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Abstract

Group A streptococcal isolates of serotype M18 are historically associated with epidemic waves of pharyngitis and the non-
suppurative immune sequela rheumatic fever. The serotype is defined by a unique, highly encapsulated phenotype, yet the
molecular basis for this unusual colony morphology is unknown. Here we identify a truncation in the regulatory protein
RocA, unique to and conserved within our serotype M18 GAS collection, and demonstrate that it underlies the characteristic
M18 capsule phenotype. Reciprocal allelic exchange mutagenesis of rocA between M18 GAS and M89 GAS demonstrated
that truncation of RocA was both necessary and sufficient for hyper-encapsulation via up-regulation of both precursors
required for hyaluronic acid synthesis. Although RocA was shown to positively enhance covR transcription, quantitative
proteomics revealed RocA to be a metabolic regulator with activity beyond the CovR/S regulon. M18 GAS demonstrated a
uniquely protuberant chain formation following culture on agar that was dependent on excess capsule and the RocA
mutation. Correction of the M18 rocA mutation reduced GAS survival in human blood, and in vivo naso-pharyngeal carriage
longevity in a murine model, with an associated drop in bacterial airborne transmission during infection. In summary, a
naturally occurring truncation in a regulator explains the encapsulation phenotype, carriage longevity and transmissibility of
M18 GAS, highlighting the close interrelation of metabolism, capsule and virulence.
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Introduction

The group A streptococcal (GAS) hyaluronic acid (HA) capsule

is a key virulence determinant that enhances bacterial resistance to

neutrophil-mediated opsonophagocytosis and facilitates adherence

to epithelial surfaces [1–5]. Serotype M18 GAS display a

uniformly mucoid, hyper-encapsulated phenotype and have been

implicated in outbreaks of pharyngitis and subsequent onset of

acute rheumatic fever (ARF) [6–10], an immunologically-mediat-

ed post-infection sequela to streptococcal tonsillitis that is the

leading cause of valvular heart disease globally [11]. To date, the

molecular basis for excessive capsule production by M18 GAS

strains has remained unknown [12]. Whilst exposure to human

blood or animal passage can induce an increase in GAS

encapsulation such stimuli do not account for the phenotype

exhibited by M18 GAS [2,13].

HA is comprised of repeating subunits of two hexamers;

glucuronic acid and N-acetylglucosomine that are polymerized by

HA synthase, the gene for which is located in the HA synthase (has)

operon [14,15]. The operon encodes three enzymes required for

the production of the HA precursor glucuronic acid; hasA

(hyaluronate synthase), hasB (UDP-glucose dehydrogenase) and

hasC (a UDP-glucuronic acid uridyl transferase) which are co-

transcribed. The second monomer, N-acetylglucosamine is a

metabolite produced during cell wall peptidoglycan synthesis [15].

Some isolates of GAS (M4 and M22) lack the hasABC operon and

therefore do not produce HA capsule indicating that capsule may

not be essential for pathogenicity in all serotypes [16]. Whilst

single nucleotide polymorphisms at sites in the has operon have

been demonstrated to impact on the level of GAS encapsulation

[12], they do not account for the excessive level of HA produced

by strains of serotype M18.

GAS pathogenicity is reliant on transcriptional regulation of

virulence factors [17–23]. To achieve this, GAS employ a number

of two-component regulatory systems (TCS), which together form

a highly complex regulatory network. The best studied GAS TCS

is the control of virulence operon (CovR/S), also known as CsrR/

S, which regulates approximately 10% of the GAS genome [24].

Phosphorylation of cytosolic regulator CovR by its membrane-

bound cognate sensor kinase CovS induces enhanced binding to,

and repression of, target gene promoters. CovR is an important

transcriptional repressor of the capsule synthesis operon (has

operon) [25]. Whilst its mechanism of action has been rigorously

studied, much is unknown regarding the complex interactions
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between CovR/S and other regulatory proteins. Naturally

occurring loss of function mutations in CovR/S induce a hyper-

invasive phenotype often associated with enhanced virulence

factor expression, including capsule synthesis [26,27]. However

CovR/S mutations do not account for levels of hyper-encapsula-

tion observed in serotype M18 GAS, suggesting an alternative

genetic basis for this phenotype. A positive regulator of CovR,

RocA, has been reported to up-regulate covR transcription with

subsequent enhanced repression of capsule synthesis [28]. In this

work we identify a unique truncation of RocA in M18 GAS that

accounts for the unusual phenotype demonstrated by strains of this

serotype in our study.

Results

Serotype M18 is phenotypically distinct from other GAS
Several reports support the observation that M18 GAS strains

are more encapsulated than other serotypes [1,2,12]. To

systematically investigate this, we compared hasA transcription

and capsular HA synthesis in clinical isolates representing the

UK’s commonest M-types [M1, 3, 4, 6, 12, 89] with M18 GAS,

using five isolates of each (Table 1). M18 GAS strains produced

significantly greater amounts of capsular HA than all other types,

and this could be attributed to enhanced hasA transcription

(Figure 1 A and B).

Given that transcription from the has operon is regulated by

CovR/S [29], we hypothesized that transcriptional variation in

either component could play a role in establishing the M18

phenotype. Overall, however, no difference was observed in inter-

serotype transcript levels of either gene when measured by

quantitative real time PCR. Despite predictions that covR

and covS are co-transcribed [29], transcript levels of covR were,

on average, 7-fold higher than covS (Figure 1 C) consistent with

either differences in gene transcription or differential RNA

stability.

The human nasopharynx is a key GAS reservoir and a primary

site for both bacterial colonization and persistence. Longevity of

naso-pharyngeal carriage was compared between GAS-M18 and

other pharyngitis-associated GAS serotypes M4, 6 and 12 in a

murine model (Figure 1 D). GAS-M18 colonized the mouse

nasopharynx for longer than all other strains tested, with greatest

bacterial shedding from the nares (Figure 1 D). To determine

whether the HA capsule could account for the observed M18

carriage phenotype, we created an isogenic capsule disruption

mutant, GAS-M18hasko (Table 2). Abolition of capsular HA

synthesis reduced carriage longevity of GAS-M18 to levels

observed for other GAS serotypes tested (Figure 1 D), demon-

strating the GAS capsule to be a key mediator of serotype M18

persistence in the nasopharynx.

A unique mutation in RocA underlies serotype M18
hyper-encapsulation

Systematic sequence analysis of a number of known and

predicted regulatory GAS genes revealed a serotype M18 specific

variation in the nucleic acid sequence for regulator of CovR, rocA,

with a conserved single nucleotide polymorphism (SNP) from T to

A at base pair 269 in the rocA nucleotide sequence. This translated

into a non-synonymous change from leucine (TTA) to a premature

stop codon (TAA) (Figure 2 A) resulting in truncation of the RocA

protein at amino acid 90/451 (Figure 2 B). Two non-synonymous

mutations were also identified in covR (Figure 2 C). Both sets of

mutations were unique to and conserved within all M18 isolates

analyzed, including contemporary isolates from the UK as well as

two pre-antibiotic era UK isolates from 1934 (Table 1), and the

USA genome sequenced strain MGAS8232 [7]. The mutations

were not identified in the other non-M18 strains tested, nor

in genome sequenced strains representing serotypes M1, M2,

M3, M4, M5, M6, M12, M28 or M49. To analyze the

impact of these previously unexplored mutations on GAS-M18

capsule synthesis, we firstly used plasmids to over-express a full-

length functional copy of either covR or rocA amplified from GAS-

M89 or truncated rocA amplified from GAS-M18 in GAS-M18,

creating strains GAS-M18pcovRM89, GAS-M18procAM89 and GAS-

M18procAM18 respectively. As a control GAS-M18 was also

transformed with empty plasmid only, yielding GAS-M18pcontrol

(Table 2).

Analysis of isogenic strains by quantitative real-time PCR

revealed that hasA transcription was reduced by over-expression of

covRM89 or rocAM89 compared with controls (Figure 3 A). This was

likely due to enhanced expression and subsequent activity of the

CovR repressor, either directly by over-expression of covR in GAS-

M18pcovRM89, or indirectly by RocA mediated up-regulation of

covR transcription in GAS-M18procAM89. However, complete

reversal of the M18 hyper-encapsulation phenotype was only seen

in GAS-M18procAM89, presumably by restoration of HA synthesis

regulation (Figure 3 B). This highlighted a major role for RocA in

the loss of transcriptional regulation of capsule synthesis in

serotype M18 GAS. No difference was observed in either hasA

transcript levels or capsular associated HA between strains GAS-

M18 and GAS-M18procAM18 (Figure 3 A and B). The RocAM18

truncation was therefore hypothesized to release the has operon

from CovR repression, however the effects on hasA alone were

insufficient to fully explain the impact of the RocA truncation on

production of capsular HA by GAS-M18.

The role of RocA in GAS virulence was further characterized

by the creation of two allelic exchange mutants using GAS-M89

and GAS-M18, whereby the rocA gene of one was replaced with

the rocA gene of the other, generating strains GAS-M89rocAM18

and GAS-M18rocAM89 respectively (Figure 4) (Table 2). The

serotype M18 RocA truncation was firstly demonstrated to be

sufficient to enhance encapsulation in a poorly encapsulated strain

Author Summary

Group A streptococcus is an important human pathogen
which produces a polysaccharide capsule that confers
resistance to killing by white blood cells and allows
bacterial adherence to host epithelial surfaces. Serotype
M18 isolates over-produce capsule, creating a unique and
characteristic appearance when grown on blood agar. This
feature may underlie the waves of infectious pharyngitis
and subsequent onset of rheumatic fever associated with
this serotype. The reason for hyper-encapsulation of M18
GAS is unknown. Here we show that a naturally-occurring
truncation in an important regulatory protein, RocA,
underlies serotype M18 hyper-encapsulation. By correcting
the truncation we were able to reverse hyper-encapsula-
tion, modify the 3-D structural morphology of bacteria
within colonies and alter the overall protein expression
pattern of the bacterium. We were able to reproduce
characteristics of M18 streptococci in a different serotype
strain by introducing the same truncation mutation. It was
also possible to show that the truncation in RocA led to
prolonged nasopharyngeal carriage of GAS in mice and
also promoted bacterial airborne transmission. Thus, the
propensity for M18 isolates to be associated with
outbreaks of pharyngitis and rheumatic fever may be
accounted for by the level of encapsulation induced by
truncation of the regulatory protein RocA.

RocA Truncation and Serotype M18 Encapsulation
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GAS-M89 (Figure 5 A and B). Loss of functional RocA in GAS-

M89 resulted in a 3.5-fold increase in levels of hasA transcription

(Figure 5 A) and an increase in detectable capsular HA synthesis

from undetectable to 30 fg/cfu (Figure 5 B). This encapsulation

phenotype was associated with enhanced GAS survival in the

presence of whole human blood with 3.5-fold greater growth

compared with wildtype GAS-M89 in a standard Lancefield assay

(Figure 5 C).

Conversely, serotype M18 hyper-encapsulation was reversed by

expression of a single chromosomal copy of full-length rocAM89 in

strain GAS-M18. hasA transcript levels were significantly reduced

compared with GAS-M18 (Figure 5 D) and resulted in a dramatic

reduction in capsular HA associated with GAS-M18rocAM89

(Figure 5 E). Survival of GAS-M18rocAM89 in whole human blood

was significantly impaired compared with GAS-M18, with an 80%

reduction in growth in this environment, attributable to the

reversal of the highly encapsulated phenotype (Figure 5 F).

The cysteine protease SpeB is negatively regulated by CovR,

though CovS opposes this effect [30]. SpeB expression is therefore

abrogated in GAS strains where CovS-mediated regulation is

impaired either as a result of CovR or CovS mutations. As such,

SpeB expression has been used as a marker of CovR/S

functionality [30–32]. To determine whether the non-synonymous

CovR mutations identified in serotype M18 GAS were phenotyp-

ically silent (with respect to CovS function), we measured SpeB

expression in all isogenic strains used in this study. SpeB was

expressed by GAS-M18, and, furthermore, over-expression of

CovRM89 in GAS-M18 did not impact on this (Figure S1). Whilst

an increase in SpeB abundance was observed in strain GAS-

M18rocAM89, the expression levels were comparable with capsule

Figure 1. Serotype M18 GAS display a unique hyper-encapsulation phenotype which mediates enhanced nasopharyngeal carriage
longevity. Characterization of serotype M18 GAS by comparison with representatives of each of six major serotypes (n = 5 isolates/group). (A) Inter-
serotype comparison of absolute copy number for hasA standardized to housekeeping gene gyrA. Line shows median (Kruskal-Wallis; *** = p,0.001).
(B) Inter-serotype comparison of capsular HA expression across all serotypes by an ELISA-based assay. Line shows median (Kruskal-Wallis;
*** = p,0.001). (C) Inter-serotype comparison of absolute transcript copy number for covR and covS standardized to house-keeping gene gyrA. Line
shows median (Kruskal-Wallis; p = NS). (D) Inter-serotype comparison of duration of nasopharyngeal shedding of pharyngitis-associated serotypes M4,
M6, M12 and M18 with isogenic capsule disruptant mutant GAS-M18hasko (n = 8 mice/group). Data represent percentage of mice shedding each strain
for 21 days following intra-nasal challenge (LogRank; ** = p,0.01).
doi:10.1371/journal.ppat.1003842.g001

Table 1. Clinical isolates used in this study.

Serotype Strains used

M1 H327cr, H368cr, H506, H739, H742

M3 H325cr, H356, H459, H460, H517

M4 H317, H365, H627, H679cr#, H897

M6 HM2, HM55, H427, H682cr#, H693

M12 H357, H529, H530, H599, H600, H675cr#

M18 H410cr, H412cr, H563cr, H565cr, H566cr#, H567cr, H498*cr, H499*cr,
H414cr, H686r, H695r

M89 H293cr, H395cr, H541, H542, H636

All strains were used for in vitro capsule quantification and hasA and covRS
transcription assays except those in italics. Strains H566 and H293 are referred
to in the text as GAS-M18 and GAS-M89 respectively.
*denotes isolates from 1934;
cdenotes strains that underwent covR/S sequencing;
rdenotes strains that underwent rocA sequencing;
#denotes strains used in mouse nasopharyngeal carriage experiments
doi:10.1371/journal.ppat.1003842.t001

RocA Truncation and Serotype M18 Encapsulation

PLOS Pathogens | www.plospathogens.org 3 December 2013 | Volume 9 | Issue 12 | e1003842



disruption mutant GAS-M18hasKO, suggesting the difference was

an artifact due to reduction in capsule expression compared with

GAS-M18, rather than a regulatory effect.

The RocA mediated regulation of covR/S
RocA was reported previously to positively regulate transcrip-

tion of covR [28], providing an explanation for the observed

negative impact on hasA, which is regulated by CovR/S.

Introduction of a single copy of functional rocAM89 to GAS-M18

resulted in a marked 4-fold increase in covR transcription (Figure 6

A) but the impact on covS transcript levels was not significant

(Figure 6 B). Consistent with increased abundance of CovR,

transcription of spyCEP, a CovR-repressed virulence factor, was

found to be significantly reduced in GAS-M18rocAM89 (Figure 6

C). Taken together these data demonstrate that functional RocA

positively regulates the transcription of covR, with a downstream

repressive effect on the CovR transcriptome. Replacement of

rocAM18 with rocAM89 had no effect on in vitro superantigen

production by M18 GAS (data not shown), demonstrating the

specificity of the RocA regulatory network.

The RocA regulon extends beyond the HA capsule and
CovR/S

In silico analysis of the RocA amino acid sequence demonstrated

clear structural homology with the catalytic domain of a large

number of sensor histidine kinases, notably the Escherichia

coli osmoregulator EnvZ (http://www.sbg.bio.ic.ac.uk/,mwass/

combfunc/). To determine the regulatory remit of RocA,

quantitative mass spectrometry analysis was carried out on

bacterial cell pellets obtained from GAS-M18 and GAS-M18ro-

cAM89 grown to mid-logarithmic growth phase in THB. 1259 GAS

proteins were identified in total, representing 69% of the serotype

M18 proteome [7]. Of these proteins, 2.5% (31/1259) were

differentially expressed, the majority of which were down-

regulated in GAS-M18rocAM89 compared with wildtype GAS-

M18 (28/31), while three were up-regulated (Table S1) (Figure 7).

Intriguingly, of the 28 proteins down-regulated by RocA, half were

identified to be involved in bacterial metabolism, which may well

impact on capsule synthesis in serotype M18 GAS. Indeed two of

these proteins are involved in synthesis of the HA precursor N-

acetylglucosamine, glucosamine-6-phosphate deaminase and pep-

tidoglycan N-acetylglucosamine deacetylase (ORF 1407 and 1382,

Table S1). Of the 31 proteins differentially expressed only eight

(Figure 7, pink shading; Table S1, bold font) are reported to be

regulated by CovR/S [13], suggesting that the RocA regulon is

complementary to but distinct from the CovR/S regulon.

Furthermore, RocA was shown to control expression of at least

two additional two component regulators as well as a regulator of

RNA stability [33], underlining the complexity of GAS virulence

regulation networks.

RocA activity and capsule impact on GAS colony
structure

Scanning EM was undertaken on strains GAS-M18, GAS-

M18hasko and GAS-M18rocAM89 to ascertain the impact of hyper-

encapsulation on the structural morphology of the resulting

bacterial colonies (Figure 8 A–C). Due to the fragile nature of

the association between capsular HA and GAS cocci it was not

possible to preserve the capsule during the fixing process, however

the structure of individual bacterial colonies was maintained.

Scanning EM of colonies demonstrated that M18 hyper-encapsu-

lation was associated with a unique morphology in 3D colony

structure whereby chains of cocci protruded perpendicular to

the colony plane (Figure 8 A). This was in stark contrast to the

flat morphology exhibited by GAS-M18rocAM89 (Figure 8 B)

and acapsular GAS-M18hasko (Figure 8 C). This structural

phenotype may be induced by charge repulsion between adjacent

HA polymers or the accumulation of HA between GAS cocci, and

may play a role in serotype M18 associated disease aetiology.

Hyper-encapsulation induced by RocA truncation
underlies serotype M18 carriage longevity in the murine
nasopharynx and transmissibility

Correction of the serotype M18 RocA truncation and subse-

quent reversal of the hyper-encapsulation phenotype led to a clear

reduction in GAS carriage longevity in mice, whereby GAS-M18

persisted for significantly longer in the murine nasopharynx than

GAS-M18rocAM89 following intra-nasal infection (Figure 9 A and

B). Indeed, nasopharyngeal carriage longevity of GAS-M18ro-

cAM89 was comparable to that of the isogenic acapsular hasA

disruption mutant, GAS-M18hasKO, suggesting that the impact of

RocA on capsule synthesis was a key determinant in GAS carriage

longevity, rather than other effects of the RocA regulon. The

disparity in nasopharyngeal carriage longevity was associated with

enhanced airborne GAS transmission to blood agar settle plates

placed above cages for the first three days following infection

(Figure 9 C) even though nasopharyngeal GAS carriage was

equivalent between groups at this time point. Enhanced carriage

longevity, transmissibility and shedding of hyper-encapsulated

GAS-M18 may go some way to explain the strong association

between this serotype and outbreaks of pharyngitis and ARF.

Table 2. Isogenic strains used in this study.

Strain Plasmid Gene alteration Capsule level

GAS-M18 - Identical to H566 +++

GAS-M18pcontrol pDL278 none +++

GAS-M18pcovRM89 pDLcovRM89 Over-express CovRM89 ++

GAS-M18procAM89 pDLrocAM89 Over-express RocAM89 +

GAS-M18procAM18 pDLrocAM18 Over-express RocAM18 +++

GAS-M18rocAM89 pUCMUTrocAM89AE RocAM18 allelic replacement with RocAM89 +

GAS-M18hasKO pUCMUThasKO Capsule locus disruption mutant 2

GAS-M89 - Identical to H293 2/+

GAS-M89rocAM18 pUCMUTrocAM18AE RocAM89 allelic replacement with RocAM18 ++

doi:10.1371/journal.ppat.1003842.t002

RocA Truncation and Serotype M18 Encapsulation
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Discussion

The hyper-encapsulation of serotype M18 GAS has long been

documented, but the underlying mechanism for this phenotypic

phenomenon has remained elusive. In this investigation we have

identified the cause of mucoidy in our collection of M18 strains as

a naturally occurring truncation in the regulatory protein RocA,

unique to, and conserved within the serotype M18 GAS isolates

Figure 2. Identification of unique serotype M18 specific mutations in regulators RocA and CovR. RocA and CovR sequence comparison
of isolates representing major GAS serotypes. Strains sequenced from each serotype are outlined in Table 1; at least one clinical isolate was tested for
each serotype. Ten serotype M18 strains were sequenced including two obtained from patients in 1934. (A) rocA gene sequence of different M types.
Codons are shown by alternating bold text. The premature stop codon in rocAM18 is highlighted by red font. (B) The subsequent truncation in
RocAM18 protein is demonstrated schematically in comparison with RocAM89. (C) CovR amino acid sequence in different M types. Highlighted residues
indicate amino acid change in the M18 CovR protein resulting from non-synonymous mutations in the gene sequence compared with other M types.
RocA and CovR sequences were also evaluated from genome sequenced isolates submitted to NCBI, representing serotypes M1, M2, M3, M4, M5, M6,
M12, M18, M28 and M49.
doi:10.1371/journal.ppat.1003842.g002

RocA Truncation and Serotype M18 Encapsulation
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studied. This truncation is both necessary and sufficient to induce

serotype M18 hyper-encapsulation.

Unique mutations were identified in the M18 GAS coding

sequences of both the response regulator covR and in rocA. To

determine the major influence on M18 hyper-encapsulation,

full-length RocAM89 and CovRM89 were over-expressed in GAS-

M18. Only full-length RocAM89 was sufficient to restore both

transcriptional repression of the has operon and downstream

reduction in capsular HA, providing clear evidence of the

involvement of RocA in the regulation of capsule synthesis.

Over-expression of wildtype CovRM89 in GAS-M18 did not

reduce serotype M18 hyper-encapsulation to the same extent as

Figure 3. Over-expression of RocAM89 but not CovRM89 is sufficient to reverse serotype M18 hyper-encapsulation. Analysis of GAS-
M18 strains over-expressing rocAM89, rocAM18 and covRM89. (A) Absolute copy number of hasA transcripts quantified relative to housekeeping gene
gyrA. Data shown from mid-logarithmic (ML) growth phase. (B) Capsular HA production was quantified at ML by ELISA. Data represent mean and
standard deviation of three independent experiments measured in triplicate (ANOVA with Bonferroni pairwise comparison;* = p,0.05, ** = p,0.01,
*** = p,0.001).
doi:10.1371/journal.ppat.1003842.g003

Figure 4. Allelic exchange mutagenesis of rocAM18 with rocAM89 in GAS-M18. Correction of the rocAM18 premature stop codon was achieved
by allelic exchange of chromosomal rocAM18 with rocAM89 using suicide vector pUCMUT [46]. Double recombination events between rocA (spy1614)
and 500 bp region of downstream gDNA including the 39 end of spy1611 resulted in replacement of rocAM18 with a single copy of rocAM89, producing
isogenic strain GAS-M18rocAM89. Allelic exchange was confirmed by PCR and sequencing.
doi:10.1371/journal.ppat.1003842.g004

RocA Truncation and Serotype M18 Encapsulation
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over-expression of full-length RocAM89, despite both regulators

having comparable effects on hasA transcription.

The influence of RocA was further characterized through rocA

allelic exchange mutagenesis. Expression of a single chromosomal

copy of full-length rocAM89 reversed hyper-encapsulation in GAS-

M18 in association with reduced transcription from the has operon.

The introduction of full length RocA also increased expression of

the two component control of virulence regulator, covR, consistent

with an earlier report [28]. CovR is known to be involved in

transcriptional regulation of over 100 genes, including hasA and

spyCEP, a chemokine cleaving protease [24,27,34,35]. Similar to

hasA, transcription of spyCEP was also reduced in strain GAS-

M18rocAM89, lending support to the existing evidence that RocA

regulates the expression of several genes, in part via CovR/S [28].

RocA shares structural homology with TCS sensor kinases,

however is not located near to a cognate repressor protein in the

GAS genome [28]. It is possible that RocA modulates expression

of target genes, including covR, by functioning as a trans-acting

kinase on one or more currently unidentified regulators that may

include CovR (Figure 10). Although functional RocA positively

Figure 5. RocAM18 truncation is necessary and sufficient for hyper-encapsulation. (A–C) Analysis of the impact of single gene replacement
of rocAM89 with rocAM18 in strain GAS-M89. (A) Absolute copy number of hasA transcripts quantified at early logarithmic (EL) growth phase relative to
housekeeping gene gyrA. (B) Capsular HA production was quantified at ML. (C) Lancefield assay for quantification of GAS survival in whole human
blood. (D–F) Analysis of the impact of single gene replacement of rocAM18 with rocAM89 in hyper-encapsulated GAS-M18. (D) Absolute copy number
of hasA transcripts quantified at EL growth phase relative to housekeeping gene gyrA. (E) Capsular HA production was quantified at ML growth
phase. (F) Lancefield Assay for quantification of GAS survival in whole human blood. Data represent mean and standard deviation for three
independent experiments measured in triplicate (Unpaired t-test;* = p,0.05, ** = p,0.01, *** = p,0.001).
doi:10.1371/journal.ppat.1003842.g005

RocA Truncation and Serotype M18 Encapsulation
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Figure 6. Functional RocA enhances covR but not covS transcript levels. RT-PCR analysis of isogenic strains GAS-M18 and GAS-M18rocAM89 to
ascertain the impact of RocA on expression of global regulator CovR. Quantification of absolute copy number of (A) covR, (B) covS and (C) spyCEP
transcripts relative to housekeeping gene gyrA at EL growth phase. Data represent mean and standard deviation for three independent experiments
measured in triplicate (un-paired t-test, * = p,0.05).
doi:10.1371/journal.ppat.1003842.g006

Figure 7. RocA has targeted impact on GAS proteome that is distinct from the CovR/S regulon. The impact of expressing full-length
RocAM89 on the GAS-M18 proteome was ascertained by quantitative SDS-PAGE LC-MS/MS using cell pellets obtained from 4 independent cultures of
isogenic strains GAS-M18 and GAS-M18rocAM89. Values represent relative protein abundance (fold-change) in strain GAS-M18rocAM89 relative to parent
strain GAS-M18. Pink shading highlights genes included in the CovR/S regulon. Only proteins with altered expression of .1.5 fold and p#0.05 were
included. Numbers on x-axis represent M18 strain MGAS8232 ORFs.
doi:10.1371/journal.ppat.1003842.g007
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enhanced covR transcription, baseline covR transcript levels were

similar between M18 GAS and other serotypes tested, notwith-

standing the M18 RocA truncation. We hypothesize that, while

loss of RocA activity in M18 GAS would tend to reduce covR

transcription, levels may be restored by consequent reduction in

auto-repression of covR transcription, resulting from both a

reduction in CovR protein levels and, potentially, a reduction in

phosphorylated CovR because of reduced kinase activity.

Tight transcriptional regulation of virulence factors is critical to

both survival and infection potential of GAS [17–23]. The loss of

functional RocA in serotype M18 has the potential to impact on at

least 10% of the GAS genome through a regulatory effect on the

CovR/S TCS [24]. Our data suggest that, in the serotype M18

background, capsule production was most strongly affected by the

RocA truncation. Indeed, the impact of the RocA truncation on

hasA and capsule expression was an order of magnitude greater in

the M18 strain background than in the M89 background.

Although inter-serotype differences in gene regulation are not

unprecedented [36], we considered the possibility that factors

additional to the RocA truncation contributed to the GAS M18

hyper-encapsulation phenotype, specifically, the observed non-

synonymous mutations in CovRM18. Binding of CovRM18 to the

has promoter in vitro was not, however, impeded by the mutations

we report (not shown), suggesting that the mutations do not impact

on DNA binding. We cannot exclude the possibility that the

mutations in CovR affect phosphorylation and coupling to CovS-

mediated regulation however we found no evidence of SpeB

repression in M18 GAS, further suggesting that the CovR

mutations are likely to be silent [30,32].

RocA dependent regulation in GAS was further elucidated by

quantitative proteomic comparison of M18 GAS cell pellets with

cells from an isogenic mutant expressing full-length RocAM89. 31

proteins out of 1259 identified by LC-MS/MS were differen-

tially expressed between the two strains, nearly half of which

were involved in metabolic processes, all demonstrating reduced

expression in the presence of functional RocA protein. The

regulation of genes connected to metabolism, protein synthesis,

regulation and virulence demonstrates that RocA activity

Figure 8. RocA regulation of capsule synthesis modulates bacterial colony structure. Imaging of serotype M18 strains (A) GAS-M18, (B)
GAS-M18rocAM89 and (C) GAS-M18hasko following overnight culture on Todd-Hewitt agar. i) Macroscopic imaging. ii)–iv)Scanning EM performed on
individual colonies, each one imaged at three magnifications: ii) 3 k (white line = 2 mm), iii) 10 k (white line = 1 mm) and iv) 35 k (white line = 0.5 mm)
respectively.
doi:10.1371/journal.ppat.1003842.g008
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extends beyond a straightforward interaction with CovR/S

(Figure 10). Intriguingly, despite detection of almost 70% of the

entire M18 GAS proteome, analysis did not detect as many

differentially expressed proteins as might be predicted by the

reported CovR/S regulon [24]. Indeed only a quarter of

proteins differentially regulated by RocA belonged to the known

CovR/S regulon. In part this may be because RocA does not

wholly control CovR/S transcription. It should be noted that

bacteria were grown to early-mid logarithmic growth phase for

the proteomic studies. Whilst optimal capsule production occurs

at this time point, the expression pattern of other proteins differs

considerably, and several CovR/S-regulated genes are influ-

enced at late logarithmic or even stationary phases of growth

[24]. Importantly we elected to measure differential protein

expression rather than mRNA transcript abundance, as has been

undertaken previously, in order to better identify the major

candidate proteins likely to play a role in the M18 GAS

phenotype. It is therefore not surprising that the number of

differentially expressed proteins is less than has been found in

transcriptomic studies.

Of note, a homologue to a bacterial metabolism regulator, YesN

[37], was down-regulated in the presence of full-length functional

RocA. This lends support to the hypothesis that RocA plays a

direct role in the regulation of GAS metabolism. HA synthesis is a

highly metabolic process, with both polysaccharide precursors

stemming from glucose-6-phosphate [15]. Whilst the synthesis of

glucuronic acid is catalyzed by the enzymes of the has operon, N-

acetylglucosamine is a metabolite of cell wall biosynthesis. Our

proteomic data, coupled with HA assays, suggest that the RocA

truncation leads not only to increased hasA transcription, but also

to increased expression of several components of the biosynthetic

pathway that modulate the abundance of N-acetylglucosamine.

In some contrast to findings in the murine model reported

herein, M18 GAS are infrequently found as causes of pharyngitis,

although geographically defined outbreaks have been reported

both from the mid-1980s and contemporary times, notably in

association with the onset of ARF [6–10]. The impact of changes

in population immunity and environment on M18 GAS epidemi-

ology is unknown. Whether the propensity of M18 GAS to

prolong nasopharyngeal infection can explain the association

between M18 GAS and ARF is unclear. It has been hypothesized

that the HA capsule per se may provide a basis for collagen-based

autoimmunity through aggregation of collagen [38], however

other studies point to a immunoregulatory role for HA on

Figure 9. GAS-M18 nasopharyngeal carriage longevity and airborne spread require hyper-encapsulation induced by RocA
truncation. (A) Quantification of murine nasopharyngeal carriage longevity of isogenic GAS strains GAS-M18, GAS-M18hasKO and GAS-M18rocAM89 by
nose-pressing (n = 8/group). Data represent percentage of mice colonized with each strain for 21 days following intra-nasal challenge (LogRank;
*** = p,0.001). (B) Quantification of bacterial shedding as mean number of GAS cfu recovered from the mouse nasopharynx by daily nose-pressing
onto individual blood agar plates (AUC and Kruskal Wallis (p,0.05)). (C) Quantification of airborne transmission of GAS to settle plates during the first
3 days of infection (n = 4 plates/cage) (AUC and Kruskal-Wallis; * = p,0.05).
doi:10.1371/journal.ppat.1003842.g009
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dendritic cell activation [39]. Importantly, lower molecular weight

moieties of HA can act as immunostimulatory molecules acting via

TLR4 [40]. As it is not known how GAS HA is processed or

trafficked during human infection, the role of HA capsule in ARF

remains uncertain.

The truncation of RocA in M18 GAS adds to the list of

regulatory gene mutations reported to impact on GAS virulence,

examples of which include not only mutations in covR/S that affect

pleiotropic virulence factors including capsule, but also those in

rgg/ropB, and mtsR [41,42] which affect SpeB for example. Whilst

mutations in many regulators arise spontaneously [24,31,32], often

as a result of blood passage or exposure to host tissues, the rocAM18

mutation is unusual in that it was conserved among all 12 serotype

M18 strains tested in this study, spanning an almost 80 year

interval. Although further testing of many more isolates is

required, we speculate that the mutation may be serotype defining.

In apparent contrast to covR/S mutations, which are associated

with a fitness burden during upper respiratory tract infection [43]

and adversely impact on biofilm formation [32], the RocA

truncation conferred an ability to survive and transmit during

colonization. While capsule may impede binding and biofilm

formation by some GAS serotypes, the impact of capsule on

survival in air, or at the surface of a pre-existing biofilm is

unknown. In the case of M18 GAS, excess production of HA

capsule appears essential to pathogenesis, perhaps by mediating

binding to host proteins such as CD44 [4,5] and does not appear

to negatively impact on experimental pharyngeal infection.

Intriguingly, airborne transmission of GAS to blood agar plates

placed within the cages was also dependent on the RocA

truncation. This was not simply a consequence of differential

carriage or shedding levels, since mice at this time point showed no

difference in direct nasal transmission to blood agar or in bacterial

counts in colonized nasal tissue, though may relate to survival on

air-exposed surfaces (Lynskey unpublished). Bacterial and host

factors that influence GAS airborne transmission are uncharacter-

ized. Taken together, the data highlight the possibility that

excessive capsular HA may augment persistence and transmission

of GAS-M18 as a consequence of a conserved mutation in a

metabolic regulatory gene.

Materials and Methods

Ethics statement
The use of anonymized human blood was approved through the

Imperial College NHS Trust Tissue Bank. In vivo experiments were

performed in accordance with the Animals (Scientific Procedures)

Act 1986, and were approved by the Imperial College Ethical

Review Process (ERP) panel and the UK Home Office.

Bacterial strains and growth conditions
GAS isolates were collected from patients at ICHNT, or by the

UK reference laboratory. The strains used for molecular

manipulation were invasive disease isolates GAS-M18 (H566)

and GAS-M89 (H293). GAS were cultured on Columbia horse

blood agar plates (OXOID) Todd-Hewitt (TH) agar or in TH

broth (OXOID) at 37uC, 5% CO2 for 16 hours. E. coli XL-10 gold

(Stratagene) and DH5a (Invitrogen) were grown in LB broth.

Growth media were supplemented with antibiotics where appro-

priate at the following concentrations; E. coli spectinomycin 50 mg/

ml, kanamycin 50 mg/ml; GAS spectinomycin 50 mg/ml, kana-

mycin 400 mg/ml.

Polymerase chain reaction and DNA sequencing
Genomic DNA was extracted from GAS cultures grown to late

logarithmic growth phase (OD600 0.7–0.9) as described previously

[44]. PCR was carried out using a MyCycler (Bio-Rad) thermal

cycler with Bio-X-Act proof reading Taq (Bioline). Automated-

fluorescent sequencing of products was performed by the MRC

CSC Core genomics laboratory, Hammersmith Hospital. For

sequencing of rocA genomic DNA was amplified and sequenced

using the following primers: forward primer 1: 59- TTGCAAAA

ACTGTAGGCTGTG-39 reverse primer 1: 59- GCCAGGTTGA

AAAATCGAAA-39; forward primer 2: 59-GCCATTGTTTGG

Figure 10. Proposed mechanism of RocA mediated activity. CovR (black circle) is phosphorylated directly by CovS (blue ellipse), which
induces CovR dimerization (green circles) and transcriptional repression of hasA and spyCEP, as well as auto-repression of covR. RocA (red ellipse)
regulates expression of a number of gene products (solid red lines). RocA promotes transcription of covR potentially via an intermediate regulator
(red dashed circle). RocA also promotes expression of proteins that are not part of the CovR regulon, whilst inhibiting many others. Such regulation
may also require kinase action and an intermediate regulator.
doi:10.1371/journal.ppat.1003842.g010
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TATGCCTTA-39, reverse primer 2: 59-GGGATCGATACCT

CAACCTT-39; forward primer 3: 59- TGAAGGTATCTTGAA

TGCTGAAA-39, reverse primer 3: 59-GCTGAAATTTTAACT

CTAGCTTGGA-39.

Construction of over-expression strains
For CovRM89 over-expression, the covR coding sequence,

including native promoter, was amplified from GAS-M89

(forward primer: 59- CGGGATCCACTGAATATTAAAGAG

TGTCTGAA-39, reverse primer: 59- CGGGATCCTTGAAC-

TATATGGCAATCAGTG-39) incorporating BamHI restriction

sites to both ends of the PCR product, and cloned into BamHI

digested shuttle vector pDL278 [45] resulting in plasmid

pDLcovRM89.

For RocAM89 over-expression, the rocA coding sequence,

including native promoter, was amplified from GAS-M89 (forward

primer: 59- GACGGATCCAATTCTTGCAAAAACTGTAGG

CTGTC, reverse primer: 59- GACGGATCCAATTCGCTGA

AATTTTAACTAGCTTGGA-39) incorporating BamHI restric-

tion sites to both ends of the PCR product, and cloned into

BamHI digested shuttle vector pDL278 [45], resulting in plasmid

pDLrocAM89. For RocAM18 over-expression, the serotype M18

SNP (T to A at nucleotide 269) was incorporated into the

pDLrocAM89 plasmid sequence by site-directed mutagenesis

(QuikChange XL-II Site-Directed Mutagenesis Kit, Stratagene)

(forward primer: 59- CTATGGTAAATCAATAAAAGCTAAGT

TTTAAATGTTTTATGCCTTTTTCCACTAGTG-39, reverse

primer: 59- CACTAGTGGAAAAAAGGCATAAAACATTTA

AAACTTAGCTTTTATTGATTTACCATAG-39) to produce

vector pDLrocAM18.

The sequence of covR or rocA in all vectors was confirmed by

Sanger sequencing and the resulting plasmids, as well as empty

pDL278 control vector, were introduced into GAS-M18 by

electroporation. The successful introduction of plasmid was

confirmed by PCR specific for pDL278 backbone (forward

primer: 59- CATTCAGGCTGCGCAACTG-39, reverse primer:

59- TCGAATTCACTGGCCGTCG-39) in each of the resulting

isogenic strains GAS-M18pcontrol (containing empty vector), GAS-

M18pcovRM89 (over-expressing CovRM89), GAS-M18procAM89

(over-expressing full-length RocAM89) and GAS-M18procA-M18

(over-expressing truncated RocAM18).

Construction of rocA allelic exchange mutants
Full-length rocAM89 including native promoter was amplified

from GAS-M89 (forward primer: 59- GACGGATCCAATTC

TTGCAAAAACTGTAGGCTGTC, reverse primer: 59- GACG

GATCCAATTCGCTGAAATTTTAACTAGCTTGGA-39), in-

corporating EcoRI restriction sites to both ends of the PCR

product, and cloned into EcoRI digested suicide vector pUCMUT

[46]. The resulting plasmid, pUCMUTrocAM89, was confirmed to

encode full-length rocA by Sanger sequencing. In order to create an

allelic exchange vector to introduce rocAM18 into GAS of a

different serotype, the serotype M18 SNP (T to A at nucleotide

269) was incorporated into the pUCMUTrocAM89 plasmid

sequence by site-directed mutagenesis (QuikChange XL-II Site-

Directed Mutagenesis Kit Stratagene) (forward primer: 59- GCTG

AAAAGAATAATGCTAAAGATGACAGACTTGATTTAACT

TGTTTAGATAAAT-39, reverse primer: 59- ATTTATCTAAA

CAAGTTAAATCAAGTCTGTCATCTTTAGCATTATTCT-

TTTCAGC-39). The change in rocA sequence was confirmed by

Sanger sequencing and DraI digest. To introduce a second region

of homology with the bacterial chromosome, approximately

500 bp of downstream conserved sequence including the

39 region of spy_1611 was amplified (forward primer:

59-CGCCGTCGACTTATTGTTTCTTCCAAGCTAG, reverse

primer: 59-CGCCTGCAGGGAGTCACTATTGGTACTAT-39)

incorporating PstI and SalI restriction sites to the 59 and 39 of the

PCR product respectively, and cloned into PstI/SalI digested

pUCMUTrocAM89 and pUCMUTrocAM18, to produce allelic

exchange vectors pUCMUTrocAM89AE and pUCMUTrocAM18AE

respectively. pUCMUTrocAM89AE was introduced into GAS-M18

by electroporation and crossed into the chromosome by homol-

ogous recombination (Figure 4). Double allelic exchange was

confirmed by PCR and Sanger sequencing of the rocA gene. Polar

effects were not expected due to the orientation of the genes

surrounding rocA, and were ruled out by quantitative proteomic

analysis of flanking gene products. pUCMUTrocAM18AE was

introduced into GAS-M89 by electroporation as detailed for

pUCMUTrocAM89AE and GAS-M18.

Construction of a hasA disruption mutant
A 500 bp fragment of the 59 hasA gene was amplified (forward

primer: 59- GGGGTACCTATCTTGATTTATCTAAATATG-

39, reverse primer: 59- GGAATTCGTTTCTAGCATTCAAAT

GTCCT-39) incorporating EcoRI and KpnI restriction sites into

the 59 and 39 ends respectively, and cloned into the suicide vector

pUCMUT to produce vector pUCMUThasA. A 500 bp fragment

of the 39 hasB gene was amplified (forward primer: 59-

ACGCGTCGACATGATGATCGAATAGGAATGC-39, reverse

primer: 59- AACTGCAGCAATCATACCACCAACTGCAG-39)

incorporating PstI and SalI restriction sites into the 59 and 39

ends respectively, and cloned into PstI/SalI digested pUC-

MUThasA. The construct was introduced into GAS-M18

by electroporation and crossed into the chromosome by homol-

ogous recombination. PCR analysis demonstrated that only a

single recombination event between chromosomal hasA and the

500 bp 59 hasA fragment had occurred. The insertion was stable

following murine intra-nasal infection, and was sufficient to disrupt

capsule biosynthesis, demonstrated by quantification of capsular

HA.

Quantitative real-time PCR
RNA was extracted from GAS at early, mid and late logarithmic

growth phases and converted to cDNA following DNase treatment

with TurboDNAfree (Ambion, Cambridgeshire UK) as described

previously [27]. qrtRT-PCR was carried out for the genes hasA, covR

and covS, and expression data normalized to that of gyrA using a

standard curve method as described previously [27].

Human whole blood phagocytosis assay
Lancefield assays were performed to assess GAS resistance to

human phagocytic killing. GAS were cultured to OD600 0.15

in THB, and diluted in sterile PBS. Approximately 50 GAS cfu

were inoculated into heparinized whole human blood obtained

from healthy volunteers, and incubated for 3 hours at 37uC with

end-over-end rotation. Bacterial survival was quantified as

multiplication factor of number of surviving colonies relative to

the starting inoculum. Each strain was cultured in blood from

three donors and tested in triplicate.

Measurement of cell-associated hyaluronic acid
GAS capsular HA was extracted as described previously [6].

Briefly, GAS were cultured to mid logarithmic growth phase and

washed twice in 10 mM Tris (pH 7.5). Capsule was removed

following incubation with an equal volume of chloroform for

30 minutes with vortexing followed by a 60 minute static

incubation at room temperature. Quantification of eluted capsular
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HA was carried out using the hyaluronan DuoSet ELISA (R&D).

Data were standardized for total GAS cfu which were calculated in

triplicate for each sample.

Murine intra-nasal infection
FVB/n female mice (4–5 weeks old (Charles River, Marga-

te,UK)) were briefly anaesthetized with isofluorane and

challenged intra-nasally with 16107 GAS cfu, administered as

5 ml per nostril.

Quantification of nasopharyngeal carriage longevity
Nasal carriage was longitudinally and non-invasively monitored

daily for 21 days following intra-nasal challenge using a nose-

pressing technique [43]. Briefly, mice were scruffed and their noses

pressed gently into a CBA plate (Oxoid) 10 times. Resulting

exhaled moisture was spread over the plate and colonies counted

following incubation at 37uC, 5% CO2 for 24 hours. On day 21

mice were euthanized, and nose, cervical lymph node, spleen

and lung dissected and plated to determine nasal colonization

and systemic dissemination of GAS. Strains GAS-M18,

GAS-M18hasKO, GAS-M18rocAM89, M4, M6 and M12 were

compared over 21 days (Table 1). To detect airborne transmission

of bacteria within cages of infected mice, CBA settle plates (4

per cage) were placed face up on the upper rack of individually

HEPA filtered cages for 4 hours on days 21, 0, 1 and 2 post-

infection as previously reported [43]. Airborne bacteria were

quantified following overnight incubation of plates at 37uC, 5%

CO2.

Preparation of GAS samples for quantitative proteomic
analysis

GAS cultures (8 ml) were grown on 4 separate occasions to

OD600 0.4 in THB supplemented with hyaluronidase (30 mg/ml)

(Sigma). Bacterial pellets were washed twice and resuspended in

100 ml Tris-HCL (10 mM, pH 7.5) and stored in 100 mM DTT

and 16Lithium dodecyl sulphate (LDS) (Invitrogen) after heating

at 75uC for 10 minutes. Samples were diluted according to protein

concentration.

Preparation of samples for 1D-gel-liquid chromatography
mass spectrometry

Proteins were separated by 1-D electrophoresis and processed

for Reverse Phase-nano-liquid chromatography mass spectrometry

as described previously [47]. Data were analyzed using Progenesis

software (Nonlinear Dynamics, USA). Data filters were set such

that peptides included were single, double or triple charged

and above threshold values for cross-correlation score. Differential

protein production was deemed significant where a p value#0.05

was obtained for a fold change $1.5. Results were validated

by western blot for a selection of differentially expressed

proteins using rabbit anti-sera raised against SpyCEP [48],

NADP-G3PD, HSP70 and fructose bis-phosphate aldolase [47]

(Figure S2).

GAS protein preparation and western blot
GAS protein samples for validation of quantitative proteomic

analysis were obtained as outlined above. Protein samples for

quantification of SpeB expression were prepared from superna-

tants of GAS grown to stationary phase, which were 76
concentrated using 10 kDa cutoff spin columns (Amicon). For

SDS-PAGE, samples were denatured with 100 mM DTT and 16
Lithium dodecyl sulphate (LDS) (Life technologies) and heated at

75uC for 10 minutes. Proteins were fractionated on either 10%

NuPAGE novex bis-tris gels or 7% NuPAGE Tris-acetate gels

(Life Technologies) for optimal separation of proteins within

the desired molecular weight range. For western blot, proteins

were transferred onto a Hybond-P membrane (Amersham)

and blocked with blocking solution (5% milk (Sigma) with

0.05% Tween-20 (Sigma)). Blots were probed with either

anti-SpeB antibody (Toxin Technology), anti-SpyCEP rabbit

antiserum [48] or rabbit antiserum raised to the unique c-terminal

pentapeptide of proteins fructose bisphosphate aldolase, NADP-

G3DP or HSP70 [47] diluted 1:1000 in blocking solution

overnight at 4uC. Proteins were detected following incubation

with HRP-conjugated anti-rabbit secondary (Life Techno-

logies) diluted 1:80,000. Membrane development was carried

out with ECL Advance western blotting detection kit (GE

Healthcare).

Scanning electron microscopy
Pieces of agar 5 mm2 surrounding individual colonies were cut

directly from petri dishes and fixed in 2.5% glutaraldehyde and

4% PFA in 0.01 M PBS for 1 hour, rinsed in 0.1 M sodium

cacodylate buffer for 365 minutes and fixed again in 1% buffered

osmium tetroxide for 1 hour. For better conductivity the samples

were further impregnated with 1% aqueous thiocarbohydrazide

and osmium tetroxide layers separated by sodium cacodylate

washes following the protocol for OTOTO [49]. The colonies

were then dehydrated in an ethanol series 30%, 50%, 70%, 90%

and 100% (63) for 20 minutes each and critical point dried in a

Bal-Tec CPD030 before mounting onto aluminium stubs with

silver dag and sputter coating with a 2 nm gold layer in a Bal-Tec

SCD050. Examination and imaging was performed on an Hitachi

S-4800 scanning electron microscope.

Statistical analysis
All statistical analyses were performed with GraphPad Prism

5.0. Comparison of two datasets was carried out using unpaired

students t-test and three or more data sets were analyzed by

Kruskal-Wallis followed by Dunn’s multiple comparison test or

ANOVA and Bonferroni post-test depending on sample size.

Survival data were analyzed by Mantel-Cox (Log rank) test. A p-

value of #0.05 was considered significant.

Supporting Information

Figure S1 SpeB expression in isogenic derivatives of GAS-M18.

Bacterial supernatants obtained from stationary phase cultures of

parent strain GAS-M18 and isogenic strains used in this study

were fractionated by SDS-PAGE and immunoblotted with

polyclonal rabbit anti-SpeB antibody. SpeB production was

detected in the parent strain despite CovR mutations. Differences

in SpeB abundance were observed only as a result of changes in

capsule expression.

(TIF)

Figure S2 Validation of quantitative proteomics by western blot.

Western blot analysis was carried out on cell pellets obtained from

three independent cultures as outlined in the Methods section for

four proteins detected in lower abundance in GAS-M18rocAM89

compared with GAS-M18 by quantitative LCMS/MS. Multiple

bands for SpyCEP blot reflect the known products of autocatalytic

cleavage. Relative abundance of each protein was estimated using

ImageJ software. Fold-change in protein abundance averaged over

the three experiments is shown compared with that calculated by

LCMS/MS.

(TIF)
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Table S1 Differential expression of proteins regulated by RocA.

Data show fold-change of proteins differentially expressed .1.5-

fold in GAS-M18 (n = 31) (Mann-Whitney p#0.05). ORF

numbers relate to genome sequenced M18 isolate MGAS8232

[7]; bold text indicates genes in the CovR/S regulon [13]. Grey

shading indicates proteins with increased expression in GAS-

M18rocAM89 (n = 3/31) ie: increased by functional RocA. ‘

Indicates proteins visualized by western blot for validation of the

experiment.

(RTF)
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