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The clustered regularly interspaced short palindromic
repeats (CRISPR) technology has revolutionized life
sciences and developed rapidly. Here, we highlight the
recent advances in development and application of
CRISPR technologies, including the discovery of novel
CRISPR systems, CRISPR base editing and imaging,
and the applications of CRISPR in plant breeding, ani-
mal breeding, disease modeling and biotherapy.

THE DEVELOPMENT AND DISCOVERY OF NEW
CRISPR SYSTEMS

As a cutting-edge biotechnology, the discovery of new
CRISPR genome editing tools are always at the heart of the
CRISPR research field (Zhang, 2019). A substantial of
exciting works have been reported in the past one year. As a
new developed type-II Cas9 ortholog, Nm2Cas9 system with
compact effector protein size and simple PAM requirement
has been harnessed as a promising alternative for genome
engineering and gene therapy (Edraki et al., 2018). In par-
allel, an abundance of Cas12a orthologs showed editing
capacity in human cells (Teng et al., 2019). BhCas12b was
also engineered as a powerful gene editing tool (Strecker
et al., 2019a).

Apart from the existed CRISPR subtypes, many new
subtypes of type-V CRISPR system possessing unique
characteristics were identified from the metagenome,
including Cas12g, Cas12h and Cas12i, some of which were
verified as a programable endonuclease to cleave single-
stranded DNA (ssDNA), ssRNA or double-stranded DNA
(dsDNA) in vitro (Yan et al., 2019). CasX, now assigned to
Cas12e family (Koonin et al., 2017), was repurposed as an

effective genome editing tool in human cells (Liu et al.,
2019b). Cas14, which was classified into Cas12f (Makarova
et al., 2019), showed genome editing potential in human
cells albeit with very low efficiency (Karvelis et al., 2019).
Notably, unlike the classic nucleases from Cas12 family,
Cas12k was found as a RNA-guided site specific integration
system in E. coli (Strecker et al., 2019b), providing the
potential to make CRISPR tools to produce precise targeted
DNA insertion in the mammalian genome.

Except the above mentioned Class-II CRISPR system,
the Class-I CRISPR system with multiple effectors has been
harnessed to engineer human genome by diverse strategies,
either using native nuclease effector for cleavage (Dolan
et al., 2019; Morisaka et al., 2019), or using fused FokI
domain (Cameron et al., 2019). Importantly, some members
of type-I F systems were repurposed as a tool for site-
specific DNA integration (Klompe et al., 2019). These stud-
ies inspire further explorations in the CRISPR biology that
serves as basis for technology development.

BASE EDITING TECHNOLOGY

Base editors have been widely applied to perform targeted
base editing and hold great potential for correcting patho-
genetic mutations (Rees and Liu, 2018). Although early
evidence suggested that off-target effects of base editing are
rare (Komor et al., 2016; Gaudelli et al., 2017; Kim et al.,
2017), recent studies have revealed that substantial DNA
and RNA off-target edits were induced by base editors (Jin
et al., 2019; Zuo et al., 2019). These off-target edits were
sgRNA-independent and induced by the fused deaminase
(Jin et al., 2019; Zuo et al., 2019). Moreover, researchers
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have also attempted to reduce off-target effects by engi-
neering deaminases and obtained improved base editors
with low RNA off-target edits (Grünewald et al., 2019; Zhou
et al., 2019a). These works illustrate examples of how the
off-target effects of base editors can be minimized via bio-
logical-insight-driven engineering to extend the utility of
these powerful gene editing tools for both research and
therapeutic applications.

In addition to DNA base editors, RNA base editors have
also been developed by fusion of RNA-targeting protein
dCas13 to ADAR, which can make directed A-to-I edits in
eukaryotic cells (Abudayyeh et al., 2017). Recently, C-to-U
editing was proven to be achieved by fusion of dCas13 with
evolved ADAR (Abudayyeh et al., 2019). In addition, two
studies have reported that targeted A-to-I edits could also be
generated by recruiting endogenous ADAR using engi-
neered RNAs (Merkle et al., 2019; Qu et al., 2019). Contin-
ued development of improved or newly generated base
editing tools with higher efficiency and fidelity is needed to
enhance the impact of this technology in the field.

DEVELOPMENT OF DCAS PLATFORM FOR
IMAGING

The dCas system is a versatile platform which has many
more applications. Recruiting fluorescent proteins through
the dCas9 system enables real-time imaging of genomic loci
and chromatin dynamics in native cellular context (Chen
et al., 2013; Chen et al., 2016a; Knight et al., 2018; Wu et al.,
2019). Initial studies demonstrated that, when illuminating
non-repetitive genomic regions, it requires at least 26
sgRNAs to provide sufficient signal for microscopy detection
(Chen et al., 2013). Signal amplification with Suntag, tandem
split GFP, or tandem RNA-aptamer has been utilized to
enhance the labeling efficiency (Tanenbaum et al., 2014;
Cheng et al., 2016; Qin et al., 2017; Ye et al., 2017; Chen
et al., 2018; Ma et al., 2018). CRISPR-Tag strategy was
specifically developed for labeling non-repetitive protein-
coding genes with one to four highly efficient sgRNAs (Chen
et al., 2018). It is worth to note that combining CRISPR and
molecular beacons (MBs) that can undergo fluorescence
resonance energy transfer (FRET), termed CRISPR/dual-
FRET MB, enables dynamic imaging of non-repetitive
genomic elements with as few as three unique sgRNAs
(Mao et al., 2019). CRISPR/MB system might represent a
promising system for tracking non-repetitive genomic ele-
ments. Multicolor CRISPR imaging can be achieved to label
numerous genomic loci simultaneously in a single living cell
(Chen et al., 2016b; Fu et al., 2016; Ma et al., 2016b; Shao
et al., 2016; Wang et al., 2016). A number of groups have
used dCas9 imaging systems to track the dynamics of
specific genes, regulatory elements (e.g., telomeres, cen-
tromeres, enhancers and promoters), or individual chromo-
somes (Knight et al., 2015; Zhou et al., 2017; Gu et al.,
2018). In addition to mammalian cells, CRISPR-based

imaging tools have also been applied to label DNA in other
species, including yeast, plant and mouse cells (Dreissig
et al., 2017; Duan et al., 2018; Xue and Acar, 2018; Han
et al., 2019). Besides live-cell DNA tracking, dCas systems,
including dCas9 and dCas13, have been engineered to
monitor RNA dynamics. dCas9-FP/gRNA requires a PAMer
(synthesized oligo) to label targeting RNA, while dCas13-FP/
gRNA is capable of labeling both mRNA and non-coding
RNA without additional components (Nelles et al., 2016;
Abudayyeh et al., 2017; Yang et al., 2019). Organic dye-
labeled sgRNAs in complex with dCas proteins (Cas9 or
Cas13) enables robust genomic DNA imaging and RNA
tracking in living cells including primary cells (Ma et al.,
2016a; Wang et al., 2019c). CRISPR imaging systems are
crucial for investigating chromatin architectures and tran-
scriptional regulation in healthy and diseased states, would
greatly advance our understanding of how genome is spa-
tially organized in the nucleus to coordinate dynamic gene
expression.

CRISPR APPLICATION IN PLANT BREEDING

Heterosis is exploited to produce elite high-yielding crop
lines, but beneficial phenotypes will be lost in subsequent
generations owing to genetic segregation. Clonal propaga-
tion of F1 hybrids through seeds would fix heterosis of hybrid
crops. Kejian Wang group developed strategy to enable
clonal asexual propagation of hybrid rice by multiplex gen-
ome editing of four genes (REC8, PAIR1, OSD1 and MTL)
involved in meiosis and fertilization (Wang et al., 2019b).
Venkatesan Sundaresan group also obtained similar result
by multiplex editing REC8, PAIR1, OSD1 in transgenic rice
expressing BBM1 in egg cells (Khanday et al., 2019).

Doubled haploid (DH) technology could generate pure
inbred lines within two generations, substantially accelerates
crop breeding process. Shaojian Chen group demonstrated
that in vivo haploid induction system could be extended from
maize to hexaploid wheat by knocking out MTL/PLA1/NLD
gene using CRISPR/Cas9 (Liu et al., 2019a). Moreover, they
discovered that mutation of ZmDMP could enhance and
trigger haploid induction in maize, which was further verified
to get haploid by CRISPR-Cas9-mediated knockout experi-
ments (Zhong et al., 2019).

To solve the problem of difficult genetic transformation in
vast majority of crop varieties, Syngenta Company (Kelliher
et al., 2019) and Haiyang Wang group (Wang et al., 2019a)
independently developed HI-Edit and IMGE (Haploid-In-
ducer Mediated Genome Editing) to delivery CRISPR/Cas9
cassette by haploid-inducer pollens of maize. Genome-edi-
ted DH lines with desired agronomic traits in the elite maize
background could be generated within two generations,
without the haploid-inducer parental DNA and the editing
machinery.

Developing herbicide-tolerant varieties holds great pro-
mise for addressing the worsening weed problems in wheat
cultivation. Caixia Gao group generated transgene-free
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wheat germplasms harbouring herbicide tolerance mutations
that confer tolerance to sulfonylurea-, imidazolinone- and
aryloxyphenoxy propionate-type herbicides by base editing
the acetolactate synthase (ALS) and acetyl-coenzyme A
carboxylase (ACCase) genes (Zhang et al., 2019).

Breeding new fruit varieties with architectures and yields
suitable for urban farming will be an important part of future
agriculture. Zachary B. Lippman group cultivated new vine-
like tomato plants into compact, early yielding plants suit-
able for urban agriculture by modifying three genes for reg-
ulator of tomato stem length (SlER), rapid flowering (SP5G)
and precocious growth termination (SP) using one-step
CRISPR-Cas9 genome editing (Kwon et al., 2019).

CRISPR APPLICATIONS IN ANIMAL BREEDING AND
DISEASE MODELING

As a precise, efficient and faster genome editing tool,
CRISPR system is widely used in animal breeding and dis-
ease modeling. Combine with gene editing technology, there
are several basic ways to generate animal models with gene
modification. To create gene edited animals through
microinjection of mRNA or RNP into zygote-stage embryos,
or use gene edited donor cells as embryonic stem (ES) cells
to create gene edited animals. Using microcarriers like viral
vectors and nano-particles to deliver genome-editing com-
ponents is an efficient way to target specific organs of ani-
mals (Amoasii et al., 2018; Gao et al., 2018; Nelson et al.,
2019).

Different modeling methods were performed according to
the different of species. In rodents or other small animals
with shorter reproduction cycles, can produce chimera gene
edited animals by ES cells injection, and then obtain
homozygous mutated animals through natural mating. But
for large animals, the most efficient way to get gene-edited
animal is by directly injection of CRISPR system into zygote
and embryo transfer performed later. As the improving of
efficiency and specificity of CRISPR system, it is increas-
ingly being used in large animals like monkeys (Zhang et al.,
2018; Qiu et al., 2019; Zhou et al., 2019b). But one of the
drawbacks with CRISPR system is that the same gRNA
usually causes various genome types between cells and
individuals, so it will be hard to obtained “identical” animal
models for one disease mutation.

The breakthrough of clone monkeys research brought a
new approach to generate animal models by combining
somatic cell nuclear transfer (SCNT) with genome editing
technology (Liu et al., 2018). Using the edited cells with the
same genome typing as donor cells, the clone animals will
have the same genetic background. Through this way,
Huntington’s disease pigs and a BMAL1-ablation macaque
have been established in recent researches (Yan et al.,
2018; Qiu et al., 2019). With the improving of SCNT, such an
approach will be the most efficient way to generating large

animal models of human diseases, including non-human
primate models.

Along with the develop of CRISPR technology, a new
technology named as prime editing has emerged, which
allows make a few bases replace, delete and insert without
creating double-stranded DNA breaks (DSB), the system
increased types of genetic mutations (Anzalone et al., 2019).
It will be the next generation gene editing tool in animal
breeding and disease modeling.

CRISPR APPLICATION IN BIOTHERAPY

CRISPR-based therapies have been in actively development
in many laboratories. There have been too many pre-clinical
studies ongoing to be covered in this short section, and
therefore we will only cover the notable clinical
investigations.

Gene editing therapies can be divided into two large
categories: ex vivo and in vivo. For cells that can be har-
vested from patients, manipulated in the lab, and then
engrafted back into patients, ex vivo gene editing is favor-
able to achieve good efficiency and safety. Correcting
genetic mutations in human hematopoietic stem and pro-
genitor cells (HSPCs) is a promising strategy to treat various
genetic diseases of hematopoietic system. In particular,
disrupting erythroid enhancer of human BCL11A induced fe-
tal haemoglobin production, providing a promising strategy
for treating β-thalassemia and sickle cell disease (PMID:
26375006). Two clinical studies based on this principle were
initiated in late 2018 by Vertex pharmaceuticals. In these
phase 1/2 studies, they use spCas9 to modify the erythroid
lineage-specific enhancer of BCL11A in autologous CD34+

HSPCs (Vertex, 2018a, b). While these trails are ongoing, a
Chinese team led by Hongkui Deng and Hu Chen published
their first case in clinical study using CRISPR-based gene
editing (PMID: 31509667). In this study, they edited the
HSPCs from an HLA matched donor using spCas9 and
transplanted CRISPR-edited HSPCs into a patient with HIV-
1 infection and acute lymphoblastic leukemia. This study
proved the feasibility and relative safety of the strategy of
editing CD34+ HSPCs.

In addition to HSPCs, enhancing T cell therapy using
CRISPR is also in active development. One phase 1 clinical
trials led by a team from Chinese PLA General Hospital is
assessing the safety and efficacy of CAR-T cells with
PDCD1 being knocked out by CRISPR (Chinese PLA
General Hospital, 2018). Recently, Carl June’s group pub-
lished their study of TCR-T cells with multiplex gene editing
of PDCD1, TRAC and TRBC in three patients with refractory
cancer. The long-term engraftment and minimal adverse
effect demonstrated the feasibility of this strategy (PMID:
32029687).

In contrast to the above-mentioned ex vivo strategies,
in vivo gene editing therapy is more challenging, due to the
requirement of efficient and tissue-specific in vivo delivery
methods. AAV viral vector is the most popular option,

CURRENT ADVANCES Baohui Chen et al.

788 © The Author(s) 2020

P
ro
te
in

&
C
e
ll



however recent studies showed the high frequency of vector
insertion into the cellular genome (PMID: 30778238), raising
safety concerns. In addition, the potential immunogenicity of
SpCas9 and SaCas9 (PMID: 30692695) need to be con-
sidered for in vivo therapy. The most advanced clinical trial of
CRISPR in vivo therapy was based on a preclinical study
done by Editas (PMID: 30664785), which showed efficient
removal of a disease causing mutation within the intron 26 of
CEP290 gene using AAV-saCas9, in both murine and pri-
mate models. Subsequently Allergan, in collaboration with
Editas, initiated a clinical trial treating patients carrying a
homozygous or compound heterozygous mutation (c.2991 +
1655A > G in intron 26 of the CEP290 gene) (Allergan
2019) using subretinal injection of AAV vector.

In conclusion, we have seen CRISPR therapy entered the
clinical studies in the past year, and many more will come in
the following years. With more clinical data accumulate, the
efficacy and safety of CRISPR based therapy will be better
evaluated, and the best cure for many diseases will be
found.
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