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A B S T R A C T   

We explored the application of Fisher information to the study of pandemics and illustrated the insights that can be gained using the COVID-19 
pandemic, as a test case. To do so, we applied the Fisher information theory previously applied to periodic systems, to non-periodic dynamic 
systems. The resulting mathematical machinery was then used to compute the Fisher information measure, as the amount of information extracted 
from the time series for COVID-19 confirmed infections and deaths. The analysis was performed for the World as a whole and five nation-states: 
India, USA, Japan, Germany, and Chile. Several insights resulted from the study: (1) the information content of the time series varied widely for 
different time periods, over the course of the pandemic, (2) it is advisable not to fit model parameters or make policy decisions based on data from 
time periods with low Fisher information, (3) the most information about a wave of infections comes towards the end of the wave where the time 
series data has the most information about the dynamics of the pandemic, and (4) the quality of the time series data significantly affects the Fisher 
information value, and, therefore, what can be learned from studying the time series.   

1. Introduction 

The recent, still ongoing pandemic of COVID-19 disease has immensely influenced the modern world. In a highly interconnected 
world, the pandemic developed quickly, produced a healthcare crisis of unprecedented dimensions, endangered the functioning of 
economies, and brought measures and restrictions to which citizens of many countries in the World were completely unaccustomed. 

Modeling of epidemic dynamics is often used to guide the formulation of counter-epidemic measures. These measures frequently 
restrict and shape the lives of entire nations and the functioning of entire economies, and, hence, the reliable forecasting of key 
epidemic numbers has become of central social and healthcare importance. Mathematical epidemiology [1] has suddenly received 
much public attention, and various models of mathematical epidemiology have been proposed and applied. These models can have 
very different levels of complexity, mathematical sophistication, and data acquisition methodologies [2]. 

Models of epidemic propagation can be primarily categorized according to the process of infection in an individual and the 
mechanisms of contagion between individuals [3,4]. The course of infection in individuals is usually modeled by discrete states, 
usually referred to as compartments [5]. As the infection evolves, each individual transits between compartments, e.g., exposed to 
infected. Some examples of compartments in epidemic models are susceptible (S), exposed (E), infected (I), recovered/removed (R), 
etc. Individuals can then be categorized into one of the subpopulations depending on the state (compartment) that they belong to. 
Mechanisms of contagion define how individuals in different compartments get in contact, enabling disease propagation. Homoge-
neous mixing models assume an equal probability of contact between all individuals belonging to different compartments [6]. 
Network-based models assume that social contacts that facilitate disease spreading have a graph structure presentable in the form of a 
complex network [7–9]. Metapopulation models combine homogeneous mixing with network structure, e.g. using network structure 
to describe disease spreading by air travel between cities and homogeneous mixing to describe spreading within cities [10]. 
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Approaches to epidemic spreading relying on agent-based models (ABM), e.g. Ref. [11], simulate the motion of a large ensemble of 
individuals where infection can be transferred when predefined conditions are met, e.g. when individuals come close enough [12]. The 
dynamics of spreading need to be complemented by the processes happening at the level of an individual, such as recovery from the 
disease. Some frequently used compartmental models are SI, SIS, SIR, SEIR models, etc. 

Epidemiological models contain parameters that encode properties of the disease such as its ease of spreading or rate of recovery of 
infected individuals. In most epidemiological models these parameters are taken as constant. However, models with fixed parameters 
prove to be inadequate for a long-term realistic description of the COVID-19 pandemic. Namely, the course of a pandemic is decisively 
affected by the complex and adaptive social response, counter-epidemic measures varying spatially (geographically) and temporally, 
and frequent mutations of the SARS-CoV-2 virus, just to name some important factors. In such circumstances, model parameters need 
to be frequently recalibrated and models with variable (or even stochastic) parameters would be a more adequate description. The 
dynamics of parameters contain cases of sudden change (such as changing mandatory counter-epidemic measures), or gradual vari-
ation (such as growth in incidence of a novel virus strain). Such variability of the environment in which the disease spreading takes 
place, encoded in (variable) model parameters, results in multiple waves of pandemic propagation. 

In such unstable conditions, a legitimate question is what is the level of epidemic control that the society (together with all its 
institutions and services) actually has. A high level of control would correspond to (quickly) falling epidemic numbers and efficient 
functioning of counter-epidemic measures. On the other hand, a low level of control would correspond to a situation of (fast) growth of 
epidemic numbers and inefficient or non-existent counter-epidemic measures. The level of control is frequently identified (or at least 
well approximated) with the amount of available information. A model-independent measure telling us how much we currently know, 
i.e. which information we currently possess, about the epidemic system that we observe is, therefore, both theoretically interesting and 
practically needed. In this paper, we argue that Fisher information is such a measure. We further compute the Fisher information for 
five countries and the World, present the variability of Fisher information with the course of the pandemic, and analyze some of its 
properties. 

Fisher information has so far been successfully applied to the analysis of ecological systems [13–17], sustainability [18–23], regime 
shifts in dynamic systems [24–28], the socio-political system of nation-states [24,29], and other areas [30,31]. A common property of 
studied systems in previous applications of Fisher information is their periodicity. In this paper we apply the concept of Fisher in-
formation to epidemic systems that do not have this property, i.e., they are not periodic. In that respect, this paper brings novelty in two 
directions: (i) application of Fisher information to non-periodic systems and (ii) quantification of the information content of epidemic 
data and the analysis of its temporal development. 

The first section of this paper is the introduction in which we outline the main idea of the application of Fisher information to 
epidemic systems. The second section starts with the definition of Fisher information and elaborates on a specific approach to its 
calculation. In the third section, we display epidemic data for the World and five countries (India, United States of America, Japan, 
Germany, and Chile). In the fourth, section the results of Fisher information calculation are presented. The fifth section is devoted to 
the discussion of results and the sixth section closes the paper with a summary and conclusions. 

2. Fisher information 

2.1. Origins and interpretation 

The information function now widely known as Fisher information was derived by the British mathematical statistician Ronald A. 
Fisher [32]. For a relation of Fisher information and its associated measure with other information theory quantifiers, see Martins et al. 
[33]. The Fisher information I(θ) is formally a measure of the amount of information about an unknown parameter θ obtainable from 
observations of a random variable s. Formally, the Fisher information is defined by, 

I(θ) ≡
∫

1
p(s|θ)

[
∂p(s|θ)

∂θ

]2

ds (1)  

where p(s|θ) is the conditional probability density of observing s in the presence of θ. Note that if the random variable s contains no 
information about θ, then the partial derivative of p(s|θ) with respect to θ is zero, and the Fisher information I(θ) is zero as well. Hence, 
the choice of s in practice is dependent on what θ represents. 

The definition represented by Eq. (1), however, is difficult to use, particularly for the kinds of problems that we address in this 
work. The reason is that evaluating the partial derivative of p(s|θ) with respect to an unknown parameter θ is often not possible in 
practice. Fortunately, one can invoke the concept of shift-invariance to derive a simplification [34]. Hence, we first define a new 
variable ̂s ≡ s – θ and then note that p(s|θ) ≡ po(s-θ|θ) = po(̂s). The first equality defines a new probability po law for the fluctuations of s 
– θ for an observation conditional on θ. The second equality states that for a shift-invariant system, the fluctuations s – θ are inde-
pendent of the value of θ. This essentially states that p(s|θ) is equal to a probability density function po(̂s) of the same form which does 
not depend on θ. Lastly, ds = dŝ since θ is a constant parameter. Where again po(̂s) is a new probability density function. Using these 
results, we can then transform the expression in Eq. (1) into, 

I =
∫

1
po(ŝ)

[
dpo(ŝ)

dŝ

]2

dŝ (2)  
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where po(̂s) is the simple probability density for observing a value of ̂s. However, since the subtraction of θ from s does not change the 
calculation of the Fisher information I, for the rest of this paper we tacitly use s in place of ̂s and p(s) in place of po(̂s). Note that the 
Fisher information I is no longer dependent on the parameter θ, and that the derivative in the integrand is the slope with respect to the 
variable s of the simple probability density function. 

Further, Eq. (2) allows us to build an interpretation of Fisher information in terms of tangible physical concepts. Conceptually, a 
highly ordered system is one where the state of the system over time is not changing or changing very little, and the state of the system 
is, therefore, predictable with low uncertainty. As an illustration, consider that multiple measurements of a variable s for a highly 
ordered system will yield nearly identical values s with every observation. In such a case, a plot of p(s) versus s is a very sharp curve 
around the mean value < s > of s. Then the derivative dp(s)/ds has a very high value, and the Fisher information is correspondingly 
high. Conversely, in the case of a highly disordered system, the state of the system changes greatly over time. In this other case, the 
state of the system is unpredictable or at least difficult to predict. Here, repeated measurements of the same variable s will yield values 
that are widely spread. A plot of p(s) versus s is then a nearly flat curve, and the derivative dp(s)/ds has a low value. The corresponding 
Fisher information is then low as well. Hence, the form of Fisher information represented by Eq. (2) is a measure of order, e.g., highly 
ordered systems have high Fisher information, and highly disordered systems have low Fisher information. 

It should also be noted that Eq. (2) along with the Principle of Extreme Physical Information [34] has been used to derive many of 
the known laws of nature from a common principle of information transfer. This formally confirms the concept that the laws of nature 
are in fact present in the data from observations. In this work, however, we did not attempt to find general laws, rather we simply 
observed that Fishier information could offer insights into the dynamics of the COVID-19 pandemic. 

2.2. Computing Fisher information 

The next step in the development of a theory based on Fisher information is to pose the existence of a time series of n directly 
observable properties which adequately characterize the system. These observations rx1(t), rx2(t), … rxn(t) which we call “raw” data 
consist of measurable properties of the system. For a physical system, these could be mass, temperature, velocity, etc. In the case of a 
pandemic, these could be the number of infections, deaths, recoveries, etc. The rx1(t), rx2(t), … rxn(t) do not in general have the same 
dimensions, and it becomes necessary to make them nondimensional as we will see later. The method we selected was to simply divide 
the values of each observation rxi(t) by the value of the average of raw observations in the time series <rxi> to obtain xi(t), e.g. xi(t) =
rxi(t)/<rxi > . 

We then identify the variable s as the state of the system. In a complex system, s is a function of many independent observable and 
dimensionless variables xi where i = 1, 2, …n, and then s = s(x1, x2, …xn). If there is a time series of observations of the system, the 
variables xi(t) are functions of time t and s(t) = s(x1(t), x2(t), … xn(t)) as well. One can then pose that s(t) represents a point at a time t 
in a linear space where the coordinates are the variables xi(t) and time. In this case, the collection of observations defines a trajectory of 
s(t) defined by x1(t), x2(t), … xn(t) and t. The probability of observing a particular state of the system s is proportional to the time Δt|s 
that the system spends in the state, 

p(s)=Δt|s
/

T (3a)  

where in Eq. (3a), p(s) is the probability density for observing the system in state s, and T is a characteristic time frame further dis-
cussed below. In the limit of many small states of the system, we can approximately replace the sequence of states and the sequence of 
time intervals with a continuous function, and then Δt|s = dt|s. To obtain Eq. (3b), we further pose that Δt|s is equal to the size δs of state 
s divided by the mean speed tangential to the system path < ds/dt|s> while traversing the state. In the limit of small (δs) states of the 
system, we can approximately replace the mean speed with the instantaneous speed at state s to get, 

p(s)=
1
T

δs
[

ds/dt

]

S

(3b) 

This expression essentially says that the slower the speed while traversing a particular state, the longer the system will be in the 
state, and the more likely that the system will be observed in that particular state. 

Finally, in a linear space, the tangential speed ds/dt|s can be computed using the Euclidean metric to obtain Eq. (3c). 

[
ds
dt

]

s
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

[
dxi

dt

]2

s

√

(3c)  

where dxi/dt is the first derivative of the dimensionless variables xi with respect to time for the observable variables of the system. 
Using Eq. (3), we then develop a computable expression for the probability density function p(s) given in Eq. (4). 

p(s)=
δs
T

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

[
dxi

dt

]2

s

√ ]− 1

(4) 

Further, it is also possible to use the chain rule to express Eq. (2) as an integral over time rather than states of the system. The 
resulting expression after some manipulation is, 
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I =
∫

1
p(s)

[
dp(s)

dt

]2(ds
dt

)− 1

dt (5) 

One remaining issue with Eqs. (4) and (5) is the size of the state δs. The parameter δs represents the lower limit of observability, i.e., 
two hypothetical states that are spaced at less than δs from each other are not distinguishable. It is, therefore, a property of the 
measuring process used to conduct the observation, but it is not a property of the system. Given a specific measuring process, it seems 
reasonable to assume that δs is a constant. In cases where the absolute value of Fisher information is important, the actual value of δs 
would be important as it appears as a constant multiplier in Eq. (4). However, in the cases that we will address in this work, we are only 
interested the relative value of Fisher information where the actual value of δs is not critical. We, therefore, tacitly set δs = 1. 

The results from Eq. (5) can be used to derive after further manipulation a working expression for computing Fisher information of 
the form, 

I
(
tj
)
=

1
T

∫tj+T/2

tj − T/2

(
d2s

/
dt2

)2

(ds/dt)4 dt (6)  

where T is again a characteristic time frame as discussed below, and where the derivatives ds/dt and d2s/dt2 are computed from Eqs. 
(7a) and (7b). 

ds
dt

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
dxi

dt

)2
√

(7a)  

d2s
dt2 =

(
ds
dt

)− 1 ∑n

i=1

dxi

dt
d2xi

dt2 (7b) 

Eqs. (6) and (7) are the working expressions for computing the Fisher information from time series for the system variables xi. If a 
mathematical model exists, the derivatives can be computed analytically. Otherwise, they must be approximated numerically. 

In practical terms, T is the characteristic time associated with the phenomena for which we desire to obtain the value of the Fisher 
information. For a periodic system, T has to be equal to at least one system period, but letting T be equal to several periods is often 
preferable. In the case of a non-periodic system, assigning a value to T can be more ambiguous. However, at least an estimate of the 
characteristic time frames for the system can often be deduced. In the case of the COVID-19 pandemic, for example, one short-term 
phenomenon is the rise and resolution of infections which often occurs over a period of approximately three weeks. Here, we have 
set T ≈ 21 days. Conversely, if the interest is in the seasonal course of the pandemic, then we would set T ≈ 90 days, about three 
months. 

2.3. Fisher information and order (or randomness) 

To further illustrate the relationship between Fisher information and order, consider the Fisher information computed from data for 
two independent variables x1 and x2 which follow functions of the following form as shown in Eqs. (8a) and (8b). 

x1 = 1000 −

[

20
i + 2 − 〈i〉

〈i〉

]2

− R(0, r) (8a)  

x2 = 1000 −

[

5
i + 2 − 〈i〉

〈i〉

]4

− R(0, r) (8b)  

where i = 0, 1, 2, …23, <i> is the arithmetic mean of i; R(0, r) is a random function that varies between 0 and r, and r = 1, 10, 100, 
1000. We computed the Random Function using the standard random function available with the Microsoft Excel spreadsheet. Here i 
represents a generic dynamic parameter, for example, time. We then compute the value of the Fisher information for all values of i 
under the four separate values of r. It should be noted that we are using randomness as a proxy for disorder. The reason is that the 

Fig. 1. shows the Fisher information computed from <i>x1 and x2 as a function of the randomness parameter r where T = 21 days.  
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observable variables of orderly systems follow a pattern, perhaps driven by an ordering dynamic parameter, and that makes the 
behavior of the system generally predictable. We then show the Fisher information for one discrete case of the random function R(0,r) 
as shown in Fig. 1. Note that every time that R(0,r) is invoked, it generates a different sequence of random numbers between 0 and r. 
However, in general, the Fisher information decreases with increasing randomness as shown here. 

3. The COVID-19 pandemic 

3.1. Trajectory at the global and national scale 

Figs. 2–7 show the time trajectory of daily confirmed cases and daily deaths for the World, India, the United States of America, 
Japan, Germany, and Chile. All plots in these figures have a double y-axis where the scale on the left-hand y-axis refers to daily cases 
and the scale on the right-hand y-axis refers to daily deaths. The choice of countries includes a reasonably wide range of national 
population sizes, geographic location, and cultural backgrounds. The daily confirmed cases and daily deaths were computed by 
subtracting the total or cumulative cases or deaths and from those of the previous day. The actual expression for daily confirmed cases 
DCi and daily deaths DDi for day i are given by Eqs. (9a) and (9b). 

DCi =Ci+1 − Ci (9a)  

DDi =Di+1 − Di (9b)  

where Ci and Ci+1, and Di and Di+1 are the cumulative number of confirmed cases and deaths in days i and i + 1 respectively. The 
primary data used in these calculations was taken from the online data repository of Johns Hopkins University in the United States of 
America [35]. These data were chosen because the authors deemed them to be gathered using a consistent unified methodology, 
reasonably accurate, and widely available. 

3.2. Observations 

The first observation is that at both the global and the national scale, the number of confirmed infections and deaths appear to be 
correlated, with the deaths often slightly trailing the infections as expected, i.e., when the number of infections rises, the number of 
deaths usually rises later. The second observation is that the “waves” of infections and deaths are not well correlated when comparing 
different nations. Compare, for example, the “waves” in Fig. 3 for India to those for the United States of America in Fig. 4. The “waves” 
for Japan in Fig. 5 are also not well correlated to those for Germany in Fig. 6. This is to be expected because the COVID-19 pandemic 
did not simultaneously affect all nation-states, and the strategies of the public health measures taken also across the globe differ from 
nation to nation. It is also notable that on average, the number of daily cases and deaths is not highly correlated with the population of 
the country. For example, India has approximately four times the population of the USA, but the range of the number of daily infections 
and deaths is qualitatively similar. Japan has about six times the population of Chile, but the range of the number of daily cases and 
deaths was not very different. Also, relatively extreme events such as that for Germany around 20 November 2021 were not evident at 
the same magnitude elsewhere. As expected, the numbers of daily cases and deaths at the global scale are the sum of the respective 
numbers for all nations across the globe, including the five presented in this analysis. 

At the global scale, daily death rates rose steeply with daily infections near the start of the pandemic and with succeeding waves of 
infections. However, the most recent data seems to point to a decoupling of daily death rates from daily infections. While the authors 
are not certain why this is happening, we can speculate that more widespread immunity (herd immunity) in the human population due 
to vaccinations and immunity resulting after recovery from infection may a play role. Additionally, it is also possible that more 
transmissible, yet clinically milder virus strains are becoming more prevalent in the population. 

Lastly, one should note that the symptoms of COVID-19 infections can mimic those of other upper respiratory diseases, and it is 

Fig. 2. Daily confirmed cases and daily deaths for COVID-19 across the World over the course of the COVID-19 pandemic up to 8 October 2022.  
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possible that some COVID-19 cases may have been missed. However, the authors believe that the numbers of confirmed infections and 
deaths are reasonably accurate. This is supported by the wide experience of the medical profession with the COVID-19 pandemic and 
the relatively wide availability of tests for COVID-19 infection. 

4. Results from Fisher information calculations 

For conducting Fisher information calculations related to the COVID-19 pandemic, we chose T = 21 days or three weeks. The 
reason is that it normally takes about three weeks for a typical infection to go from initial infection to resolution by either recovery or 
death. This implies, however, that any given Fisher information value represents the information content of the data for the three-week 
period over which the calculation was performed. Note also, that we assigned the resulting value of the Fisher information to the 
middle of the three-week period, and it represents, consequently, the information in the data for the three weeks. The Fisher infor-
mation at the global and national scale results are shown in Figs. 8–13. 

Fig. 3. Daily confirmed cases and daily deaths for COVID-19 in India over the course of the COVID-19 pandemic up to 8 October 2022.  

Fig. 4. Daily confirmed cases and daily deaths for COVID-19 in the United States of America over the course of the COVID-19 pandemic up to 8 
October 2022. 

Fig. 5. Daily confirmed cases and daily deaths for COVID-19 in Japan over the course of the COVID-19 pandemic up to 8 October 2022.  
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Fig. 6. Daily confirmed cases and daily deaths for COVID-19 in Germany over the course of the COVID-19 pandemic up to 8 October 2022.  

Fig. 7. Daily confirmed cases and daily deaths of COVID-19 in Chile over the course of the COVID-19 pandemic up to 8 October 2022.  

Fig. 8. The Fisher information computed from the time series for confirmed infections and deaths at the global scale over overlapping periods of 
three weeks (T = 21 days) with the Fisher information value assigned to the middle of the three-week period. The plot is a semi-log to the base 10. 

Fig. 9. The Fisher information computed from the time series for confirmed infections and deaths at the national scale for India over overlapping 
periods of three weeks (T = 21 days) with the Fisher information value assigned to the middle of the three-week period. The plot is a semi-log to the 
base 10. 
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Fig. 10. The Fisher information computed from the time series for confirmed infections and deaths at the national scale of the USA over overlapping 
periods of three weeks (T = 21 days) with the Fisher information value assigned to the middle of the three-week period. The plot is a semi-log to the 
base 10. 

Fig. 11. The Fisher information computed from the time series for confirmed infections and deaths at the national scale of Japan over overlapping 
periods of three weeks (T = 21 days) with the Fisher information value assigned to the middle of the three-week period. The plot is a semi-log to the 
base 10. 

Fig. 12. The Fisher information computed from the time series for confirmed infections and deaths at the national scale of Germany over over-
lapping periods of three weeks (T = 21 days) with the Fisher information value assigned to the middle of the three-week period. The plot is semi-log 
to the base 10. 

Fig. 13. The Fisher information computed from the time series for confirmed infections and deaths at the national scale of Chile over overlapping 
periods of three weeks (T = 21 days) with the Fisher information value assigned to the middle of the three-week period. The plot is a semi-log to the 
base 10. 
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5. Results and discussion 

5.1. Global pandemics 

The World in the early 21st Century is highly connected, perhaps a hyperconnected network. People and physical goods can be 
moved across the globe by air travel at speeds far greater than any seen in previous ages in history. Economic information and general 
news can be transmitted from any place to any other place on Earth at near the speed of light through the World Wide Web. It is not 
surprising then that a global event such as the SARS CoV-2 (COVID-19) impacted in some way almost everyone and almost everywhere 
very quickly. These are fast-moving events. One of the proposed contributions of this work is to help clarify the time frame necessary 
for assessing the dynamics of a pandemic such as the COVID-19 pandemic, and to help identify when optimal information can be 
extracted from the primary observational data of infections and deaths. 

5.2. Interpretation of Fisher information results 

An interpretation of Fisher information as an information measure of the level of control can be nicely demonstrated in several 
prominent examples. One would expect that at the end of a wave, before a new wave has started, we have the largest degree of control. 
By that point, we have accumulated the greatest amount of information on the biological properties of the disease and ways and 
measures how it can be controlled and restrained along with the response of the human population. The biggest epidemic wave in India 
happened in the spring of 2021, see Fig. 3., and by July 2021 it was largely over. As one can see in Fig. 9 in July 2021 Fisher in-
formation for India peaked at a high level. Another example is the end of the first epidemic wave in Germany in May 2020, see Fig. 6., 
which is accompanied by a peak in Fisher information in Fig. 12. 

The results for the World and the United States of America display numerous peaks in Fisher information, but they are of less 
prominent height. This fact may be related to the composite nature of results for epidemic numbers for these relatively large 
geographical areas. Namely, the results for the World are a combination of national results where countries may adopt different 
strategies in the combat against the pandemic or new virus strains may reach them at different times. A similar situation is present in 
the United States of America where states have adopted different responses to the pandemic. Furthermore, these two geographical 
areas are spatially big and contain areas of very different demographic properties such as population density. In both these cases, 
epidemic waves are also less prominent. 

It is worth noting that Fisher information tends to reach a “peak” towards the end of a pandemic wave of infections and deaths as 
already mentioned. This implies that the most information about the dynamics of the pandemic only becomes available towards the 
end of the wave. However, it should also be noted that the information content of the data quickly tends to collapse to a low value 
shortly after the end of a wave. The implications here are that most of the information needed to analyze the pandemic dynamics or to 
fit a model parameter is contained in the data between the start and the end of a wave. One would also caution about making major 
policy changes based on pandemic data with low Fisher information. 

Lastly, there are a few discontinuities in the plots of Fisher information, e.g., a point all by itself or a gap between two Fisher 
formation trajectories. These are due to numerical problems arising from data quality issues. A few examples of these issues are the 
daily numbers for new cases or new deaths being zero on several consecutive days, and then appearing to be unexpectedly high on the 
day after. Given the challenges imposed by the COVID-19 pandemic, such errors should not be unexpected. These data issues cause 
various problems such as giving undefined values of Fisher information due to a division by zero and other problems. However, despite 
these difficulties, the authors feel that they could still show that it is possible to conduct an insightful analysis using Fisher information. 
In fact, it is important to demonstrate that the analysis can be conducted with actual and realistic field data. 

6. Summary and conclusions 

In this paper, we extend to non-periodic systems the concept of Fisher information that has been previously applied to (quasi) 
periodic systems. As a contemporary example of major interest, we calculate Fisher information for the ongoing pandemic of COVID 
19. Using the data for daily numbers of newly infected and deceased individuals from the Johns Hopkins database [35], we calculate 
Fisher information as a function of time for the World and five geographically, culturally, demographically, and economically different 
countries: The United States of America, India, Germany, Japan, and Chile. It is found that Fisher information exhibits intensive 
dynamics where it acquires values differing by many orders of magnitude. In particular, the Fisher information peaks after the end of 
an epidemic wave for all studied geographic regimes where epidemic waves are clearly present. The behavior of Fisher information 
also shows different patterns for different nation-states, e.g., India and Germany, where epidemic control measures were applied 
relatively homogeneously. There are also unique patterns for areas such as the USA or the World where measures were applied more 
heterogeneously. Finally, it is argued that Fisher information is a measure of the level of control that a society has in the battle with the 
pandemic because information is a prerequisite to the formulation and application of epidemic control measures. 

In conclusion, the extension of the Fisher information concept used in this work from periodic to non-periodic systems seems 
reasonable in that it can produce useful results. However, more research is required to establish the general validity of our approach to 
non-periodic systems. The Fisher information values, calculated from the COVID-19 empirical time series data for various countries 
and regions, show that the Fisher information can vary by many orders of magnitude and that periods of (very) high Fisher information 
exist. Finally, Fisher information is found to be a good measure of the level of control over the pandemic process. 
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[21] A. González-Mejía, L. Vance, T. Eason, H. Cabezas, Recent developments in the application of Fisher information to sustainable environmental management, 

Assessing and measuring environmental impact and sustainability (2015) 25–72. 
[22] L. Vance, T. Eason, H. Cabezas, An information theory-based approach to assessing the sustainability and stability of an island system, Int. J. Sustain. Dev. World 

Ecol. 22 (1) (2015) 64–75. 
[23] Y. Wang, J.E. Taylor, M.J. Garvin, Measuring the resilience of human–spatial systems to disasters: framework combining spatial-network analysis and Fisher 

information, J. Manag. Eng. 36 (4) (2020) 04020019. 
[24] A.T. Karunanithi, A.S. Garmestani, T. Eason, H. Cabezas, The characterization of socio-political instability, development, and sustainability with Fisher 

information, Global Environ. Change 21 (1) (2011) 77–84. 
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