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Abstract
Parameters of the two-parameter logistic model are generally estimated via the expecta-

tion-maximization algorithm, which improves initial values for all parameters iteratively until

convergence is reached. Effects of initial values are rarely discussed in item response the-

ory (IRT), but initial values were recently found to affect item parameters when estimating

the latent distribution with full non-parametric maximum likelihood. However, this method is

rarely used in practice. Hence, the present study investigated effects of initial values on

item parameter bias and on recovery of item characteristic curves in BILOG-MG 3, a widely

used IRT software package. Results showed notable effects of initial values on item param-

eters. For tighter convergence criteria, effects of initial values decreased, but item parame-

ter bias increased, and the recovery of the latent distribution worsened. For practical

application, it is advised to use the BILOG default convergence criterion with appropriate ini-

tial values when estimating the latent distribution from data.

Introduction
The two-parameter logistic model (2PL; see [1]) is widely used, especially in medical settings
and in health care applications (e.g., [2]). In this model, the probability of a correct response πi
is determined by two item parameters that are related to the ability of a test-taker by the equa-
tion

pi ðzjÞ ¼
exp½aiðzj � biÞ�

1þ exp½aiðzj � biÞ�
; ð1Þ

where ai and bi label the item discrimination and item difficulty parameter of item i, respec-
tively, and zj denotes the latent ability of testee j. These parameters are generally estimated by
means of the maximum likelihood (ML) method. The latent ability is often assumed to have a
normal distribution and only the parameters of this distribution are estimated (marginal
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maximum likelihood method, MML). However, the assumption of a normally distributed abil-
ity is hardly ever met in practice [3], which may result in increased estimation error [4], and
more so for smaller samples [5].

To account for non-normality, it is possible to estimate also the shape (and not only the
parameters) of the latent distribution from data. One widely used method for estimating the
latent distribution non-parametrically is the empirical histogram (EH) method [6]. Here, the
latent distribution is defined as a set of weights at prespecified positions (support or quadrature
points) on the latent dimension. These weights correspond to the relative frequency of testees
with a specific position on the latent dimension (i.e., the specific ability at the support point)
and are estimated in the maximization step of the EM algorithm. Hence, item parameters and
latent distribution are estimated simultaneously.

As the ML equations do not have simple algebraic solutions, the expectation-maximization
(EM) algorithm [7] is usually used to obtain ML estimates for the parameters. In this algo-
rithm, assumed initial values for each estimated parameter are improved iteratively until some
convergence criterion is met. Effects of initial values on outcomes are discussed intensively in
other applications of the EM algorithm (e.g., mixture models or cluster analysis; see [8,9]), but
rarely in item response theory (IRT) models. Although Bock [10], in an unpublished confer-
ence paper, stated that effects of initial values are negligible in IRT, a recent study showed
effects of initial values on item parameters of the 2PL in full non-parametric ML estimation,
where the latent distribution is also estimated from data [11].

The present study investigated a more common method of parameter estimation. By means
of a Monte Carlo simulation, the present study investigated effects of initial values and of the
convergence criterion on parameters of the 2PL in BILOG-MG 3 [12], a widely used software
package in IRT employing MML estimation as well as the EH method.

Simulation Study

2.1 Experimental factors
The five factors manipulated in this simulation study were (1) initial values for item parame-
ters, (2) initial values for the latent distribution, (3) true latent distribution, (4) sample size, and
(5) tightness of convergence criterion. Initial values for item parameters included (1a) true
parameter values (items of a 20-item mathematical achievement test that were used for gener-
ating item responses; condition true), (1b) BILOG-MG 3 default values (condition default),
(1c) identical values for all item parameters (value 1 for all item discrimination parameters,
value 0 for all item difficulties; condition const), and (1d) values generated by short runs from
the estimation procedure (condition shortrun). BILOG default values are generated by calculat-
ing classical test theory estimators from the estimation sample [13]. Condition true was used as
a reference, whereas condition const is used by some other software packages (e.g., the R pack-
age ltm; see [14]). The shortrun condition was inspired by [8] and was already used in [11],
with good results regarding item parameter bias. Starting from random values, ten iterations of
the estimation procedure are performed. This is repeated fifty times, and the resulting parame-
ters with the highest loglikelihood were used as initial values for this condition.

Initial values for the latent distribution (weights of support points; Factor 2) were (2a) uni-
form distribution (equal weights for all support points; condition uniform), (2b) BILOG-MG 3
default values (i.e., weights from a normal distribution; condition default), (2c) weights esti-
mated by means of classical test theory (condition est), and (2d) values generated by the short-
run procedure (condition shortrun). For condition est, a sum score was calculated for each
testee, weighted by a classical test theory approximation of the item discrimination parameter
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[15],

âi ¼ 1:7
rbisffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2bis

p ; ð2Þ

with rbis denoting the biserial correlation of item i with the total number of items solved. The
relative frequencies of weighted sum scores corresponding to each support point of the latent
distribution were used as weights. For all conditions, the positions of the support points were
equally spaced on the latent dimension.

Two forms of (true) latent distributions (Factor 3) were used for generating the simulation
data of testee’s ability values: (3a) standard normal distribution and (3b) skew-normal distribu-
tion [16]. For better comparability with the standard normal distribution, the skewed distribu-
tion was mean-centered and scaled to have a standard deviation of 1. The shape parameter was
set to ten, resulting in an average skewness of about 0.96. This is appropriate for a wide range
of ability distributions found in practice [3].

Factor 4 manipulated sample size (250, 500, and 1000 testees), and Factor 5 accommodated
different settings for the convergence criterion, using values of 10−2 (BILOG-MG 3 default),
10−3, 10−4, and 10−5. For all simulations runs, ten support points were used.

Additionally, model calculations were also performed by means of standard MML estima-
tion. Default values from BILOG (weights from a standard normal distribution) were used as
an assumed latent distribution. Factors were identical to those used for EH estimation (but Fac-
tor 2 was excluded).

Different seeds were used for each combination of true latent distribution and sample size
(Factors 3 and 4). For all other factors, identical seeds were used within each replication.
Hence, comparison of different initial values (for item parameters and latent distribution; Fac-
tors 1 and 2) and different convergence criteria (Factor 5) was based upon identical samples.

2.2 Generation of item responses
Item parameters were taken from a 20-item mathematics achievement test that was used in
previous related research [4,11]. Person ability values were drawn from a N(0,1) distribution or
from a skew-normal distribution, depending on Factor 3. Using these parameters, the probabil-
ity of a correct response was calculated according to Eq 1 and compared to a random number
sampled from a uniform U(0,1) distribution. The item was scored as correct if the probability
of the correct response exceeded the random number, and as incorrect otherwise. Random
numbers were generated by means of the Mersenne twister algorithm [17] implemented in R
2.11.1 [18].

2.3 Simulation Runs
BILOG-MG 3 was used for estimation of item parameters. All other calculations were per-
formed in R 2.11.1. In each combination of experimental factors, 100 replications were per-
formed. The maximum number of cycles was increased because of the stricter convergence
criteria used (10000 EM cycles, 10 Newton cycles). For all other parameters, BILOG default val-
ues were used.
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2.4 Outcome measures
Accuracy of parameter recovery was measured by calculating each item parameter’s bias over
all replications,

BiasðyiÞ ¼
1

100

X100
k¼1

ðŷ ik � yiÞ; ð3Þ

where ŷ ik is the item discrimination (âik) or difficulty (b̂ik) parameter estimate of a single item i
in replication k, respectively, and θi is the corresponding true parameter. Additionally to bias of
single items, the accuracy of the complete test was assessed by averaging absolute values of Eq
3 across all test items (mean absolute bias, also referred to as test-level bias).

As different combinations of item parameters can produce rather similar item characteristic
curves (ICCs; see [19]), it is important to investigate combined effects of both item parameter
estimates on ICC recovery. Accuracy of ICC recovery was assessed by the area between true
and estimated ICC in a [-10,+10] interval of the latent continuum,

BiasðICCÞ ¼
ðþ10

�10

jp zjâi; b̂i

� �
� pðzjai; biÞjdz: ð4Þ

Bias values for each item (Eq 4; solved by numerical integration, using adaptive quadrature in
connection with extrapolation by Wynn’s Epsilon algorithm and Gauss–Kronrod quadrature
in the basic step) were averaged across all test items to assess ICC recovery in the complete test.

Analysis of variance (ANOVA) models were calculated to assess effect sizes of all factors
used in this study. In these ANOVAs, averaged values of bias in the 100 replications in each
condition were used as data. Hence, resulting p values are too small because of the reduced
residual variance, compared to the variation of bias values across all individual 100 replications
per condition. At the same time, holding the effect size fixed, p values are mostly only a func-
tion of the number of sampling points. However, this number may be increased arbitrarily in
simulation studies, decreasing p values. Therefore, we deemed p values not informative in the
present context and do not report them. Instead, absolute η2 is used as effect size, denoting
each factor’s relative contribution (in terms of explained variance) to the averaged test-level
bias and ICC bias, respectively.

To compare the distributions estimated by means of the EH method and the (true) distribu-
tions of the person ability parameters which were used to generate the data, Earth Mover’s Dis-
tance [20] was applied. This method compares two distributions (histograms) in terms of the
minimum cost of turning one distribution into the other. Hence, it is a distance measure with
higher values indicating lower accordance of the compared distributions.

Results

3.1 Effects of initial values on item parameters
Effects of initial values for item parameters in the EHmethod were negligible and only explained
1.2% vs. 0.8% of variance in test-level bias of discrimination vs. difficulty parameters with the
default convergence criterion of 10−2. For tighter convergence criteria, these minor effects
diminished even further (Table 1).

Initial values for the latent distribution, on the other hand, had a stronger effect on test-level
bias. For the default convergence criterion, they explained 26.3% vs. 30.4% of variance in test-
level bias of discrimination vs. difficulty parameters. This was more than half of the amount of
variance explained by sample size (which accounted for 51.8% vs. 51.7% of variance; Table 1).
BILOG default values (condition default) performed well in all conditions, but were
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outperformed (lower values of test-level bias for discrimination and difficulty parameters) in
large samples (n = 1000) by initial values from a uniform distribution (condition unif), when
the true latent distribution was normal (Fig 1, top). When the true latent distribution was
skewed, BILOG default values were the best choice (i.e., lowest values of test-level bias), except

Table 1. Explained Variance for Bias of Item Discrimination Parameter, Item Difficulty Parameter, and ICC Recovery for the Empirical Histogram
Method.

η2

df 10−2 10−3 10−4 10−5

Item discrimination parameter

Initial item parameters (iip) 3 .0120 .0047 .0008 .0000

Initial latent distribution (ild) 3 .2630 .0950 .0336 .0267

Sample size (n) 2 .5176 .7140 .7661 .7688

True latent distribution (tld) 1 .1334 .1255 .1727 .1711

iip x ild 9 .0100 .0025 .0001 .0000

iip x n 6 .0002 .0002 .0005 .0000

iip x tld 3 .0245 .0072 .0005 .0001

ild x n 6 .0145 .0064 .0012 .0002

ild x tld 3 .0081 .0063 .0006 .0003

n x tld 2 .0087 .0301 .0234 .0326

Residual 57 .0082 .0083 .0005 .0001

Item difficulty parameter

Initial item parameters (iip) 3 .0084 .0037 .0005 .0000

Initial latent distribution (ild) 3 .3039 .1258 .0608 .0527

Sample size (n) 2 .5174 .7879 .8920 .9013

True latent distribution (tld) 1 .0321 .0148 .0174 .0188

iip x ild 9 .0105 .0025 .0001 .0000

iip x n 6 .0002 .0005 .0002 .0000

iip x tld 3 .0453 .0131 .0011 .0002

ild x n 6 .0205 .0088 .0017 .0006

ild x tld 3 .0275 .0115 .0023 .0012

n x tld 2 .0228 .0233 .0228 .0245

Residual 57 .0114 .0083 .0012 .0006

ICC bias

Initial item parameters (iip) 3 .0009 .0005 .0001 .0000

Initial latent distribution (ild) 3 .0179 .0089 .0036 .0030

Sample size (n) 2 .9410 .9556 .9609 .9603

True latent distribution (tld) 1 .0318 .0275 .0303 .0312

iip x ild 9 .0006 .0002 .0000 .0000

iip x n 6 .0000 .0000 .0000 .0000

iip x tld 3 .0022 .0009 .0001 .0000

ild x n 6 .0009 .0004 .0001 .0000

ild x tld 3 .0008 .0006 .0001 .0000

n x tld 2 .0029 .0047 .0048 .0054

Residual 57 .0009 .0007 .0000 .0000

Note. Mean-centered aggregated values (i.e., bias in each condition) were used as data. Therefore, residual variance is reduced. Absolute effect sizes η2

should be interpreted as the respective factor’s relative contributions to the total amount of bias. To avoid overfit, models only included main effects and

two-way interactions.

doi:10.1371/journal.pone.0140163.t001
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for large samples, where initial values from the shortrun procedure (condition shortrun) had
lower values for difficulty parameter bias and slightly lower values for discrimination parame-
ter bias.

In regard to bias of single items, bias was most extreme for difficult items, as well as for
items with a very high discrimination parameter. Relatedly, influences of initial values were
also most notable for items with extreme difficulty (both very difficult and very easy items were
affected by the choice of initial values), and for items with high discrimination parameters
(Figs 2 and 3: lines of different initial value conditions diverge for extremer item parameters).
For item discrimination parameters, the biggest difference in bias between different initial
value conditions amounted to 0.193 for an item with discrimination parameter ai = 3.00
(between conditions true/unif and const/est for n = 1000 and normal latent distribution, con-
vergence criterion 10−2). For item difficulty parameter bias, the biggest difference was 0.150 for
an item with difficulty parameter bi = 2.43 (between the same conditions as above).

For tighter convergence criteria, the effects of initial values for the latent distribution
decreased rapidly and were hardly noticeable for the tightest criterion (Fig 4, top, as well as
Figs 2 and 3 for single items). They only explained 2.7% vs. 5.3% of variance of test-level bias in
discrimination vs. difficulty parameters when using 10−5 as convergence criterion. In these
conditions, initial values from the uniform distribution and from the shortrun procedure (con-
ditions unif and shortrun) produced slightly lower bias than BILOG default values (condition
default) when the true latent distribution was skewed.

When using standard MML estimation, there were virtually no effects of initial values on
item parameters. They accounted for less than 0.01% vs. less than 0.1% of explained variance in
discrimination vs. difficulty parameter bias for the default convergence criterion (Table 2), and
even less for tighter criteria (results omitted for brevity; Figs 1 and 4 show that the different ini-
tial value conditions produce essentially the same results).

Fig 1. Test-level Bias and ICC Bias for Different Initial Values Using BILOG-MG 3 Default Convergence
Criterion (10−2). For clarity, only selected conditions are shown.

doi:10.1371/journal.pone.0140163.g001
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3.2 Effects of initial values on recovery of the latent distribution
Recovery of the true latent distribution was best when initial values from conditions default or
est were used (lowest Earth Mover’s Distance). Other initial value conditions recovered the
latent distribution rather poorly, especially the shortrun condition.

For tighter convergence criteria, recovery of the latent distribution got worse (i.e., increased
values of Earth Mover’s Distance; Table 3). This effect was least severe when using condition
est for initial values for the latent distribution. For the strictest convergence criterion, this
condition exhibited by far the best recovery of the latent distribution. Of note, condition est
showed highest bias in terms of item parameter recovery. Default initial values for the latent
distribution (condition default) had second-lowest values for Earth Mover’s Distance, i.e.,
using default initial values was the second-best choice in terms of recovering the latent
distribution.

3.3 Effects of initial values on ICC recovery
Despite the effects of initial values on item parameters in the EH method, ICC recovery was
hardly affected. Initial item parameters explained less then 0.1% of variance in ICC bias for the
default convergence criterion and even less for tighter criteria (Table 1). Initial values for the
latent distribution, which did influence item parameter estimation, did not affect ICC recovery
(1.8% of explained variance for the default convergence criterion, less then 0.01% for the tight-
est criterion). The most important factor for ICC bias was sample size, explaining 94.1% of var-
iance for the default convergence criterion and 96.0% for the tightest criterion (Fig 1, bottom).

3.4 Effects of the convergence criterion
Contrary to our expectations, results indicated that bias increased with tighter convergence cri-
teria when estimating the latent distribution by means of the EH method. For n� 500, lowest
values of test-level bias were achieved with the loosest convergence criterion of 10−2, with

Fig 2. Bias for Discrimination Parameters of Single Items in EH Estimation for a Sample Size of
n = 1000. Top panels depict bias for normal true latent distribution, bottom panels show bias for skewed true
latent distributions, with tighter convergence criteria from left to right. Lines depict different initial value
conditions for the estimated latent distribution. For clarity, initial values for item parameters are not depicted,
as they hardly influenced results.

doi:10.1371/journal.pone.0140163.g002
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BILOG default initial values (condition default) always among the best (only outperformed in
medium samples with normal [true] latent distribution by initial values from a uniform distri-
bution). For n = 1000, this pattern remained the same, but BILOG default values performed
differently than other initial values. Bias decreased when the convergence criterion was reduced
from 10−2 to 10−3, but increased for tighter criteria (Fig 4, top). Still, test-level bias was lowest

Fig 3. Bias for Difficulty Parameters of Single Items in EH Estimation for a Sample Size of n = 1000.
Top panels depict bias for normal true latent distribution, bottom panels show bias for skewed true latent
distributions, with tighter convergence criteria from left to right. Lines depict different initial value conditions for
the estimated latent distribution. For clarity, initial values for item parameters are not depicted.

doi:10.1371/journal.pone.0140163.g003

Fig 4. Test-level Bias and ICC Bias for Different Initial Values and Different Convergence Criterion
Settings for a Sample Size of n = 1000. For clarity, only selected conditions are shown.

doi:10.1371/journal.pone.0140163.g004
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for the loosest convergence criterion (with one exception for item discrimination parameter
bias; Fig 4, top left). As reported above, initial values from a uniform distribution or from the
shortrun procedure yielded the lowest values of bias for large samples.

Regarding single items, item discrimination parameter bias increased with tighter conver-
gence criteria over the whole range of item discrimination, but most for items with high dis-
criminatory power. In terms of item difficulty parameter, bias increased most for items with
medium difficulty. A reduction of bias with tighter convergence criteria was only found for
items with very high difficulty. However, this reduction was obviously not sizeable enough to
reduce the test-level bias (as reported above). The fact that test-level bias increased with stricter
convergence criteria might be related to the estimation of the latent distribution, which gets
increasingly worse for tighter convergence criteria (as mentioned above; Table 3).

3.5 Effects of the true latent distribution
When using the EH method, bias was lower when the true distribution was skewed compared
to when it was normal (Fig 1, top), particularly for the item discrimination parameter (between
13% and 17% of explained variance; Table 1). The differences between test-level bias for nor-
mal vs. skewed (true) latent distributions were largest for small samples and decreased with
increasing sample size.

Table 2. Explained Variance for Bias of Item Discrimination and Item Difficulty Parameter for Standard MML Estimation with the Default Conver-
gence Criterion.

η2

df Discrimination Difficulty ICC

Initial item parameters (iip) 3 .0000 .0005 .0000

Sample size (n) 2 .1296 .1854 .9609

True latent distribution (tld) 1 .5003 .4377 .0119

iip x n 6 .0000 .0000 .0000

iip x tld 3 .0001 .0001 .0000

n x tld 2 .3700 .3761 .0272

Residual 6 .0000 .0001 .0000

Note. See Table 1.

doi:10.1371/journal.pone.0140163.t002

Table 3. Recovery of Latent Distribution (Earth Mover’s Distance).

Initial values for latent distribution

Convergence criterion default est shortrun unif

Normal latent distribution

10−2 0.130 0.186 0.517 0.368

10−3 0.366 0.238 0.621 0.541

10−4 0.674 0.297 0.738 0.728

10−5 0.720 0.308 0.772 0.772

Skewed latent distribution

10−2 0.125 0.148 0.543 0.310

10−3 0.290 0.181 0.654 0.383

10−4 0.515 0.226 0.828 0.632

10−5 0.585 0.238 0.903 0.834

doi:10.1371/journal.pone.0140163.t003
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Results regarding the recovery of the latent distribution showed that the EH method was
less efficient when the true latent distribution was normal compared to when it was skewed
(mean Earth Mover’s Distance for normal vs. skewed true latent distributions = 0.500 vs. 0.462,
Welch test t(37795.31) = 11.98, p< .001, Cohen d = 0.12). Furthermore, these differences were
most severe for small samples (Cohen d = 0.15 vs. 0.14 vs. 0.12 for small vs. medium vs. large
samples).

In regard to single items, bias was generally most severe for items with extreme difficulties
(i.e., very easy or very difficult items). However, when comparing item difficulty bias between
normal and skewed latent distribution, difficult items exhibited greater bias, while easy items
exhibited smaller bias when the true latent distribution was normal (compared to when it was
skewed). This pattern was more severe for looser convergence criteria (Fig 3). This finding
might be related to the information available to estimate the item difficulties: With a positive
skew, there is less information for easy items and more information for difficult items (com-
pared to a normal distribution). Bias of difficulty parameters was indeed related to the density
of the true latent distribution (r = -.63). It is also known that bias is related to the true item dif-
ficulty (scale expansion effect). In the present study, this effect amounted to r = .78. Bearing
this in mind, item difficulty bias might best be explained by a linear model including both of
these influences: This model explained 84% of the variance in item difficulty parameter bias,
with all predictors being significant (greater bias was associated with lower density and higher
difficulty; detailed results omitted for brevity).

When using standard MML estimation, bias values increased with increasing sample size
when the true latent distribution was skewed (that is, when the assumed latent distribution
was mis-specified; Fig 1). This interaction between sample size and true latent distribution
accounted for 37.0% and 37.6% of explained variance for item discrimination and item diffi-
culty parameters, respectively (Table 1).

Compared to the EH method, standard MML estimation results displayed comparable or
even smaller bias for small samples, irrespective of the true latent distribution. Only in large
samples, the EH method performed better than MML estimation. In other words, a mis-speci-
fied latent distribution seemed to be problematic only in larger samples.

Discussion
This study examined the effects of initial values and of the convergence criterion for estimating
parameters of the 2PL in BILOG-MG 3. In line with previous research [10], initial values
for item parameters did not affect results notably. Initial values for the latent distribution,
on the other hand, had noteworthy effects on bias of item discrimination and item difficulty
parameters.

For the default convergence criterion 10−2, initial values for the latent distribution explained
a considerable proportion of variance of item discrimination and item difficulty parameters.
They explained more than half as much as sample size, which is known to be the most impor-
tant factor for explaining bias in IRT (e.g., [21]). Conforming to prior research, a scale expan-
sion effect was found (i.e., more bias for items with extreme difficulties; e.g., [4,21,22]).
Relatedly, influences of initial values were more pronounced for very easy or very difficult
items.

Initial values also affected the estimation of the latent distribution. Of note, initial values
that allowed a better recovery of the latent distribution exhibited more item and test-level bias
for difficulty as well as discrimination parameters. For stricter convergence criteria, condition
est recovered the latent distribution best, but bias values for item parameters were highest.
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Hence, choosing appropriate initial values for EM estimation seemed very important for
parameter recovery when estimating the latent distribution by means of the EH method.
BILOG-MG 3 default values seem to be a good choice, as these produced low values of bias in
all conditions. Only with larger sample sizes, using initial values from a uniform distribution or
from the shortrun procedure resulted in slightly lower values of bias for both item parameters.
It seems likely that initial values generated by these methods are favorable with even larger
samples. This result can be best understood from a Bayesian point of view, as using a uniform
distribution as a prior distribution (i.e., initial values) may be seen as not introducing any prior
information about the latent (posterior) distribution. Consequently, this approach seems best
suited for large samples, because more information is available for estimating the latent distri-
bution. For initial values from the shortrun procedure, a similar argument might apply: The
short runs of the estimation procedure to generate initial values can be interpreted as an edu-
cated guess about suitable initial values, and this guess is also better when more information is
available for the estimation process.

Effects of initial values were restricted to item parameters and the recovery of the latent dis-
tribution. Although the different strategies for initial value generation produced different
results in terms of item parameter bias, ICC recovery was hardly affected by initial values.
This is possibly related to a flat surface of the loglikelihood function, which has been found for
single items in the 2PL [23]. A flat maximum might lead to dissimilar item parameters when
approached from different directions in different initial value conditions. Furthermore, taking
into account that parameters (weights) of the latent distribution and item parameters are esti-
mated simultaneously in the EH method, a flat maximum of the likelihood function might
also explain why initial value conditions with better recovery of the latent distribution exhib-
ited higher bias for item parameters: Again, the maximum might be approached from differ-
ent directions, leading to an impaired recovery of either the latent distribution of the item
parameters.

Furthermore, differential effects of initial values on item parameters, ICCs, and the recovery
of the latent distribution may also be related to properties of convexity (and non-convexity) of
the involved optimization functions: Optimization with regards to the ICCs is conditional on a
logistic function (Eq 1), and hence results in a convex optimization function, whereas this is
not the case with regards to the optimization function of the latent distribution (we are thank-
ful to the Academic Editors Lourens J. Waldorp and Thomas Niederkrotenthaler for pointing
this issue out to us). Convex functions play an important role in optimization problems.
Strictly convex functions have no more than one minimum, strictly concave functions (the
negative of a convex function), which are of concern here, have no more than one maximum.
This property, together with a flat likelihood, might explain why ICCs were hardly affected by
the choice of initial values, even in the presence of biased item parameters. On the other hand,
the existence of multiple local maxima may have affected the optimization with regards to the
latent distribution. The better recovery of the latent distribution under condition est than
under the other conditions in our simulation study is consistent with such a view: Only under
this condition were initial values estimated from the data. This might have helped circumvent-
ing problems with multiple maxima in the optimization process as initial values were—on
average—likely already closer to their optimal values under condition est than under the other
conditions. The convexity and non-convexity of optimization functions needs to be considered
in research on computational algorithms.

Regarding possible remedies to the effect of initial values on parameter estimates in IRT, a
simple, albeit in the literature scarcely discussed, option exists: It is of paramount importance
to set a sufficiently tight convergence criterion when estimating the latent distribution from
data. Effects of initial values for the latent distribution diminished rapidly with tighter criteria
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and were hardly noticeable for the tightest criterion used in this study. This finding differs
from results found for another method of estimating the latent distribution: In full non-
parametric ML estimation [24], initial values for the latent distribution were found to affect
item parameter bias even with strict convergence criteria [11]. This might be related to differ-
ences in the estimation algorithm, since this method also estimates the positions (and not only
the weights) of the support points from data (hence, introducing more additional parameters
that may be influenced by initial values). In other words, the EH method, as implemented in
BILOG-MG 3, seems less sensitive to the choice of initial values when the convergence crite-
rion is tight enough.

However, this remedy of tightening the convergence criterion entails a severe drawback
when using the EH method in BILOG-MG 3. Despite minimizing the effects of initial values,
our results showed that, contrary to what might be expected, item parameter bias increased for
tighter criteria (irrespective of the initial values used). On average, this bias is slight, but never-
theless noteworthy, as users might involuntarily increase bias by tightening the convergence
criterion, expecting to achieve just the opposite. Increase of bias was most pronounced in items
of medium difficulty, and in items with high discrimination. Furthermore, recovery of the
latent distribution got considerably worse when the convergence criterion was tightened. As
item parameters and latent distribution are estimated simultaneously, this could have been
caused by numerical inaccuracies in estimating the latent distribution, possibly due to insuffi-
cient information available in ranges of the latent ability distribution with few participants.
These inaccuracies might have propagated and increased with the number of iterations,
impairing the recovery of item parameters and of the latent distribution. Hence, this might be
an explanation for increasing inaccuracy with tighter convergence criteria. To sum up, it can-
not be advised to tighten the convergence criterion for practical application. Instead, it seems
best to use the default convergence criterion when estimating the latent distribution from the
data.

Furthermore, bias was found to be smaller when the true latent distribution was skewed
(compared to when it was normal). With increasing sample size, this difference grew smaller.
This might have been caused by general problems to estimate the latent distribution in small
samples also reported in prior research [25].

Standard MML estimation of the 2PL, i.e., assuming (and not estimating) a standard normal
latent distribution, was unaffected by the choice of initial item parameters. This result is in line
with previously stated but unpublished results [10]. Moreover, MML estimation was found to
have comparable or lower bias than the EH method, even when the latent distribution was
mis-specified in small samples. This is in line with other research [25], which found standard
MML to be preferable (in terms of better model fit) to the EH method for small sample sizes,
even when the assumed latent distribution does not match the true latent distribution. This is
caused by difficulties in estimating the latent distribution when information is sparse. The
smaller number of parameters which have to be estimated in standard MML estimation possi-
bly also contributes to this phenomenon. On the other hand, MML estimation was also outper-
formed by EH estimation when the true latent distribution was normal, although only in large
samples, only for certain initial values, and only for loose convergence criteria. This might be
related to the sampling variation in the simulation process, which inadvertedly causes the true
latent ability distribution to deviate from a perfect normal distribution to some extent. The EH
method is able to adapt to these deviations, therefore resulting in lower values for bias. As
already elaborated above, the EH method is only beneficial if the sample is large, and if the con-
vergence criterion is not too strict.

In summary, this study showed that BILOG-MG 3, a widely used software package to esti-
mate parameters of the 2PL model, is only sensitive to initial values when estimating the latent
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distribution from data. Despite the fact that influences of initial values on item parameters
decrease when using a tighter convergence criterion, this is not advisable in practice, as simul-
taneously item parameter bias increased when doing so. When estimating the latent distribu-
tion from data, it thus seems beneficial to retain the default convergence criterion of 10−2 and
to use appropriate initial values. BILOG-MG 3 default values appeared favorable for small and
medium samples, but estimating the latent distribution cannot be recommended in these cases
altogether, because MML results were less biased even when the assumed latent distribution
was mis-specified. In large samples, using initial values from a uniform distribution or from
the shortrun procedure might be beneficial for reducing bias in item parameter estimates.
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