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Abstract: Sonoporation is the process of transient pore formation in the cell membrane triggered by
ultrasound (US). Numerous studies have provided us with firm evidence that sonoporation may
assist cancer treatment through effective drug and gene delivery. However, there is a massive gap in
the body of literature on the issue of understanding the complexity of biophysical and biochemical
sonoporation-induced cellular effects. This study provides a detailed explanation of the US-triggered
bioeffects, in particular, cell compartments and the internal environment of the cell, as well as the
further consequences on cell reproduction and growth. Moreover, a detailed biophysical insight into
US-provoked pore formation is presented. This study is expected to review the knowledge of cellular
effects initiated by US-induced sonoporation and summarize the attempts at clinical implementation.
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1. Introduction

According to the World Health Organization, cancer is the second-leading cause of
death in the world. In 2015, approximately 8.8 million people died from neoplastic diseases
in the United States [1]. Despite advances in cancer research and clinical studies, many
patients succumb to disseminated, recurrent or therapy-resistant disease [2]. Although
many improvements have been made in oncological treatment over the last years, cancer-
related deaths occur in 30–50% of all cancer patients [3]. Mortality rates remain very high,
especially for solid tumors such as pancreatic, colon, cervix, and brain cancers [4]. One of
the obstacles in the efficient therapy is insufficient intracellular concentration of anticancer
medications due to various mechanisms of drug resistance developed by cancer cells [5].
Moreover, standard chemotherapy usually damages not only tumor cells, but also healthy
tissues and leads to serious adverse effects such as immunosuppression, cardiotoxicity, or
kidney failure [6,7], which strongly limit clinically available doses of approved cytostatics
for cancer treatment. Enhancing on-target drug activity and reducing off-target effects are
the goals of novel anti-cancer therapies [8]. For such reasons, in recent years, much attention
has been paid to research concerning drug transport into cells. Alternative methods of
controlling drug release and deposition such as light, magnetic and electric fields, as well
as neutron beams, have been gaining increasing attention [9]. Interestingly, sound waves
can also be used for targeted drug administration.

Ultrasound (US) has been widely implemented in medicine over the last half century,
mainly for diagnostic purposes, beginning with the monitoring of pregnancy and ending
with a detailed examination of soft tissues and blood vessels. Since US can be focused,
acoustic waves are easily able to deliver kinetic energy to selected small volumes deep
within a human body without damaging other tissues. Therefore, physicians or physical
therapists used them to stimulate healing and soften scar tissue, or high-intensity focused
US—HIFU—to damage prostate cancer or break down kidney stones [10–13]. However,
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a completely new chapter in US research was opened in 1976 when a strong cytostatic
effect of nitrogen mustard was observed in L1210 leukaemia cells treated with sonication
without mechanical damage to cells [14]. Later discoveries and advances in the field of
US have led to the idea of using this technology as a support for chemotherapy. This was
supposed to provide greater drug distribution within tissues. In that way, scientists began
exploring US as a new tool for delivering various substances to cells. Until now, many
studies have shown that US may improve drug uptake by causing small pores in the cell
membrane. US-triggered cell membrane permeabilization, also called sonoporation, is a
process that can be reversible or irreversible (Figure 1). Although reversible sonoporation
(RS) improves cellular drug concentration without causing direct cell death, irreversible
sonoporation (IRS) is believed to be lethal for cells and cause in most cases their immediate
necrosis [12,15–18]. Furthermore, these phenomena are considerably intensified in the
presence of gas-filled microbubbles. When acoustic waves approach microbubbles, the
mechanical interactions between US and microbubbles generate much stronger forces,
which maximize US-triggered bioeffects [19–21].
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Figure 1. Schematic representation of possible cellular outcomes induced by sonoporation. As
the acoustic wave approaches the cell, small or large pores in the cell membrane are generated.
When membrane resealing is not possible and cell injury is too hard (irreversible sonoporation),
then necrosis occurs. On the other hand, if the cell can recover after ultrasound (US) exposure, this
process may alter cell functioning and when adaptation is not possible then apoptosis will be initiated.
Created with BioRender.com.

Since sonoporation disrupts cell membrane homeostasis by causing physical wound-
ing of its structure, it is likely that US also alters the functioning of sonoporated cells, even
if permeabilization is temporary. Taking into account the fact that the mechanical effects
induced by US are originally observed on the cell membrane as membrane distortion, the
extracellular kinetic energy released by US can be transduced deep into the cell by complex
mechanotransduction pathways and thus modify the function of the cell [22]. Until now,
numerous studies have reported various cellular alterations caused by US, e.g., a decreased
viability [23], disrupted cell membrane potential [24,25], altered calcium signalling [26,27],
production of reactive oxygen species [28,29] or generation of shear stress [30,31]. These
and other US-triggered mechanisms are meaningful bioeffects, which strongly affect the
intracellular environment disrupted by drug-mediated sonoporation and determine the
final therapeutic outcome. Based on this research progress, the aim of this review was to
assess and summarize the intracellular bioeffects caused by sonoporation and the related
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biological mechanisms involved in US-triggered permeability. Additionally, the general
characteristic of the sonoporation phenomenon is firstly discussed, including information
about the mechanisms of pore formation and the physical and biophysical parameters
that determine the sonoporation efficacy. Finally, this article provides a commentary on
the performed research and highlights the unexplored gaps that should be addressed in
future studies.

2. Mechanisms Responsible for Sonoporation

US is an acoustic wave that creates a series of pressure fluctuations, which can even
establish a spatial standing wave pattern when the reflecting constraints are used. Generally
speaking, any biological effects that arise will have a direct correlation with the applied
US parameters, the distance between exposed cells and the energy source, the transducer
or any structures that generate a standing wave, as well as the presence of acoustically
active microbubbles [32,33]. The occurrence of physical pores in the cell membrane after
US exposure has been confirmed in several studies using scanning electron microscopy and
atomic force microscopy [34–37]. Previous studies have reported that sonoporation can
occur in the presence of microbubbles, which is called bubble-based sonoporation (BBS),
or without them—non-bubble-based sonoporation (NBBS). Although both the mentioned
mechanisms result in membrane permeabilization, the biophysical processes responsible
for pore formation are noticeably different.

When acoustic waves spread in fluid-containing cells, these cells are subjected to the
acoustic streaming-induced shear force and the acoustic radiation force at the same time.
This environment can alter the integrity of the membrane and therefore generate pores in
the cell membrane [38–41]. These phenomena were implemented to design various mecha-
nisms that allow NBBS, such as ejecting cells through the nozzle orifices using traveling
acoustic waves [42], exposing cells to standing acoustic waves in quarter-wavelength res-
onators [43,44] or applying Lamb waves to cells cultured on thin substrates [45–47]. Some
researchers also used bulk acoustic waves, which were travelling above the transducer, to
induce NBBS. Other possibilities open when the target cells are close to the source of US. In
such a case, bulk acoustic waves can be focused in a small area to generate concentrated
acoustic energy [48–51], or hyperfrequency bulk acoustic waves can be used to induce
acoustic streaming and create pores in the cell membrane [52,53].

US contrast agents are typically microbubbles (MBs) that contain a gas-filled core
encapsulated by a stabilization coating composed of lipids, polymers, or albumin. Due to
an average size between 1 and 8 µm, they can easily pass through the capillaries around the
human body [54–56]. By using MBs as cavitation nuclei, the cavitation threshold is reduced
by enhanced absorption of acoustic energy that intensifies US-induced effects [57–59].
When exposed to US, microbubble responds in a wide range of behaviours that cause
acoustic cavitation [60,61]. As its volume changes rapidly, acoustic cavitation results in
a number of mechanical, chemical, and thermal phenomena, which dramatically change
the local environment and lead to bubble-based sonoporation [62]. It is fundamental to
note that different types of acoustic cavitation can occur depending on the intensity of the
applied US known as the mechanical index. The mechanical index (MI) is defined as the
peak negative pressure amplitude (MPa) divided by the square root of the centre frequency
(MHz) of the acoustic wave [63]. The observed cellular bioeffects triggered by US are
strongly dependent on MI. At low mechanical index (MI < 0.2), volume of MBs fluctuates
continuously and generates pulling and pushing movements of the cell membrane that
cause membrane ruptures [64]. This process is also called stable cavitation [65]. It is worth
mentioning that when microbubbles are attached to the cell membrane, fluid movements
around the fluctuating bubble can induce a local shear stress intense enough to rupture
the cell membrane. This phenomenon is known as microstreaming [66]. In this situation,
microbubble may also penetrate lipid bilayer causing membrane permeabilization. When
MI is higher (MI > 0.2), the acoustic pressure is more extreme, so the released kinetic energy
is much more powerful. In such a case, the MBs oscillate vigorously, leading to what is
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called inertial cavitation caused by their collapse and destruction, which generate shock
waves or microjets penetrating the lipid bilayer [65,67,68]. The mechanical phenomena
generated by microbubbles are shown in Figure 2. As US causes repeating compression (at
higher pressure) and expansion (at lower pressure) movements of the molecules, the trans-
mitted energy can significantly increase a medium temperature, which is responsible for the
thermal effects of BBS. The rise in temperature is strongly correlated with the initial energy
converted into the acoustic wave, leading to local hyperthermia [62]. This phenomenon
is used for high-intensity focused US (HIFU)-ablation therapy of cancer [69]. Moreover,
US-induced hyperthermia was claimed to increase drug uptake by modulating membrane
permeability, especially in multidrug resistant cells [70]. Given that BBS is accompanied by
severe mechanical and thermal effects, both may lead to the chemical phenomena happen-
ing at BBS. When the gas pressure increases significantly or the temperature rapidly rises
during the collapse of MBs, such extreme conditions can generate reactive oxygen species
(ROS) as well as electromagnetic waves, also known as sonoluminescence. Interestingly,
both ROS and sonoluminescence are known to alter drug resistance [62,71–73].
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3. Mechanical and Biological Factors Affecting US Efficacy

Numerous studies have reported that the intensity of permeabilization depends on a
wide range of biomechanical factors. There is a considerable amount of literature showing
the positive correlation between the characteristics of acoustic waves and the transfer
efficiency. This effect was described for parameters such as acoustic pressure [13,74],
acoustic energy [75,76], exposure time [76–78], pulse duration [20,76], MI [79] as well as
duty cycle [76,80]. However, the published articles sometimes seem to contradict each
other. For example, Karshafian et al. [76] showed that the increasing mechanical energy
led to intensified cell death, especially for high-frequency acoustic waves such as 5 MHz.
Unlike other research carried out in this area, Forbes et al. [81,82] revealed that exposures
to 0.92, 3.2, and 5.6 MHz had almost the same impact on cell viability. Thus, the cellular
response to US seems to be unique for a particular cell type, and detailed preliminary
research regarding the range of US parameters should be performed.
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In terms of acoustic wave effects being deeply investigated, much work concerning
the effect of microbubbles has been carried out as well. Many commercial and self-made
MBs were used in US-mediated experiments, providing various sonoporation severity
depending on the size of the MB, the chemical composition, or the type of gas filling the core.
Several studies have shown that the higher the concentration of MBs, the more intensified
the sonoporation and the bigger the pores in the cell membrane [37,83]. Moreover, the
reduced bubble-cell distance provided a higher transfer effectiveness. Le Gac et al. [84]
noted that when the distance between the cell and the bubble was less than 75% of the
microbubble radius, the probability of cell membrane perforation exceeded up to 75%.
Another interesting factor that affects the intensity of the BBS is the viscosity of the fluid.
Rosenthal et al. [72] mentioned that the radial motion of MB and the ability to damage cells
by MB decreased when the viscosity of the fluid increased. Despite this, the effect of fluid
viscosity on cell-based sonoporation has been poorly investigated and omitted in most
research. Some papers also pointed out the crucial role of fluid composition. One of the
most important components in extracellular fluid affecting sonoporation are calcium ions,
which have been shown to be essential for membrane resealing after US exposure. This
phenomenon is described in more detail in Section 4.3.

Although mechanical agents are commonly reported and well documented in many
papers, the effect of biological factors on the intensity of sonoporation has been poorly
discussed. Since cell structures and geometric and mechanical characteristics such as cell
size, shape, or elasticity vary between different cell lines, it is no surprise and not unex-
pected that the intensity of permeabilization is also altered by cellular processes [59]. Few
researchers have addressed the issue of sonoporation sensitivity in various cell lines. For
example, Shi et al. [85] proved that the sonoporation conditions that provide effective sono-
poration were different for four cancer cell lines derived from various tissues. Khayamian
et al. [86] argued that US caused much more intense disruption of the cell membrane in
healthy HUVEC cells than in MCF-7 cancer cells due to the particular cytoskeleton pattern
of actin stress fibers. Furthermore, Jia et al. compared the effect of US on MCF-7 cells and
doxorubicin resistant MCF-7/ADR cells. Interestingly, they found that MCF-7/ADR cells
displayed a higher sensitivity to sonoporation [87]. Furthermore, transfection efficacy has
also been shown to vary between different cell types [59]. These findings confirm that the
final outcome of sonoporation strongly depends on the type of cell, the source of tissue, or
the resistance status.

A few papers addressed the sonoporation intensity in cells that undergo a particular
cell cycle phase. Pichardo et al. [88] showed that the cells at G2 and M phase had the highest
transfection efficacy. One of the most likely explanations for this effect is the dependence of
sonoporation efficacy on the biophysical characteristics of the cell. Some articles suggested
that cell cycle progression is accompanied by cytoskeleton reorganization that significantly
changes cell mechanical properties [89,90]. To confirm this, Fan et al. evaluated single-cell
responses to sonoporation of HeLa cells synchronized in a particular cycle phase. On
the basis of the AFM analysis, they noticed that cells in the S-phase having the smallest
elastic modulus were the most susceptible to microbubble-mediated sonoporation. They
suggested that intense microstreaming-induced shear stress was present in cells with a
small elastic modulus that led to the highest sonoporation efficacy [91]. The chemical
composition of the cell membrane also seems to be crucial for the sonoporation outcome.
Jurak et al. [92] noticed that microbubbles are likely to interact with appropriate acoustically
active areas of the cell membrane which are highly composed of lipid domains enriched
with sphingomyelin and cholesterol that rigidize the cell membrane.

This is worth mentioning, as one of the biggest limitations of the US-related in vitro
studies is the use of cell suspensions. It provides an easy way to obtain repetitive results, but
the collected data may be clinically irrelevant because bubble activity or acoustic features
differ considerably in cell suspensions and solid tissues. Furthermore, sonoporation is
limited in tissues due to the lack of cavitation nuclei around most cells, but can be overcome
by using microbubbles or other nanocarriers [93].



Int. J. Mol. Sci. 2022, 23, 11222 6 of 29

4. Cell Membrane
4.1. Membrane Permeabilization

As explained above, exposure to US results in the generation of pores in the cell
membrane. Many researchers tried to determine the pore size hypothesizing that the
pores are round-shaped formations with a particular diameter and on the assumption that
passive diffusion is the most crucial mechanism for US-triggered transport of molecules
into the cell. SEM studies provided direct evidence of membrane permeabilization that
showed the presence of irregular pores with a diameter of 100 nm up to several microme-
ters [18,35,94,95]. Zarnitsyn et al. performed a comprehensive analysis of transmembrane
transport through the cell membrane after sonoporation using DU145 prostate cancer cells.
Their experimental studies confirmed the intracellular uptake of molecules up to 28 nm
radius through membrane wounds where most uptake took place following sonication
predominantly by diffusion and where the most effective loading was observed for smaller
molecules. Furthermore, mathematical modelling predicted that membrane disturbances
had a radius of 300 nm at the beginning and closed with half-lives of 20–50 s [96]. Zhou
et al. monitored the sonoporation of single Xenopus laevis oocytes in real time by changes
in the transmembrane current (TMC) under voltage clamp. In that way, they estimated
that the mean pore radius was 110 nm [97]. Similar measurements were made for HEK-293
cells in the presence of microbubbles—in this case the maximum diameter of the pores
was 100 nm, showing that MBS was able to generate larger pores [98]. Some other papers
reported that the radius of the pores was 50–75 nm [35], 500 nm [21] and 500–2500 nm [37].
Interestingly, Duvshani-Eshet et al. [34] using AFM observed significant changes in cell
surface topography and increased surface roughness after microbubble-based sonoporation.
Additionally, SEM and AFM studies highlighted that longer time of US exposure and higher
acoustic wave pressure created larger pores [37,99]. However, care must be taken with
the interpretation of the images performed applying such methods. They mostly require
preserved cells specially processed for imaging many hours after the experiment when the
pore structure can be strongly disturbed at the time of analysis.

Some researchers also described the relationship between bubble diameter and bubble-
to-cell distance with the degree of US-triggered permeabilization. For example, Qin et al.
investigated the real-time single-cell response to sonoporation triggered by acoustic droplet
vaporization (ADV). They indicated that large ADV bubbles induced irreversible sonopora-
tion only if they were closely located to the cell, whereas the same bubbles far from the cell
membrane were not able to induce sonoporation. Thus, this observation proved that the
final outcome of sonoporation depended on the size of the microbubble and its distance
to the cell; irreversible sonoporation was more likely when the bubble to the cell distance
decreased as well as when the diameter of the bubble increased [16]. Furthermore, Hu
et al. [100] discovered that the size of the generated pore determined the reversibility of the
sonoporation: membrane perforations smaller than 30 µm2 disappeared within 1 min after
US treatment, whereas pores >100 µm2 were still open within half an hour. Furthermore,
the time of membrane resealing determined post-sonoporation cell viability: only cells with
pores that resealed in a minute remained viable after US treatment [100–102]. It is worth
mentioning that the size of the membrane wound during BBS depends on the sonoporation
mechanism—small pores (up to a few hundred nanometers) are generated by inertial
cavitation caused by microbubbles [35] whereas large pores (hundreds of nanometers up to
several micrometres) result from stable cavitation activity of microbubbles [100,103,104].

Since US-triggered cell membrane permeabilization can be disturbed by multiple
factors acting simultaneously such as the size of bubble, and its distance to cell or acous-
tic wave energy, the final sonoporation efficacy may differ within the population of the
sonoporated cells at the same time. Some papers provided proves for this heterogeneity
in particle uptake. Guzmán et al. [105,106] believed that this phenomenon was caused by
unequal exposure of various cells to US and cavitation; however, they did not observe
a whole distribution of uptake intensities within sonoporated cells. Moreover, De Cock
et al. noticed only two populations of cells with different levels of molecule uptake. They
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analysed separated subpopulations of sonoporated cells using confocal microscopy and
discovered that the cells displayed different uptake mechanisms: endocytic uptake for low
uptake intensity and membrane permeabilization for high uptake intensity. Additionally,
they mentioned that the higher the acoustic pressure, the more sonoporated cells with
high uptake were generated. Thus, they concluded that endocytosis is promoted at low
pressures, whereas pore formation predominates at high pressures, and that the uptake
mechanism can be controlled by adjusting the acoustic wave pressure [107].

4.2. Cell Membrane Potential

The bioelectrical gradient provided by a well-organized balance between intra- and
extracellular ions is responsible for the so-called cell membrane potential that affects the
transmembrane transport of various molecules. When its baseline level is disturbed by
particular stimuli, cell homeostasis and cell behaviour are affected. Since acoustic waves
are capable of penetrating the cell membrane, they are also likely to alter the cell membrane
potential [108]. Preliminary studies on this topic confirmed that TUS can disturb the mem-
brane electric charge [20,24], especially in the presence of microbubbles [25,109,110]. Qin
et al. investigated the plasma membrane potential of HeLa cervical cancer cells subjected to
US. They noticed that irreversibly sonoporated cells displayed permanent depolarization
of the cell membrane, but when the sonoporation was reversible the depolarization was
transient or sustained. Moreover, they found that intracellular calcium ion concentration
increased simultaneously during US exposure and returned to the initial level in the app.
100 s [108]. In contrast, Tran et al. [24] observed sonoporation-mediated hyperpolarization
of MDA-MB-231 breast cancer cells that lasted as long as BBS was happening. As Qin
et al. noted calcium influx during sonoporation. Going further, they proved that the ob-
served cell membrane hyperpolarization was generated by sonoporation-triggered calcium
ions influx, which opened calcium-gated BKCa stretch channels boosting potassium ion
efflux [24]. These contradictory observations may be explained by the fact that HeLa cells
are known for the lack of voltage-gated ion channels, which makes sonoporation-mediated
hyperpolarization impossible. Thus, the composition of membrane ion channels is crucial
for determining the effect of US on the potential of the cell membrane. It is also worth
mentioning that other researchers noticed a change in transmembrane current only when
BBS was performed [111].

4.3. Membrane Resealing

US-generated pores in the cell membrane must be repaired to ensure cell survival and
limit the transmembrane passage of various extracellular or intracellular agents before pore
resealing. Membrane repair is crucial to prevent intracellular accumulation of ions capable
of disrupting cell homeostasis. According to previous studies, sonoporation is likely to
induce two mechanisms that allow membrane resealing (Figure 3): endocytosis-triggered
membrane repair and exocytosis-linked vesicular patching [12,112]. The mechanical forces
released by US can induce cell-membrane deformation by compressing microbubbles
onto the cell membrane, or stable cavitation creating microstreaming in the surrounding
fluid. Such phenomena provide changes in cell-membrane tension without disrupting
plasma-membrane integrity as well as induction of shear stress which altogether leads
to a rearrangement of cytoskeletal fibres. These mechanical forces can be perceived by
mechanosensors, such as integrins or stretch-activated ion channels that are capable of
transducing such stimuli and changing cellular processes [113,114]. The processes of
rebuilding (exocytosis) or removal (endocytosis) of the cell membrane have been claimed
to restore the initial tension and integrity of the plasma membrane [12]. Endocytosis is
believed to be mainly responsible for the resealing of small pores caused by oscillating
microbubbles [12,115]. On the other hand, exocytosis and lysosomal patches repair large
membrane pores generated by collapsing microbubbles [99,116]. Furthermore, only pores
smaller than 0.2 µm can be successfully resealable [117]. This explains the contradictory
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results of different groups reporting only the occurrence of US-induced exocytosis or
endocytosis in drug-uptake experiments.
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Previous studies have shown that caveolae-mediated endocytosis (CavME) and clathrin-
mediated endocytosis (CME) are triggered by US. CavME and CME occur through caveolae
and clathrin-covered pits, then the created vehicles can fuse and form an early or late en-
dosome, which could be united with lysosomes for degradation [115]. It is still unclear
which endocytic pathway is predominant; however, Lionetti et al. [118] noticed that caveolae-
mediated endocytosis provided much more intense uptake of fluorescent probe in HUVEC
cells subjected to diagnostic-level US. To check whether US-mediated uptake was caused by
sonoporation alone or endocytosis, the effect of inhibition of various endocytic pathways
was studied. Endocytosis inhibitors have been found to significantly reduce molecule uptake
and the clathrin-mediated pathway played an major role in uptake [79]. Meijering et al. [119]
showed that large molecules such as 500 kDa dextran used in their studies were absorbed
mainly by endocytosis, whereas the smaller dextrans (4 kDa) were absorbed by sonoporation
as well as endocytosis. It is worth mentioning that sonoporation triggered endocytosis not
only during US exposure but also many minutes after that. Derieppe et al. investigated US
and SonoVue microbubble-mediated uptake of SYTOX Green, a 600 Da hydrophilic model
probe in C6 rat glioma cells. They noticed that cavitation-induced endocytosis provided a
continuous increase in intracellular SYTOX Green accumulation for 4 h that lasted for several
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hours [120]. Moreover, Tardoski et al. [121] showed the accumulation of the endocytic marker—
clathrin—in the cytoplasm after US treatment and its concentration substantially reduced
in 18 h. These findings proved that sonoporation can induce long-term and post-exposure
molecule internalization that is responsible for the appearance of a substantial increase in
particle uptake. Finally, antioxidants have been reported to decrease the effectiveness of
sonoporation through US-mediated endocytosis, suggesting that this phenomenon can be
induced by ROS-dependent mechanisms [118].

Fewer studies addressed the role of exocytosis in US-triggered membrane repair. As
mentioned above, large membrane damage is repaired through exocytosis of a patch of
intracellular vehicles. When a microbubble generates pores in the cell membrane, calcium
ions can enter the cytoplasm and initiate the depolymerization of actin fibers, leading to
the accumulation of intracellular vehicles close to membrane disruption. Then, the vehicles
can fuse with each other and create large patch vehicles, which are recruited to the cell
membrane through the disrupted actin cytoskeleton. The fusion of vehicles and the cell
membrane repairs the pores and restores the integrity of the cell membrane [12]. Some
studies also suggested that lysosome exocytosis was caused by US-mediated membrane
damage and was crucial for the enhancement of endocytosis. Fekri et al. [122] detected
an increase in the cell surface level of LAMP-1—a lysosomal marker—in RPE cells after
US exposure. Vacuolin-1 and desipramine—the lysosome exocytosis inhibitors—were
shown to down-regulate cell surface transferrin receptor activity, implying that exocytosis
compensates for sonoporation-induced endocytosis.

US-mediated pore formation facilitates the free flow of various ions through the cell
membrane, including extracellular Ca2+. Since numerous cellular processes are controlled
by Ca2+, some researchers investigated the role of calcium ions in membrane resealing. One
of the pivotal papers that pointed out the role of calcium ions in US-induced membrane
repair was published by Zhou et al. They designed an experiment where the sonoporated
Xenopus oocytes were exposed to various calcium concentrations (0–3 mM). By monitoring
the single cell resealing rate in real time, they noticed that lower Ca2+ concentration was
associated with slower and weaker recovery, and the lowest calcium concentration enabling
successful membrane repair was 0.54 mM. Moreover, membrane recovery was not possible
in calcium-free solutions [111]. Deng et al. also noticed that resealing of the cell membrane
was faster in the presence of extracellular Ca2+ [20]. Calcium ions are also believed to
affect Ca-dependent proteins and cytoskeleton, possibly leading to the depolymerization
of filaments. This phenomenon would be crucial for sonoporation-mediated exocytosis
to enable vesicle fusion with the cell membrane [33]. Furthermore, Ca2+ can stimulate
the lysosomes to fuse with each other [123] or the plasma membrane [124], providing a
successful repair of the pores generated by US. Calcium ions can also influence cholesterol-
rich cell membrane compartments and trigger their spontaneous vesiculation, leading to
the formation of endocytic vesicles.

4.4. Lipid Peroxidation

Many researchers have reported the production of reactive oxygen species during
sonoporation—this phenomenon will be discussed in Section 5.2. Some of them claimed
that the generated free radicals can penetrate the lipid bilayer and induce lipid peroxidation.
However, it has not yet been established whether sonoporation induces peroxidation
through enzymatic or nonenzymatic reactions. This issue remains crucial on account on
the fact that the final fate of the cell may differ depending on the type of process. For
example, the production of oxidized lipids can affect the structure of the lipid bilayer and
therefore alter the membrane properties such as permeability [125,126]. Jia et al. examined
cell membrane damage of normal breast cancer cells (MCF-7) and resisted to doxorubicin
(MCF-7/ADR). As assumed, the level of lipid peroxidation was remarkably increased after
sonoporation; however, its intensity varied significantly between the examined cell lines.
Whereas US exposure at 0.75 W/cm2 provided the highest level of methane dicarboxylic
aldehyde (MDA) in doxorubicin resisted cells—19.170 ± 0.004 nmol/mL, the concentration



Int. J. Mol. Sci. 2022, 23, 11222 10 of 29

of MDA in cells sensitive to doxorubicin was much lower—8.337 ± 0.003 nmol/mL. These
results suggested that the cell membrane damage was much more severe in MCF-7/ADR
cells. The authors claimed that the decrease in membrane fluidity of MCF-7/ADR cells
would explain the increase in cell membrane damage [87]. It is worth mentioning that this
is not the first observation of altered membrane fluidity of resisted cancer cells. Previous
studies have reported that cell membranes of drug-resistant malignant cells are overloaded
with many proteins such as P-glycoprotein, which enable the effective elimination of
cytostatics. However, this phenomenon has significant biophysical consequences such as
decreased membrane fluidity. Because US-based sonoporation is a mechanical process
that strongly relies on biophysical features, it is highly likely that some cellular bioeffects
will differ between drug-sensitive and resistant cancer cells. Going further, it seems that
the occurrence of multidrug resistance can determine the intensity of lipid peroxidation.
Furthermore, membrane fluidity can also be altered by temperature and this may again
alter cell susceptibility to sonoporation and lipid peroxidation [107,127]. Leung et al.
investigated lipid peroxidation in sonoporated Jurkat cells. The authors observed reduced
levels of cholesterol, arachidonic, eicosapentaenoic, and docosahexaenoic acids, 24 h after
US treatment. Furthermore, only the levels of enzyme-independent oxidized lipids (F2-
isoprostanes, F3-isoprostanes, 7-ketocholesterol) were increased after sonoporation, up to
60% compared to control cells, whereas the levels of enzyme-dependent oxidized products
remained stable. As far as cell morphology can be altered by cellular stress, the authors also
observed membrane shrinkage and accumulation of intracellular lipids, which proved the
essential disruption of lipid metabolism [128]. In addition, the cell membrane cytoskeleton
is made up of crucial PUFA acids conjugated to phospholipids [125], which were reduced
in sonoporated Jurkat cells. This could imply serious consequences such as altered cell
surface structure (which was proven in other studies by SEM images) or even modified
cell-to-cell communication. Some oxidized lipids play an important role in regulation
of cell division [129] or increase membrane fluidity [130], whereas cholesterol oxidation
products are highly toxic [131] and can induce cell death by overproduction of superoxide
anions [132] as well as induction of nuclei fragmentation [128]. Lipid peroxidation has also
been reported in ultrasonicated homogenates of Ehrlich ascitic tumor cells [130] and ghost
membranes of erythrocytes in the presence of hematoporphyrin [133].

4.5. Membrane Protein

Although the mechanisms responsible for bubble- and non-bubble-based sonoporation
significantly differ from each other, both lead to membrane rupture. As a result, US-
mediated exocytosis and endocytosis can alter the biological characteristics of the cell
membrane. Brayman et al. [134] reported the removal of CD19 receptors from the plasma
membrane after US exposure. Although the authors did not link this observation specifically
with endocytosis, a similar phenomenon was described in bacteria that removed the pores
created by the bacterial protein streptolysin O by endocytosis [135]. Since multidrug
resistance phenomena (MDR) are facilitated in part by membrane proteins responsible for
effective drug efflux, some scientists went further and explored the effect of US exposure on
MDR. Microbubble-based sonoporation has been shown to reduce the expression of Pgp in
the blood-brain barrier in rats. Aryal et al. [136] observed a suppression of Pgp that lasted
more than 72 h. This would increase drug penetration and accumulation in the central
nervous system. The reduction in Pgp activity was also revealed in sonoporated breast
cancer cells. A significant increase in drug accumulation was observed even 15 min after US
treatment. Furthermore, Western Blot analyses confirmed 44.4% down-regulation of Pgp in
doxorubicin resistant MCF-7/ADR cells. The authors proposed two mechanisms that could
explain this observation. The decreased expression of Pgp might be caused by DNA damage
during sonoporation, which suppresses transcription and translation. On the other hand,
the US “shaving” effect may be also responsible for removal of extracellular domains from
glycoproteins and, thus, alteration of protein activity [137]. Similar findings were reported
by Bjånes et al. [138] who investigated the gemcitabine efficacy in sonoporated pancreatic
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cancer cells. Alternatively, drug resistance can be overcome by targeting MDR-related
genes. Paproski et al. used microbubble-based sonoporation to transfect HEK293 cells and
increase gemcitabine sensitivity by introducing the membrane transporter—the human
concentrative nucleoside transporter 3 (hCNT3) gene. US-mediated transfection increased
the expression of the hCNT3 gene by more than 2000-fold and provided a 3400-fold increase
in intracellular gemcitabine uptake [139,140].

4.6. Cell Morphology

Cell size was shown to decrease after US treatment [141,142] and a flatter and smoother
cell surface was observed [143]. SEM and confocal microscopy of sonoporated prostate
cancer cells DU-145 revealed the presence of wounded cells with spherically protruding
‘balloons’ and ‘blister’ blebs. The balloon blebs contained small lipid bubbles produced
by the endoplasmic reticulum, whereas the blister blebs derived from lipids fused with
the cell membrane and contained clear fluid. Schlicher and co-workers [116] also observed
various types of membrane blebbing, nuclear ejection, perikarya formation, or even cell
lysis. Zeghimi et al. used TEM and SEM microscopy to observe the evolution of plasma
membrane disruption of U-87 MG cells. They detected a large amount of uncoated pits and
membrane ruptures that were almost completely resealed within 60 min [144]. However,
some of the morphological alterations, such as pit-like structures and membrane roughness,
did not recover until 24 after US treatment with opsonin microbubbles [34,36]. Other
morphological alterations observed after sonoporation were cell membrane blebs. Qin et al.
detected blebs 90 s after exposure, which later expanded and created new blebs. These
formations were observed in reversibly and irreversibly sonoporated cells [16]. Moreover,
Leow and co-workers [112] also mentioned the presence of secondary blebs located far
from the sonoporated areas. Blebs are believed to be created to restore pressure home-
ostasis as a cytoprotective response to an increase in hydrostatic pressure caused by the
US disruption of the actin cytoskeleton [112,145]. Honda et al. also discovered apoptosis
cells 6 h after sonication. Characteristic shrinkage of the nucleus and cell body, chromatin
condensation, and nucleus fragmentation were observed, but swelling of the cytoplasm
and enlarged endoplasmic reticulum was present only in some dying cells. Moreover,
vacuolar structures were detected and described as autophagic vacuoles and secondary
lysosomes [146]. Tachibana et al. [147] mentioned the reduced number of microvilli and
membranous laminar ruffles in HL-60 cells after US treatment. In the next few years,
confocal images revealed a regional increase in lipid content in wounded areas, which
gradually propagated outwards, and lipid striation patterns on the cell membrane of HL-60
cells subjected to US. The authors proved that the emergent lipids were derived from the
intracellular environment [148]. Furthermore, sonoporated MCF-7 cells also appeared to
have no microvilli after sonoporation, which resulted in their smooth cell surface, and many
cells were round and shrunken. These membrane disruptions were much more intense
in doxorubicin resistant MCF-7/ADR cells [87]. Swollen mitochondria and cytoplasmic
vacuoles were reported in ovarian cancer cells treated with US [149]. Additionally, many
sonoporated cells contained caveolar or clathrin-mediated endocytic vesicles, as previ-
ously described. Although US-mediated sonoporation is primarily associated with pore
formation in the cell membrane, this phenomenon has far-reaching consequences for cell
behaviour and survival. These aspects of US-triggered bioeffects will be discussed below.

5. Intracellular Phenomena Triggered by US
5.1. Cytoskeleton

Cytoskeleton fibres are responsible for maintaining cell architecture and interaction
with other cells and with the extracellular matrix. Numerous studies have reported cy-
toskeleton alteration after sonoporation. Chen and co-workers described the immediate
rupture of F-actin filaments at perforated areas of the cell membrane. Therefore, they
proved that sonoporation is a phenomenon that does not act only at the cell membrane
level. As mentioned above, cytoskeleton disruption is a cytoprotective process required for
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the translocation of intracellular vehicles necessary for successful membrane resealing. The
authors also observed a long-term cytoskeleton response to US treatment, such as further
disassembly of F-actin fibers in globular form (G-actin), which led to a temporary increase
in the G:F actin ratio after sonoporation [145]. Although this effect could be the intentional
fluidization or softening of cells, this behaviour will still trigger serious implications, such
as altered cell mobility and locomotion or induction of pro-apoptotic signals [150,151].
Juffermans et al. observed the appearance of actin stress fibers in the centre of sonoporated
cells compared to control cells with peripherally localized F-actin. However, they stayed
only for a few minutes and disappeared in 30 min [152]. Further research confirmed that
US-induced shear stress is capable of inducing cytoskeleton rearrangement that causes
nuclear contraction [103,153,154]. Zeghimi et al. carried out very interesting experiments
with sonoporated U-87 MG cells treated with inhibitors of actin filaments and microtubule
polymerization using SEM imaging. They reported a decrease in the number of permeant
structures in the presence of inhibitors [155]. Furthermore, a reduced distance between the
microbubble and the cell positively correlated with the severity of cytoskeleton disassembly
in HeLa cells [103]. Also, acoustic waves have been shown to open tight junctions and
cell-cell contacts [156,157]. As mentioned previously, mechanical stimuli perceived by
the cytoskeleton can be transduced by mechanosensors and integrins into appropriate
signalling pathways and trigger a particular cell response. However, it remains unknown
whether and how these stimuli are correlated with sonoporation. Cytoskeleton disruptions
also affect cell locomotion. For example, sonoporation inhibited adhesion and migration
of smooth muscle cells [158], whereas adhesion was found to be increased in US-treated
neutrophils [159]. A similar decrease in cell migration was observed in DU-145 prostate
cancer cells and hepatocellular carcinoma cell lines after sonoporation [160,161].

5.2. Oxidative Stress

The kinetic energy delivered by US can initiate inertial cavitation, which breaks down
water molecules into hydrogen atoms and highly reactive hydroxyl radicals. This process is
called water pyrolysis or sonolysis [162]. Then, these primary reactive oxygen species (ROS)
can react with each other or with other molecules, creating secondary free radicals. For
example, when hydrogen atoms recombine with oxygen molecules within the bubbles, a
hydrogen radical is generated, which splits up into superoxide radical anion [72]. Another
theory claims that superoxide ions can be produced by oscillating microbubbles forming
vortex-like microstreaming and shear stress [152]. Finally, two superoxide anions rapidly
fuse and form H2O2 [163,164]. Early studies showed that US can induce intracellular ROS
production [163]. Moreover, recent investigations revealed that exposure of gas-filled mi-
crobubbles to acoustic waves evoked extremely high pressures and temperatures capable
of generating extracellular free radicals [17,72,165]. Although balanced ROS activity is nec-
essary for cell functioning, excessive free-radical production damages cellular organelles,
damages nucleic acids, causes protein misfolding, promotes aging, and cell death. This
balance can be severely disturbed in the presence of microbubbles when extracellular
ROS can cause physical damage to the cell and cause oxidative stress [165]. Furthermore,
increasing cavitation energies were correlated with increased shear stress and ROS produc-
tion, enabling intensification of sonoporation [12,54]. This phenomenon was accompanied
by a decrease in the concentration of intracellular scavengers such as glutathione [152].
Escoffre et al. [66] showed that ROS production appeared to play a supporting role in
membrane permeabilization, and cavitation was the predominant process that allowed
effective transfection with US. Moreover, some scientists explored the effect of catalase
on oxidative stress during sonoporation. Further tests confirmed that when catalase was
added, reduced US-mediated intracellular production of H2O2 was observed, but this
phenomenon was accompanied by an immediate blockage of Ca2+ influx after exposure.
These findings suggest that hydrogen peroxide plays an important role in native permeabi-
lization of the plasma membrane and the formation of transient nanopores [119,166]. Going
further, calcium ions can modulate the transmembrane current by activating BKCa stretch
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channels, highlighting the link between oxidative stress and cell membrane potential. On
the other hand, an increased intracellular concentration of Ca2+ ions is known to induce
the production of free radicals by mitochondria. Thus, mitochondria seem to play a role in
the transduction of US-triggered oxidative stress [146,152]. Sonochemical reactions were
also capable of lysis of human promyelocytic leukemia HL-60 cells [167] or changing the
physicochemical characteristics of culture medium, which after sonication lost its ability to
support cell development [168]. Experiments with free radical scavengers have shown that
the intensity of endocytosis is also higher when ROS are produced [118,164]. Moreover,
antioxidants reduced doxorubicin uptake in sonoporated cells [169]. Although US-induced
oxidative stress remains an intriguing research topic, designing and carrying out relevant
experiments is still a huge problem. Intracellular ROS generation was assessed mainly by
fluorospectrophotometry, microscope observations, or flow cytometry at appropriate time
points. The short existence of free radicals and the nature of US investigations make this
issue much more complex. Research into solving this problem is still under way.

5.3. Endoplasmic Reticulum

The endoplasmic reticulum (ER) is a complex membrane system that separates par-
ticular areas within eucaryotic cells. As previously reported, ER is involved in exo- and
endocytosis and, thus, membrane repair [170]. Moreover, ER is responsible for protein
folding, lipid metabolism as well as calcium signalling. Based on these findings, Zhong and
co-workers hypothesized that ER could participate in the detection and mediation of US-
triggered cellular stress. First, they noticed a loss of total ER mass measured by the decrease
in ER-Tracker Green fluorescence intensity after sonoporation. Western Blots revealed
an increase in the expression of protein folding enzymes: Ero1-Lα (ER oxidoreductin-1
like protein, α paralog) up to 202%, and PDI (protein disulfide isomerase) up to 76%.
Finally, their team confirmed activation of ER stress-sensor proteins: PERK (protein kinase
RNA-like ER kinase) and IRE1-α (inositol-requiring protein-1, α homolog). In that way,
they concluded that loss of ER mass accompanied by activation of stress sensors seriously
disrupted the ER in US-exposed cells. This phenomenon usually leads to the accumulation
of misfolded proteins, which was also confirmed in this study. Furthermore, when ER stress
is extended and cells cannot adapt to this, the stress signals are transduced and initiate
ER-induced apoptosis. As expected, the authors recognized the activation of pro-apoptotic
regulators in the ER: CHOP and JNK, which are known to inhibit antiapoptotic Bcl-2 protein
and induce mitochondrial membrane depolarization. This triggered an intrinsic apoptotic
pathway in HL-60 cells that was confirmed by caspase-9 cleavage. Zhong et al. revealed
that sonoporation is not only capable of ER stress induction but also that these signals can
be transduced to mitochondria and guide US-treated cells toward apoptosis. Unfortunately,
their research is the only existing paper that thoroughly addressed the functioning of
the ER of sonoporated cells [171]. Only some other studies mentioned ER disturbances
in US-treated cells [146,148,172]. The functioning of the endoplasmic reticulum in cells
exposed to US remains a very exciting issue, since ER seems to play a crucial role in cell
response to sonoporation, especially considering its link with mitochondria in cell death
induction. The Golgi apparatus was also not investigated in sonoporated studies; however,
it could cooperate with the ER in lipid secretion and membrane resealing. Research into
solving this problem is still under way. The graphical summary of ER-induced stress and
cell death is presented in Figure 4.
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5.4. Mitochondria

Mitochondria, commonly called the powerhouse of the cells, were noted as the intracel-
lular sensors and transducers of US-induced stress by increasing the production of reactive
oxygen species [146,152] or altering calcium signalling [33]. TEM imaging confirmed apical
membrane widening, as well as mitochondrial cristae disruptions in sonoporated frog-
muscle fibers and epidermis of tadpoles [173,174]. Additionally, mitochondrial swelling
was observed in sonoporated ovarian cancer cells [149]. Zhong et al. [171] also reported the
depolarization of the mitochondrial outer membrane (MOM) using JC-1 staining: the MOM
potential of sonoporated cells gradually decreased from its initial value to a depolarized
state. This phenomenon is mainly caused by extended cytoplasmic stress that promotes
cytochrome c release and the induction of mitochondria-dependent apoptosis [175], as re-
vealed in sonoporated cells [19,176–178]. Furthermore, sonoporation was also accompanied
by mitochondrial superoxide production and oxidative stress induction [146].

5.5. Extracellular Vesicles

Many cells have been shown to excrete small extracellular vesicles (EVs). EVs are
natural phospholipid bilayer structures that are classified into different groups based on
their size and biogenesis mechanism: exosomes (30–120 nm), microvesicles (50–1000 nm)
and apoptotic bodies (50–2000 nm) [179]. EVs were first viewed as cellular debris, but are
now thought of as vesicles with diverse biological functions, including removal of waste
products from cells, cell membrane repair, emission of signalling and regulatory molecules,
cell-cell communication, regulation of the immune system, and antigen presentation [180].
Yuana and co-workers tried to investigate whether US exposure triggered the release of EVs
from FaDu head and neck cancer cells. They found an increased level of CD9 exposing-EVs
at 2 and 4 h and CD63 positive-EVs at 2 h following the treatment. After 24 h, EVs’ secretion

BioRender.com


Int. J. Mol. Sci. 2022, 23, 11222 15 of 29

reached their initial intensity. However, the isolated EVs displayed a nonhomogeneous
size distribution profile (30–1200 nm) and the presence of calnexin, which is known to be
absent in exosomes. Thus, sonoporation induced exocytosis and release of heterogeneous
EVs [181]. Interestingly, exposure to US increases intracellular calcium concentration, which
can trigger exocytosis and thus EVs’ secretion during membrane resealing.

5.6. Calcium Signalling

Calcium signalling seems to play a crucial role in the functioning of sonoporated
cells. In addition, they can modulate the transmembrane potential by activating particular
ion channels and regulating oxidative stress. Ca2+ are essential for successful membrane
recovery through US-induced exocytosis. Calcium-enhanced US-transfection efficiency
was also reported in NIH3T3 cells by activation of plasmid endocytosis [182]. Intracellular
increase in calcium concentration can be caused by free Ca2+ influx through generated
membrane perforations or Ca2+ release from intracellular storages such as the endoplasmic
reticulum, mitochondria, or buffering proteins—this mechanism is triggered by secondary
messengers of PLC-IP3-IP3R axis induced by mechanical stimuli [183,184]. To confirm this,
Takahashi and co-workers inhibited PLC and IP3R in sonoporated cells and observed a
reduced increase in intracellular calcium. Similar observations were noted when extra-
cellular calcium ions were depleted. Therefore, the increase in intracellular Ca2+ in cells
treated with US was caused by the influx of extracellular Ca2+ as well as intracellular Ca2+

release. Since Ca2+ is responsible for cytoskeletal filaments’ rearrangement [31], their team
also investigated the role of cytoskeleton in increasing intracellular calcium concentration.
Further tests showed that only actin fibres were involved in US mechanosensing and an
increase in intracellular Ca2+ was required for induction of US mechanotransduction [185].
Real-time observations of sonoporated cells revealed that intracellular calcium fluctuations
appeared up to 45 s following exposure and lasted for up to 3 min [152,166,186]. On the
other hand, Honda et al. [146] observed a rise in intracellular calcium concentration for
4 h that reached the initial level at 6 h after US treatment. Some cells also experienced
delayed ultrashort frequency-modulated Ca2+ oscillations that were thought to be cellular
transmitters responsible for modulation of calcium-sensitive targets and cell adaptation
to US [33]. Calcium ions also regulate the nuclear envelope and nuclear pore complexes
(NPCs). The study of Vaškovicová et al. [187] highlighted that US affected NPCs of HL-60
cells which had wider diameters following the treatment. That would also significantly in-
crease the permeability of nuclear envelopes for medicines and genes. Taking into account
the above findings, this observation could be explained by calcium fluctuations induced by
US. Finally, calcium-mediated sonoporation was found to induce rapid cell death of CHO
cells within 20 min after US-exposure. Until now, Maciulevičius and co-workers remain
the only team to have investigated the effect of calcium sonoporation on cell viability. In
contrast to other studies [20,111], they did not observe a protective effect of Ca2+ at low
Ca2+ concentration (<3 mM). Furthermore, only healthy cells were used in their research,
so it is still unknown how such therapy would affect malignant cells.

5.7. Signalling Pathways

A signalling pathway is a series of biochemical reactions in which a particular group of
molecules work together to control cell functions such as cell division or apoptosis. When
a substance, such as a hormone or growth factor, attaches to a specific protein receptor
presented on the surface or within the cell, the signal is transduced using secondary
messengers and finally activates molecular targets that trigger intended cellular responses.
Signalling pathways steer the cellular biochemical machinery and are responsible for
homeostasis maintenance, adaptation to stressful conditions, and cell recovery or cell death
induction if necessary.

Only a few studies have addressed the regulation of the signalling pathway in sono-
porated cells. Haugse and co-workers investigated the effect of BBS on the activation
of important intracellular signalling pathways in pancreatic cancer cells (MIA PaCa-2),
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fibroblasts (FB) and human-umbilical-vein endothelial cells (HUVECs). In all three cell
types, sonoporation led to phosphorylation of MAP-kinases (MAPK): p38 T180/Y182 and
ERK1/2 T202/Y204; however, the intensity and time of activation differed among partic-
ular cell lines. The highest MAPK activation was noticed in fibroblast directly after US
exposure, but in MIA PaCa-2 and HUVECs this process was weaker or delayed. Moreover,
mTOR pathway activation with phosphorylation of ribosomal protein S6 was reported
in MIA PaCa-2 and FB 2h following sonoporation. US also induced the dephosphoryla-
tion of 4E-BP1 T36/45. Since ERK 1/2 activation has been shown to play an important
role in injured recovery, their team investigated whether EKR 1/2 inhibition would affect
cellular response to US. As suspected, this increased the percentage of apoptotic cells in
HUVECs and FB cell lines, but not in MIA PaCa-2 cancer cells. The authors claimed that
MAPK activation and inhibition of 4E-BP1 could be the signalling response of sonopo-
rated cells to membrane repair [188], which was observed in electroporated cells [189,190].
Furthermore, dephosphorylation of 4E-BP1 was shown to inhibit cap-dependent protein
translation [191]. Haugse et al. also investigated the activation of signalling pathways in
US-treated leukemic MOLM-13 cells and peripheral blood mononuclear cells (PBMC). In
contrast to their previous study, this time phosphorylation of p38 T180/Y182, ERK1/2
T202/Y204, CREB S133/ATF-1, Akt S473 and STAT3 S727 was present only in MOLM-13
cells, but not in PBMC. In agreement with their findings, other investigations also noted
that US could activate p38, ERK, and Akt [192–195]. Such proteins have been reported
to regulate cell cycle and proliferation [196], cell stress [197], cell survival [198] as well as
many other processes.

Sato et al. [194] described US-induced activation of integrin receptors—focal adhesion
kinase (FAK), which was followed by phosphorylation of up-regulation of ERK 1/2, p38
and JNK in rabbit-knee synovial-membrane cells. Moreover, Whitney et al. [192] confirmed
the phosphorylation of Src by activated FAK in sonoporated cells. Zhou and co-workers
revealed that US induced F-actin polymerization, paxillin recruitment to focal adhesions
by activation of Rho kinase [195], which is involved in cytoskeleton reorganization [199].
Focal adhesions (FAs) are multiprotein structures that form physical links between integrin
cytoplasmic domains and cytoskeleton fibres. FAs modulate signalling pathways associated
with integrins, such as the MAPK and Rho pathways. Taken together, these findings suggest
that FA and integrin-mediated pathways are responsible for mechanotransduction of
biophysical stimuli triggered by sonoporation and initiate the cascade of cellular responses
leading, for instance, to membrane repair, cell cycle alteration, cytoskeleton rearrangement,
or even cell death.

5.8. DNA Damage

Previous studies have shown that DNA damage is responsible for many human
diseases, including cancer. DNA disruptions occur naturally and daily in our cells, which
are constantly exposed to extrinsic or intrinsic factors capable of introducing defects in one
DNA strand (single strand breaks—SSB) or both (double strand breaks—DSB). DNA repair
is provided by genetically programmed complexes that are responsible for correcting the
erratically installed nitrogenous bases (base excision repair—BER) or defective portions
(nucleotide excision repair—NER). Unfortunately, in some cases, cells cannot restore the
primary genetic balance that initiates programmed death in healthy cells [22]. The ability
of US to affect the DNA structure was proved many years ago. Until now, chemical and
mechanical reactions have been believed to participate in sonoporation-mediated changes
in genomic DNA [200,201]. Moreover, the mechanical stimuli provided by US exposure can
be transduced and trigger appropriate effector mechanisms, which consequently modulate
gene expression [202,203].

SSB are the most common lesions found in DNA, which can be caused directly by ROS
or indirectly by enzymatic activity during BER. Early evidence of SSB were revealed in
1977 by McKee and co-workers who noticed strand breaks in the DNA solutions subjected
to UD. The authors claimed that the production of free radicals during the sonolysis of
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water molecules was responsible for this phenomenon [204]. In 1986, Pinamonti et al. [205]
reported SSB in sonoporated human leukocytes. Later experiments have shown that
intracellular ROS production is critical for provoking SSB whereas extracellular free radicals
did not alter SSB intensity due to the short existence and inaccessibility of the nucleus for
ROS outside the cell [206–208].

Double-strand breaks are, though, the most hazardous DNA disturbances, as the
lack of original template copy results in a random repair of the lesion. First records of
US-triggered DSB were reported by Kondo et al. in 1985 [209]. Later, they were confirmed
in various leukemia cell lines using a neutral comet assay [22]. Interestingly, the molecular
signalling of sonoporation-evoked DSB DNA damage varies from pathways triggered
by ionizing radiation (IR). When DSB are detected, the histone H2AX is phosphorylated
(γH2AX) which is a platform for DNA damage response proteins responsible for DNA
repair. H2AX phosphorylation in S139 is the result of the activation of PIKK family proteins
such as ataxia-telangiectasia-mutated (ATM), DNA-dependent protein kinase (DNA-PK)
as well as ataxia telangiectasia and Rad3-related protein (ATR). Thus, γH2AX is considered
a cellular sensor of DSB and its presence was confirmed in sonoporated cells [22]. ATM
is generally activated by medicines or IR, and ATM by replication stress [210–212]. ATM
interacts with the MRE11/RAD50/NBS1 (MRN) complex that recognizes DSB and provides
homologous recombination (HR). DNA-PK is recruited with the Ku70/Ku80 heterodimer
that secures DNA breaks from damage and contributes to non-homologous end-joining
(NHEJ) repair. Activated ATM, DNA-PK and NBS1 proteins were confirmed in sonoporated
cells [213]. However, recent studies highlighted that sonoporation preferably activated
DNA-PK rather than ATM and DNA-PK phosphorylated in S2056 (pS2056-DNA-PK) was
present in the peripheral areas of the nuclei and colocalized with γH2AX. Furthermore,
DNA-PK phosphorylated in S2609 was detected independently from γH2AX. Therefore,
pS2056-DNA-PK is believed to enable NHEJ repair of US-triggered DBS and transduce
DNA-damaged signals by activating H2AX. This process is presented in Figure 5.
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lahi et al. sheds new light on this issue. Their team compared the efficacy of sonoporation in
lymphoblasts with and without the p53 gene. In that way, they observed that US effectively
killed p53+ as well as p53 cells; however, p53 cells were more resistant to induction of
apoptosis [178]. Furthermore, Furusawa et al. demonstrated that p53 phosphorylation in
Ser15 is related to ATM activity and ATM inhibition resulted in suppression of apoptosis
only in p53+ cells. On the other hand, DNA-PK is responsible for Akt phosphorylation
and DNA-PK inhibitor-suppressed sonoporation-mediated death in p53+ and p53-. Based
on these findings, the authors claimed that DNA-PK might be an interesting target for
US-targeted anticancer therapy [214]. In agreement with all the presented results, DNA
replication was found to be significantly lengthened even up to 250% in US-exposed cells
proving serious DNA damage [141]. Hassan and co-workers also mentioned that sonopo-
ration could promote neotic division, especially in p53-mutated cells, as a way to extend
the cellular life span and thrive resistance to harmful factors [215].

5.9. Cell Cycle

A cell with damaged DNA cannot develop further until DNA repair is finished.
Therefore, it is not a surprise that the cell cycle is altered in US-treated cells with disturbed
genetic material. Cell cycle promotion is regulated by G1, S and G2/M checkpoints: the
G1 checkpoint is primarily controlled by cyclin-dependent kinase inhibitor 1A (CDKN1A
also known as p21)—a downstream transcript of p53, the G2/M checkpoint by checkpoint
kinase 1 and 2 (Chk1 and Chk2) which are regulated by ATR and ATM (the activity of the
S checkpoint is not so obvious and will not be discussed in this paper) [216–218]. Since
numerous types of cancer cells display p53 mutations or depletion, cells with damaged
DNA depend mainly on G2/M checkpoint to provide DNA repair. Zhong et al. [19]
revealed that sonoporated HL-60 cells showed cell cycle arrest in G2/M phase caused by
down-regulation of Cdk1 (the lowest at 4 h) accompanied by up-regulation of cyclin-B1
(the highest at 12 h). One year later, Furusawa et al. [219] reported that Chk1 provided
G2/M cell cycle arrest in US-exposed Jurkat cells. Interestingly, ATR inhibitors attenuated
Chk1 activity, demonstrating that Chk1 phosphorylation depended on ATR activity [220].
Moreover, Chk1 inhibition successfully minimized the cell population in G2/M phase
following sonoporation, showing that Chk1 is crucial for cell survival and G2/M cell
cycle arrest after US-triggered DNA damage. The role of Chk2 in post-US cell cycle
regulation remains unclear. Since ATR and ATM preferentially activate Chk1 and Chk2,
respectively [221] and because ATM and Chk2 can activate p53, the role of the ATM-
Chk2 axis in p53-induced apoptosis and cell cycle arrest should be addressed in future
research [214]. Heat stress can induce cell cycle arrest by p21 upregulation in G1 phase
and by the ATK-Chk1-CDC25A pathway in G2/M phase; however, these phenomena have
not yet been proven in sonoporated cells [214]. Zhong et al. also reported a suppressed
level of Cdk-2, cyclin-A and cyclin-E 8 and 12 h following US treatment, which triggered
G1/S phase transition and S phase progression. That observation was highlighted in the
decrease of G1 and S populations of US-exposed HL-60 cells. Additionally, they noted the
suppressed level of Cdk-4 which normally binds to cyclins D1/D2, but their activity kept
stable in sonoporated HL-60 cells. The author concluded that the altered Cdk4 initiated
by sonoporation partially contributed to a delay in the progression of the G1 phase [19].
Although the observed cell cycle alterations appear quickly and peak at the highest intensity
around 12 h after sonoporation, many papers have shown that cells were able to restore their
initial balance app. 24 h after treatment [22]. Cell cycle regulation induced by sonoporation
is shown in Figure 6.
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5.10. Cell Death

Acoustic waves have been reported to alter cell functioning at various levels. Although
cell reaction to US strongly depends on the primary energy of sound wave, if the cell fails
to overcome US-induced dysfunctions such as membrane permeabilization, ineffective
membrane resealing, cytoskeleton disintegration, oxidative stress, or DNA damage, the
programmed cell death pathway is initiated. Numerous studies described US-induced
apoptosis of human cells and presenting this issue is beyond the scope of this study. Thus,
the general findings regarding cell death triggered by sonoporation will be presented.

Several studies mentioned the presence of various cell subpopulations after US ex-
posure [16,26,108,156]. Since US can cause reversible or irreversible sonoporation, the
mechanical destruction of particular cells is so intense directly after treatment that the cells
lose their integrity and undergo necrosis. The fate of the remaining cells still depends on the
severity of the damage. Flow-cytometry experiments of calcein uptake revealed subpopula-
tions with low and high accumulation of the dye. This phenomenon is a true consequence
of the nature of sonoporation experiments. Although scientists are trying to control the
experimental conditions as much as possible, the physical features of acoustic waves make
it impossible to prevent the existence of local disturbances in the spatial distribution of
acoustic kinetic energy. Thus, the occurrence of cell subpopulations after sonoporation is
a natural phenomenon that determines the level of absorbed energy and the final biolog-
ical outcome. Consistent with this effect, some scientists noticed that only a part of the
sonoporated cells undergo apoptosis [19,222]. Sonoporated cells can try to avoid apoptosis
by inducing autophagy, as mentioned by Wang et al. [223]. The molecular mechanisms of
US-induced apoptosis were a subject of many studies [145,165,171,224]. Sonoporation has
been shown to provoke the intrinsic apoptotic pathway by cytochrome c release from mito-
chondria [177], down-regulation of the pro-apoptotic Bcl-2 protein [178] and up-regulation
of pro-apoptotic Bax with maximum activity 4 h after US treatment [19]. It is worth noting
that apoptosis induction was intensified when microbubbles were used [225,226]. The
abovementioned alterations in integrin-mediated pathways and induction of ER stress
undoubtedly play an important role in US-triggered apoptosis. However, the appearance of
apoptosis was not correlated with ROS induction, suggesting that mechanical destruction
by inertial cavitation activity is the predominant effect triggering cell death [176]. On the
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other hand, US-mediated cell lysis was provided by sonochemical reactions induced by
US [167]. Until now, sonoporation-activated extrinsic apoptosis has not been reported.

6. Conclusions

Numerous studies provided us with strong evidence that sonoporation may facilitate
cancer treatment, but we are the first to evaluate the biological vastness of sonoporation-
provoked effects. This review has clearly highlighted that ultrasound (US)-triggered
bioeffects are not limited to the cell membrane, but they also alter cell functioning at diverse
levels. Moreover, we presented a detailed biophysical insight into the process of sono-
poration. Scientists should keep in mind that US exposure not only provides successful
drug or gene delivery, but also induces the cascade of biochemical reactions leading to cell
recovery and adaptation, or cell death. Although much research has been performed to un-
derstand how US can induce membrane permeabilization, further study is needed to adapt
what has been learnt in controlled laboratory settings to clinical application. Significant
benefits of US-mediated therapy with microbubbles would include its non-invasiveness,
low toxicity, targeted and local application, easy adaptability, cost effectiveness, and the
possibility of establishing imaging-guided therapy. Until now, there has been only one
clinical study on the application of sonoporation to improve chemotherapy of pancreatic
ductal adenocarcinoma [227]. This shows an unfortunately low popularity and unaware-
ness of US-targeted therapies among clinicians. Despite the encouraging outcomes so far,
some of the observed phenomena are still not fully understood or explained. For now it
appears extremely challenging to find the best medicine combination and dosage, drug
delivery method, microbubble and US settings as well as treatment schedule, especially
taking into account the fact that particular tumors require appropriate treatment plans.
Our analysis showed us that one of the biggest issues concerning US studies is the lack of
methodological coherence between scientists: the more research is performed, the less we
know about how selected US doses triggerring particular cell responses in various types
of cells. Therefore, specifying a standardized research methodology would considerably
improve our understanding of sonoporation-induced bioeffects and would allow us to
design strategies to control and maximize US-enhanced drug delivery and therapies. Since
comprehensive sonoporation studies require a close cooperation between US physicists,
drug-delivery chemists and pharmacists, biologists and physicians, US-related research is
expected to develop in the upcoming years as the multidisciplinary approach is gaining
increasing attention and popularity in science.
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