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Abstract

Inflammatory signals have been shown to play a critical role in controlling the maintenance 

and functions of hematopoietic stem cells (HSCs). While the significance of inflammation in 

hematopoiesis has begun to unfold, molecular mechanisms and players that govern this mode of 

HSC regulation remain largely unknown. The E3 ubiquitin ligase A20 has been considered as 

a central gatekeeper of inflammation. Here, we have specifically depleted A20 in multi-potent 

progenitors (MPPs) and studied its impact on hematopoiesis. Our data suggest that lack of 

A20 in Flt3+ progenitors causes modest alterations in hematopoietic differentiation. Analysis 

of hematopoietic stem and progenitor cell (HSPC) pool revealed alterations in HSPC subsets 

including, HSCs, MPP1, MPP2, MPP3 and MPP4. Interestingly, A20 deficiency in MPPs caused 

loss of HSC quiescence and compromised long-term hematopoietic reconstitution. Mechanistic 

studies identified that A20 deficiency caused elevated levels of Interferon-γ signaling and 

downregulation of p57 in HSCs. In essence, these studies identified A20 as a key regulator of 

HSC quiescence and cell fate decisions.

1. Introduction

Hematopoietic Stem Cells (HSCs) are believed to be largely quiescent under steady state 

conditions and enter into an actively proliferating state in response to external cues. In 
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the recent years, role of infection and inflammation in the control of hematopoiesis have 

gained a lot of attention. HSCs have been evolved to sense infections either through 

direct contact with the pathogens via the Toll Like receptor (TLR) pathways or through 

actions of inflammatory cytokines produced by the effector cells of the immune system 

and hematopoietic progenitors (Baldridge et al., 2010; Baldridge et al., 2011; Weiner et 

al., 2008). A spectrum of pro-inflammatory cytokines and chemokines, that includes IL1, 

IL6, IL8, TNF, CC-Chemokine ligand 2 (CCL2), IFN-α and IFN-γ, has been identified to 

regulate HSCs and hematopoiesis. In particular, chronic exposure of HSCs to interferons 

(both α and γ) results in compromised self-renewal and quiescence of HSCs.

A20 (also known as Tnfaip3) acts as an ubiquitin editing enzyme and has emerged as 

a key anti-inflammatory molecule of the immune system. A20 contains an amino (N)

terminal cysteine protease/DUB domain (that is necessary for the deubiquitylating functions) 

and a carboxyl (C)-terminal zinc finger (ZNF) domain (which confers the E3 ubiquitin 

ligase functions) (Wertz et al., 2004). A20 catalyzes the K48-linked ubiquitylation of 

target proteins through its caboxy-terminal ZNF domain, therefore it directs its targets 

for proteasomal degradation. In addition, A20 removes K63–linked ubiquitin chains from 

its target proteins, which not only inactivates the signaling function of the targets but 

might also facilitate its K48- linked ubiquitylation and degradation (Wertz et al., 2004). 

The negative signaling function of A20 involves deconjugation of K63–linked ubiquitin 

chains from TRAF6 and RIP1, which are central players of the toll like receptor (TLR) 

and Tumor necrosis factor receptor (TNFR) pathways (Sun, 2008). In addition, A20 also 

mediates deubiquitylation of RIP2 and thereby negatively regulating the activation of NF-kB 

and the induction of pro-inflammatory cytokines (Hitotsumatsu et al., 2008; Hymowitz and 

Wertz, 2010; Sun, 2008; Vereecke et al., 2009). Functions of A20 in many cell types of the 

immune system have been clearly established, however, its role in hematopoiesis remains 

largely unknown. We have recently identified that A20 deficiency in HSCs leads to loss of 

its pool, pathologic hematopoiesis, including auto-inflammatory disease, myeloproliferation 

and lymphopenia, and postnatal lethality that are dependent on IFNγ (Nakagawa et al., 

2015). In the present study, we specifically ablated A20 in (Flt3+) multi-potent progenitors 

(MPPs), but not in HSCs, and our data identified that presence of A20 in HSCs is 

sufficient and necessary to prevent autoinflammatory disorders. In addition, the current 

study demonstrates that lack of A20 is sufficient to affect HSC pool and quiescence.

2. Results

To study the role of A20 in hematopoietic differentiation, we crossed A20 floxed mice 

(Nakagawa et al., 2015) with Flt3cre/+ (Benz et al., 2008) transgenic mice to generate 

A20F/FFlt3cre/+ mice (henceforth referred to as KO) Flt3 Cre has been shown to induce 

recombination in all hematopoietic lineage, including myeloid erythroid and lymphoid, cells 

starting from MPPs (Flt3+ LSK) (Boyer et al., 2011). Analysis of hematopoietic organs from 

KO mice indicated elevated, but statistically insignificant, cellularity of BM and spleen, 

and relatively normal cell counts in thymus (Fig. 1A). Determination of recombination 

efficiencies by PCR indicated A20 deletion in majority of BM cells of KO mice (Fig. 1B). 

Consistently, flow cytometric analysis of A20F/FRosaRFPFlt3cre/+ mice revealed deletion 

efficiencies (as inferred by RFP expression) of > 75% in BM, spleen, thymus and peripheral 
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blood of KO mice (Fig. 1C). Our analysis of RFP expression in various hematopoietic 

progenitor subsets in the BM identified that majority (> 90%) of CD150+CD48−LSK 

cells (a subset that is enriched for HSCs and MPP1 (Cabezas-Wallscheid et al., 2014; 

Wilson et al., 2008)), were RFP− and that all the other downstream hematopoietic subsets, 

including CD150+CD48+ LSK (a subset enriched for MPP2) and CD150+CD48+ LSK 

(a subset enriched for MPP3 & MPP4), show remarkable expression of RFP (Fig. 1D, 

E). These data are consistent with earlier studies that Flt3 Cre mouse strain does not 

induce recombination in LT-HSCs (Boyer et al., 2011). First, we assessed multi-lineage 

hematopoietic differentiation in KO by flow cytometry and the data indicated increased 

proportions of CD11b+ myeloid lineage cells and CD3e+ T lineage cells, reduced proportion 

of CD19+ B lineage cells, and normal frequencies of Ter119+ erythroid lineage cells in the 

BM of KO mice (Fig. 1F). However, determination of absolute cell counts revealed normal 

numbers of myeloid/erythroid lineage cells, reduction of B cells, and modestly increased 

numbers of T cells in the BM of KO mice (Fig. 1G). On the other hand, both relative 

and absolute frequencies of myeloid, erythroid and T cells were normal in the spleen of 

KO mice (Fig. 1H, I). Whereas the frequencies of B cells in the KO spleen were modestly 

decreased, their absolute numbers were normal (Fig. 1H, I). Analysis of thymus of KO mice 

revealed intact thymic differentiation with normal frequencies and numbers of CD4−CD8−; 

CD4+CD8+; CD4+CD8−; and CD4−CD8+ cells (Fig. 1J). Finally, analysis of peripheral 

blood indicated normal frequencies of myeloid (CD11b+) cells and T (CD3e+) cells, but 

reduced frequencies of B (CD19+) cells (Fig. 1K). Taken together, these data indicated 

that deletion of A20 at the MPP stage causes only modest alterations in hematopoietic 

differentiation.

Next, we studied the hematopoietic stem and progenitor cell (HSPC) compartments 

in the BM of KO mice. Analysis of Lin−Sca1+c-Kit+ (LSK) cells of the BM from 

KO mice indicated; a significant increase in absolute numbers, but normal relative 

numbers, of CD34−Flt3−LSK subset; an increase in both relative and absolute numbers 

of CD34+Flt3−LSK subset; and a decrease in relative numbers, but an increase in 

absolute numbers, of CD34+Flt3+LSK subset (Fig. 2A, C, D). To further characterize 

the LSK subset, based on CD150 and CD48 expression, we followed a more refined 

immunophenotyping scheme of HSCs and MPPs (Cabezas-Wallscheid et al., 2014; Wilson 

et al., 2008). Our analysis identified; a decrease in relative numbers and an increase 

in absolute numbers of CD150+CD48−LSK subset (a fraction that is enriched for LT

HSCs and MPP1); an increase in both relative and absolute numbers of CD150+CD48+ 

LSK subset (a fraction that is enriched for MPP2); and a decrease in relative numbers, 

but an increase in absolute numbers, of CD150−CD48+ LSK subset (a fraction that is 

enriched for MPP3 & MPP4) (Fig. 2A, E, F). Further enrichment of these subsets into 

HSCs (CD150+CD48−CD34−Flt3−LSK), MPP1(CD150+CD48−CD34+Flt3−LSK), MPP2 

(CD150+CD48+CD34+Flt3−LSK), MPP3 (CD150−CD48+CD34+Flt3−LSK) and MPP4 

(CD150−CD48+CD34+ Flt3+LSK) subsets revealed; a relative decrease, but normal absolute 

numbers of HSCs; normal relative and absolute numbers of MPP1; normal relative numbers, 

but increased absolute numbers of MPP2; increased relative and absolute numbers of MPP3; 

and decreased relative number, but normal absolute numbers of MPP4 (Fig. 2G–I). Overall, 
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these studies specified that A20 deletion in Flt3+ progenitors disturbs the maintenance of 

HSPC pool.

To test if this altered distribution of the HSPC pool results in compromised HSC functions, 

we first performed a series of bone marrow transplantation (BMT) studies. Transfer of RBC 

depleted total BM from either control or A20 KO into lethally irradiated congenic (CD45.1) 

recipients resulted in normal radioprotection (Suppl. Fig. 1A, B) and development of donor 

derived hematopoiesis at 8 weeks of transplantation (Suppl. Fig. 1C). BMT studies using 

BM of A20+/+ ROSARFP Flt3Cre/+ or A20F/F ROSARFP Flt3Cre/+ mice as donors indicated 

that majority of the A20 KO derived cells (RFP+) underwent recombination (Suppl. Fig. 

1D). Multi-lineage analysis indicated comparable frequencies of myeloid cells, B cells and T 

cells within RFP+ cells (Suppl. Fig. 1E).

Consistently, competitive repopulation studies (Suppl. Fig. 1F) indicated comparable levels 

of donor derived hematopoiesis (Suppl. Fig. 1G). Multi-lineage hematopoiesis in the 

peripheral blood of recipients that received BM of either control (CD45.2+; A20+/+ 

ROSARFP Flt3Cre/+) + competitive (CD45.1) mice or KO (CD45.2+; A20F/F ROSARFP 

Flt3Cre/+ mice) + competitive (CD45.1) mice indicated comparable frequencies of myeloid 

cells, B cells and T cells (Suppl. Fig. 1H).

To assess the long-term reconstitution abilities of KO HSCs, we performed secondary 

transplantations (Fig. 3A). Transfer of BM of primary recipients (WT; CD45.1+), that 

received either control or A20 KO BM 12 weeks before, into lethally irradiated secondary 

recipients (WT; CD45.1+) caused a modest, but not statistically significant, loss of 

radioprotection (Fig. 3B). Analysis of donor derived chimera in the peripheral blood of 

secondary recipients after 12 weeks of transplantation revealed a modest decrease of KO 

(CD45.2) derived hematopoiesis (Fig. 3C). Multi-lineage analysis indicated that donor 

(CD45.1) derived myeloid cells were normal (Fig. 3D). However, donor derived B cells 

(CD19+) and T cells (CD3ε+) were reduced in the peripheral blood of secondary recipients 

that received KO BM (Fig. 3D). Overall these data indicate that A20 deficiency in MPPs 

affects the long-term, but not reconstitutional abilities of HSCs.

To identify physiological alterations that might contribute to the altered distribution of 

HSPC pool in A20 KO mice, we performed apoptosis and quiescence studies. Maintenance 

of the HSPC pool has been shown to be tightly regulated through apoptosis and quiescence 

(Cheung and Rando, 2013). Flow cytometric analysis indicated normal frequencies of 

apoptosis between control and A20 deficient HSPCs (Fig. 3E). Next, we performed 

quiescence studies using 3 independent approaches. First, we measured cell cycle through 

Hoechst and Pyronin Y staining (Shen et al., 2008) and data indicated that the frequencies of 

quiescent (Hoechstlow Pyronin Ylow) cells were reduced in the HSPC compartment of A20 

KO mice (Fig. 3F). Second, we measured cell cycle status using Ki67 and Hoechst (Kim 

and Sederstrom, 2015) and data revealed that the frequencies of cells in G0 (Quiescent) 

phase were reduced and in G2/S phase were increased in HSPC compartment of A20 

deficient mice (Fig. 3G, H). Similarly, the frequencies of G0 cells were reduced, albeit not 

significant, and of cells in G2/S phase were remarkably increased in the CD150+CD48− 

LSK (HSC and MPP1 enriched subset) cells of A20 deficient mice (Fig. 3I, J). Third, we 
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performed BrdU incorporation studies to directly measure proliferation of HSPC subsets. 

Consistent with our Ki67 and Hoechst studies, the frequencies of proliferating cells were 

more in LSK, CD150+CD48−LSK, CD34+Flt3−LSK and CD34+Flt3+LSK subsets (Fig. 3K, 

L). These studies have unequivocally demonstrated that A20 deficiency in MPPs causes loss 

of quiescence in all subsets of HSPCs.

To identify mechanisms through which A20 deficiency affects HSC quiescence, we 

performed gene expression studies. Based on the previous findings (Baldridge et al., 2010; 

Baldridge et al., 2011; Essers et al., 2009; King and Goodell, 2011; Mirantes et al., 

2014; Sato et al., 2009), including our own (Nakagawa et al., 2015), on the critical role 

of inflammatory cytokines in HSC quiescence, we have hypothesized that exaggerated 

expression levels of inflammatory cytokines might be responsible for the loss of HSC 

quiescence in A20 deficient HSCs. Real-Time PCR analyses on total bone marrow cells 

suggested normal expression levels of many NF-κB targets, except a modest upregulation 

of NF-κBIα and a downregulation of BclXL, in the BM of A20 deficient mice (Fig. 4A). 

While expression levels of IL-6 and TNF-α were normal, a remarkable upregulation of 

interferon (IFN)γ and a modest down-regulation of IFN-α were noticed in the total BM of 

A20 deficient mice (Fig. 4A). Consistent with increased IFNγ mRNA expression in the BM, 

IFNγ levels in the blood serum were elevated in KO mice (Fig. 4B).

Previous studies established that increased IFN-γ signals cause increased surface expression 

of Seal in HSPCs (King and Goodell, 2011; Snapper et al., 1991). Our analysis of 

A20 deficient HSPCs revealed a marked upregulation of Sca1 in the surface of Lin−c

Kit+CD150+ cells (Fig. 4C). In agreement with elevated IFN-γ, expression levels of 

its down targets including Irf1, Irgm1 and Stat1 were elevated in Flt3+LSK cells and 

CD150+CD48−LSK cells of KO mice (Fig. 4D, E), even though expression levels of many 

NF-κB targets were normal in Flt3+ LSK cells (Fig. 4 D). Amongst other molecular 

targets of IFN-γ (de Bruin et al., 2013), we focused on the expression levels of p57. 

Interestingly, expression levels of p57 were reduced in A20 deficient Flt3+ LSK cells and 

CD150+CD48−LSK cells (Fig. 4 D, E). In keeping with our findings loss of p57 in HSCs 

results in reduced quiescence and functions of HSCs (Matsumoto et al., 2011). In essence 

these studies suggest that A20 deficiency in MPP causes elevated IFN-γ expression, and 

therefore its signaling cascade in HSCs, which eventually may result in the loss of HSC 

quiescence.

3. Discussion

In the present study we show that deletion of A20 in Flt3+ hematopoietic progenitor 

cells (A20Flt3-KO) resulted in altered distribution of HSPC subsets, including HSCs. While 

loss of HSC quiescence was noticed in A20Flt3-KO mice, this did not impair the short

term repopulation capacities of HSCs and caused only modest reduction in long-term 

hematopoietic reconstitution functions of HSCs. Interestingly, A20 deficiency in MPPs 

did not result in overt hematopoietic abnormalities or pathological hematopoiesis. In 

particular, we did not observe systemic inflammation, lymphopenia and myeloproliferation, 

even though modest changes in B cell numbers were noticed in hematopoietic organs. 

These findings were unexpected based on our previous studies on A20 deficient mice 
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(Nakagawa et al., 2015). We previously reported that A20 deficiency in HSCs (A20Hem-KO) 

resulted in a severe and lethal phenotype; including premature death, systemic inflammation, 

hepatomegaly, splenomegaly, reduced HSC quiescence and loss of HSC pool and functions 

(Nakagawa et al., 2015). On the other hand, analysis of HSC compartment of A20Flt3-KO 

mice indicated increased absolute numbers of HSPC subsets, including CD150+CD48−LSK, 

CD34+Flt3−LSK and CD34+Flt3+LSK fractions. This observation was conflicting with 

our previous findings that CD150+CD48−LSK pool and CD34+Flt3+LSK numbers were 

severely reduced in A20Hem-KO (Nakagawa et al., 2015). One possible explanation for these 

discrepancies could be that A20 functions are intact in HSCs of A20Flt3-KO mice, as A20 

is deleted in hematopoietic cells after the Flt3+ stage (i.e. in MPPs), whereas A20 gene is 

deleted in all hematopoietic cells, including LT-HSCs, of A20Hem-KO mice. Together these 

observations suggest that A20 functions in HSCs are critical for the suppression of lethal 

inflammatory disorders and that A20 is an essential for the maintenance and functions of 

HSPC pool.

Inflammatory cytokines, including IL1, IL6, TNFα, IFNα, and IFNγ, are shown to regulate 

hematopoiesis and the physiology of HSCs (Baldridge et al., 2010; Baldridge et al., 2011; 

Essers et al., 2009; King and Goodell, 2011; Mirantes et al., 2014; Sato et al., 2009). 

In particular, IFNγ plays a pivotal role in the maintenance of HSC pool and quiescence 

(Baldridge et al., 2010). Moreover, deregulated IFNγ signaling has been implicated in the 

pathogenesis of various hematopoietic abnormalities (de Bruin et al., 2014). Our previous 

studies on A20Hem-KO (Nakagawa et al., 2015) identified a key role for IFNγ in the onset of 

pathologic hematopoiesis (Nakagawa et al., 2015). Interestingly, complete ablation of IFNγ 
signals in A20Hem-KO mice resulted in a rescue of the inflammatory phenotype, including 

premature death, and the HSC phenotype (Nakagawa et al., 2015). Consistent with our data 

on A20Hem-KO (Nakagawa et al., 2015), in the current study, we noticed marked elevation 

of IFNγ, very likely due to increased NF-κB binding to IFNγ promoter (Nakagawa et 

al., 2015), in A20Flt3-KO mice. Increased signaling mediated by IFNγ has been shown to 

directly affect HSC quiescence by suppressing the expression levels of p57, a key regulator 

of HSC quiescence (Nakagawa et al., 2015). Our gene expression studies on the HSC 

subsets identified a striking down regulation of p57 in HSCs. These data suggest that 

deregulated IFNγ signals might be responsible for the loss of HSC quiescence in A20Flt3-KO 

mice, however, we cannot rule out the possible involvement of additional pathways.

The study presented here indicated that A20 deficiency in MPPs, is sufficient to alter 

LT-HSC pool and functions. Because A20 expression and functions are intact in LT-HSCs, 

we concluded that A20 deficiency affects HSCs in a cell extrinsic manner. Based on the 

compelling role of IFNγ in the cell extrinsic mode of HSC regulation, we speculate that 

the HSC phenotype of A20Flt3-KO mice is caused by IFNγ, as we demonstrated earlier 

(Nakagawa et al., 2015). Even though our studies have not specified the source of IFNγ in 

these settings, we assume that cells of the lymphoid lineage (as they are differentiated from 

the Flt3+ hematopoietic progenitors), might be predominantly responsible for the elevated 

IFNγ in A20Flt3-KO mice. Future studies that aim to decipher the significance of IFNγ 
produced by the cells of the HSC microniche vs. systemic IFNγ produced by immune 

cells of lymphoid organs would be of great interest to understand the pathophysiological 

significance of IFNγ. In toto, the study presented here highlights the significance of 
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inflammatory pathways in regulating the HSC pool and identifies A20 as a key regulator 

of inflammation induced hematopoiesis.

4. Methods

4.1. Mice

Tnfaip3(A20)flox/flox mice were previously described (Nakagawa et al., 2015). Flt3Cre/+ 

mice were generated and reported earlier (Benz et al., 2008). CD45.1 congenic animals 

were purchased from the National Cancer Institute. The Institutional Animal Care and 

Use Committee of Columbia University and University of Maryland School of Medicine 

approved all mouse experiments.

4.2. Flow cytometry

Cells were analyzed by flow cytometry with FACS Fortessa, LSR II (BD), Attune NXT 

and FACSDiva software (BD Biosciences) or FlowJo software (Tree Star). The following 

monoclonal antibodies were used: anti- CD34 (RAM34), anti-CD45.1 (A20), anti-CD45.2 

(104), anti-CD48 (HM48-1), anti-CD117 (2B8), anti-Flt3 (A2F10.1), anti-Sca-1 (D7), anti

B220 (RA3-6B2), anti- CD19 (1D3), anti-CD3 (145-2C11), anti-CD4 (GK1.5), anti-CD8 

(53–6.7), anti-CDllb (M1/70), anti– Gr-1 (RB6-8C5) and anti-Ter119 (TER119; from 

BD Biosciences); anti-CD150 (TC15-12F12.2) from Biolegend; anti-CD16/32 (93) from 

eBioscience; anti-Mpl (AMM2) from IBL. Cells incubated with biotinylated monoclonal 

antibodies were incubated with fluorochrome-conjugated streptavidin–peridinin chlorophyll 

protein–cyanine 5.5 (551419; BD) or streptavidin-allophycocyanin-Cy7 (554063; BD). In all 

the FACS plots, indicated are the percentages (%) of the gated fraction.

4.3. BMT experiments

1 × 106 of bone marrow cells were injected into lethally irradiated (10 Gy) congenic 

(CD45.1+) recipient mice. For competitive-repopulation experiments, 5 × 105 BM cells from 

either control or KO mice were mixed with 5 × 105 of WT (CD45.1+) BM cells (to obtain 

a ratio of 1:1) and were injected into lethally irradiated congenic WT (CD45.1+) recipient 

mice.

For serial transplantation assays, 1 × 106 of bone marrow cells were injected into 

lethally irradiated (10 Gy) WT congenic (CD45.1+) recipient mice. After 12 weeks of 

transplantation, 1 × 106 BM cells of primary recipients were injected into lethally irradiated 

WT congenic secondary recipients.

4.4. Apoptosis assay

Apoptotic cells were detected by Annexin V PE Apoptosis Detection Kit according to the 

manufacturer’s instructions (BD Bioscience).

4.5. Cell proliferation experiments

For bromodeoxyuridine (BrdU) assay, 3.33 mg of BrdU (BD Pharmingen) was injected 

intraperitoneally and mice were maintained on 0.8 mg/ml BrdU in the drinking water. After 
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16 h of injection, mice were sacrificed and bone marrow cells were stained for BrdU, 

following the BrdU Flow Kit manufacturer’s instructions (BD Pharmingen).

4.6. Cell cycle analysis

Cells were stained with surface markers and fixed and permeabilized with Cytofix/Cytoperm 

fixation/permeabilization solution kit (BD). These cells were stained with Ki-67 (B56;BD) 

for 30 min and subsequently stained with 20 μg/ml Hoechst 33342 for 5 min and analyzed 

by flow cytometry.

4.7. ELISA studies

Levels of IFNγ in the blood sera were analyzed using IFNγ ELISA Set (BD Biosciences), 

according to manufacturer’s instructions.

4.8. RNA extraction, PCR, and real-time PCR

Total RNA was isolated with an RNeasy Mini kit or RNeasy Micro kit (QIAGEN). cDNA 

was synthesized with Oligo(dT) primer and Maxima reverse transcription (Thermo Fisher 

Scientific). PCR was performed with T100 thermal cycler (Bio-Rad Laboratories) and TSG 

Taq (Lamda Biotech). Real-time PCR was performed in duplicates with a CFX-connect 

real-time PCR system (Bio-Rad Laboratories) and SsoAdvanced SYBR Green Supermix 

(Bio-Rad Laboratories) according to the manufacturer’s instructions. Relative expression 

was normalized to the expression levels of the internal control (housekeeping gene) Hprt.

4.9. Statistics

Data represent mean and s.e.m. Two-tailed student’s t-tests were used to assess statistical 

significance (*P < .05, **P < .01, *** < 0.001). For survival curve analysis, log rank test 

was used to assess statistical significance (*P < .05, **P < .01, *** < 0.001).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A20 deficiency in MPPs leads to modest changes in hematopoiesis. (A) Cellularity of 

BM (two femurs and two tibias), thymus and spleen of 8 weeks old A20F/FFlt3cre/+ and 

control mice (n = 4–6). (B) Genotyping PCR for Tnfaip3 gene from BM of A20F/FFlt3+/+, 

A20F/+Flt3cre/+ and A20F/FFlt3cre/+ mice. (C) Frequencies of RFP+ cells in the indicated 

hematopoietic organs from A20F/FFlt3cre/+ RosaRFP mice. (D) Representative histograms 

indicating frequencies of RFP+ cells in the specified hematopoietic subsets from A20F/

FFlt3cre/+ RosaRFP mice. (E) Cumulative data indicating frequencies of RFP+ cells in 

hematopoietic subsets of A20F/FFlt3cre/+ RosaRFP mice (n = 15–16). (F) Frequencies of 

CD11b+, Ter119+, CD19+ and CD3e+, cells in the BM of A20F/FFlt3cre/+ and control 

mice (n = 13–18).

(G) Absolute number of myeloid cells (CD11b+, 1st panel), erythroid cells (Ter119+, 2nd 

panel), B cells (CD19+, 3rd panel) and T cells (CD3+, 4th panel) from the BM of 8 

weeks old A20F/FFlt3cre/+ and control mice (n = 9–10). (H) Frequencies of CD11b+, 

Ter119+, CD19+ and CD3e+, cells in the Spleen of A20F/FFlt3cre/+ and control mice 

(n = 12–17). (I) Absolute number of myeloid cells (CD11b+, 1st panel), erythroid cells 

(Ter119+, 2nd panel), B cells (CD19+, 3rd panel) and T cells (CD3+, 4th panel) from the 

spleen of 8 weeks old A20F/FFlt3cre/+ and control mice (n = 9–10). (J) Frequencies of 

CD4+CD8+, CD4+CD8−, CD4−CD8+ and CD4−CD8− in the thymus of A20F/FFlt3cre/+ 

and control mice (n = 11–15). (K) Frequencies of myeloid cells (CD11b+, 1st panel), B cells 

(CD19+, 2nd panel) and T cells (CD3+, 3rd panel) from the peripheral blood of 8 weeks old 
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A20F/FFlt3cre/+ and control mice (n = 9–10). All data represent mean ± SEM. Two-tailed 

student’s t-tests were used to assess statistical significance (*P < .05, **P < .01, *** P < 

.001).
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Fig. 2. 
Lack of A20 in MPPs affects maintenance of HSPC pool. (A) Representative FACS plots 

for hematopoietic stem cells and progenitors of the BM from 8 weeks old A20F/FFlt3cre/+ 

and control mice. (B) Relative frequencies and absolute numbers of LSK cells in the 

BM of 4–8 weeks old A20F/FFlt3cre/+ (n = 16) and control (n = 14) mice. (C & D) 

Relative frequencies (C) and absolute numbers (D) of CD34−Flt3−LSK, CD34+Flt3−LSK 

and CD34+Flt3+LSK subsets in the BM of 4–8 weeks old A20F/FFlt3cre/+ (n = 11) 

and control (n = 8) mice. (E & F) Relative frequencies (E) and absolute numbers (F) 

of CD150+CD48−LSK, CD150+CD48+LSK and CD150−CD48+LSK subsets in the BM 

of 4–8 weeks old A20F/FFlt3cre/+ (n = 16) and control (n = 9) mice. (G–I) Relative 

frequencies (G) and absolute numbers (H&I) of HSCs (CD150+CD48-CD34-Flt3-LSK) (H), 

MPP1 (CD150+CD48-CD34+Flt3-LSK), MPP2 (CD150+CD48+CD34+Flt3-LSK), MPP3 
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(CD150-CD48+CD34+Flt3-LSK) and MPP4 (CD150-CD48+CD34+Flt3+LSK) (I) subsets 

in the BM of 4–8 weeks old A20F/FFlt3cre/+ (n = 11) and control (n = 8) mice. All 

data represent mean ± SEM. Two-tailed student’s t-tests were used to assess statistical 

significance (*P < .05, **P < .01, *** P < .001).
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Fig. 3. 
Loss of A20 in MPPs leads to loss of quiescence of HSPCs. (A) Schematic of 

serial transplantation experiments. (B) Survival curve of lethally-irradiated WT congenic 

(CD45.1+) secondary recipients (n = 9). Total BM cells from A20F/FFlt3cre/+ and control 

groups were injected into lethally irradiated WT congenic primary recipients (n = 10). After 

12 weeks of transplantation primary recipients were sacrificed and their BM cells were 

injected into lethally irradiated WT congenic secondary recipients (n = 9). (C) Frequencies 

of donor (CD45.2+)-derived cells in the peripheral blood of secondary recipients after 12 

weeks of BMT (n = 7). (D) Frequencies of donor (CD45.2+) and recipient (CD45.1+) 

derived CD11b+ , CD19+ and CD3e+ cells in the peripheral blood of secondary recipients 

at 12 weeks of transplantation (n = 7). (E) Apoptosis assay of LSK cells from the BM of 8 

weeks old A20F/FFlt3cre/+ and control mice (n = 5). Representative FACS plots (left) and 

dot plots (right). (F) Cell cycle analysis (Hoechst and Pyronin Y) of LSK cells from the BM 

of 8 weeks old A20F/FFlt3cre/+ and control mice. (G–J) Cell cycle analysis (Hoechst and 

Ki67) of LSK cells (G and H) and CD150+ CD48− LSK cells (I and J) from the BM of 

8 weeks old A20F/FFlt3cre/+ and control mice. Representative FACS plots (G and I) and 

dot plots (H and J) (n = 5). (K and L) BrdU assay of HSPCs from the BM of 8 weeks old 

A20F/FFlt3cre/+ and control mice (n = 3). Representative FACS plots (K) and dot plots (L). 

All data represent mean ± SEM. Two-tailed student’s t-tests were used to assess statistical 

significance (*P < .05, **P < .01, *** P < .001).
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Fig. 4. 
A20 deficiency leads to exaggerated IFNγ expression and signaling in HSPCs. (A) Relative 

expression of indicated targets in the total BM cells of 8 weeks old A20F/FFlt3cre/+ and 

control mice. Expression levels of target genes were normalized to HPRT levels. Data are 

representative of 3 independent experiments. (B) ELISA data documenting IFNγ levels in 

the serum of 8 weeks old A20F/FFlt3cre/+ and control mice (n = 5–6) (C) Representative 

FACS plots (top) and cumulative frequencies (bottom) indicating expression levels of Sca-1 

in Lin-c-Kit+CD150+ cells of the BM from 8 weeks old A20F/FFlt3cre/+ and control mice 

(n = 6–8). (D & E) Relative expression of indicated targets in Flt3+LSK cells (D) and 

CD150+CD48-LSK cells (E) of 8 weeks old A20F/FFlt3cre/+ and control mice. Expression 

levels of target genes were normalized to HPRT levels. Data are representative of 2 (D) 

and 3 (E) independent biological replicates. All data represent mean ± SEM. Two-tailed 

student’s t-tests were used to assess statistical significance (*P < .05, **P < .01, *** P < 

.001).
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