysis/gluconeogenesis were isolated, suggesting that the
glycolysis/gluconeogenesis pathway was activated for ATP production for neBAT. This phenomenon is
consistent with the results of previous morphological and molecular experiments, indicating that neBATs
have a stronger ability to provide energy compared to aBAT. Compared with glycolysis/gluconeogenesis
pathway, the BCAA (valine, leucine, and isoleucine) oxidation pathway and fatty acid metabolism
pathways have higher enrichment (‘rich factor’ in Figure 4H), with 25 and 22 DEGs that were
upregulated, respectively. Previous studies have shown that BCAA catabolism in BATs controls
energy homeostasis, and intracellular triglycerides are the primary energy source for cold-induced
interscapular BAT thermogenesis [58,59]. Thus, we hypothesize that compared with glucose, fatty
acids and amino acids are more likely as the substrates of BAT thermogenics, which needs to be further
verified using isotope labeling and metabolomics analysis.

To identify the key factors that lead to such a dramatic difference between neBAT and aBAT,
we mapped the interaction network of various types of RNAs (Figures 8 and 9). Based on this interaction
network, we found that mRNA Dnajc28, which is a member of the heat shock protein family, as well as
circRNA Chr5_135597375_135599887, one of genes that located on chromosome 5, were in the center of the
interaction network, and involved in the regulation of extensive genes related to miRNA. This discovery
strongly suggests that these two genes may play a crucial role in regulating BAT function and activity.
Furthermore, many interactions between lncRNAs and mRNAs have also been revealed (Figure 8C).
Adiponectin, an endogenous bioactive polypeptide secreted by fat cells, is closely related to insulin
sensitivity, glucose metabolism, and fat metabolism [60]. Its mRNA expression is upregulated by lncRNA
NONMMUG024827 in neBATs. This phenomenon indicates that some pathways of glucose and fatty acid
metabolism may be more active in neBAT. Another downstream lncRNA at the core of the interaction
network is NONMMUG004953, and the expression of some mRNAs related to T cell function (Mr1) [61]
and inflammation (NAAA) [62] was altered. There are three lncRNAs located close together in the
interaction network: NONMMUG034109, NONMMUG021221, and NONMMUG008287; these are
involved in the regulation of the mRNA expression of a large number of cancer-related genes, such as
Pik3r1, Gulp1, Chrdl1, and Crebaf [63–66]. These phenomena suggest that BAT may be closely related
to cancer, which coincides with the results of the RNA-Seq (Figures S2 and S3), and may provide an
extremely novel approach for the treatment of cancer. Collectively, based on the preliminary analysis
of the interaction network, BATs may be related to glucose metabolism, lipid metabolism, immunity,
and cancer.
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The development and function of BATs may have a very complicated regulatory network, and this
study provides only a preliminary exploration. However, our comprehensive study has revealed the
differences between neBATs and aBATs at the morphological, molecular, and omics levels, which lays
a foundation for improving BAT function and activity through gene regulation or epigenetic regulation.

5. Conclusions

In summary, we investigated the dynamic changes during post-delivery development at the
morphological, molecular, and omics levels. Our results confirm that newborn BAT is more active than
adult BAT. Collectively, compared with aBATs, neBATs have better mitochondrial and thermogenic
functions, which may be closely related to the glycolysis/gluconeogenesis, BCAA oxidation, and fatty
acid metabolism pathways. At the genetic level, BATs may be related to the expression of genes related
to glucose metabolism, lipid metabolism, immunity, and cancer. Our research can serve as a guide for
establishing methods in transforming the less active adult BATs into the more active and younger newborn
BATs, or improving the functional activity of BATs through gene regulation or epigenetic regulation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/1/201/s1,
Figure S1: CircRNA analysis of aBATs and neBATs, Figure S2: MicroRNA analysis of aBATs and neBATs, Figure S3:
LncRNA analysis of aBATs and neBATs.
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