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Melatonin receptor gene expression as well as melatonin synthesis and secretion
activities were examined in the pineal gland of the grass puffer, which exhibits unique
lunar/tidal cycle-synchronized mass spawing: spawning occurs before high tide on the day
of spring tide during spawing season. Melatonin synthesizing activity was assessed by
the abundance of arylalkylamine N-acetyltransferase 2 (AANAT2) mRNA. The amount of
aanat2 mRNA was low during light phase and initiated to increase after the light was
turned off. The secretion of melatonin from primary pineal organ culture was stimulated
after the light was turned off and ceased immediately after the light was turned on. The
expression levels of four melatonin receptor subtype genes (mel1a1.4, mel1a1.7, mel1b,
and mel1c) showed synchronous variations, and the levels tended to be high during the
dark phase under light/dark conditions. These results suggest that the action of melatonin
on the pineal gland is highly dependent on light and photoperiod, possibly with stronger
action during night time. Under constant darkness, the expression of four melatonin
receptor subtype genes showed unique ultradian oscillations with the period of 14.0–
15.4 h, suggesting the presence of a circatidal oscillator in the pineal gland. The present
results indicate that melatonin may serve local chronobiological functions in the pineal
gland. These cyclic expressions of melatonin receptor genes in the pineal gland may be
important in the control of the lunar/tidal cycle-synchronized mass spawning in the grass
puffer.
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INTRODUCTION
Melatonin is produced mainly in the pineal gland and retina
in fish, and its plasma concentration is higher during night-
time than daytime. This daily rhythm of circulating melatonin
informs the organism about the time within a day, whereas the
duration of the nocturnal elevation of melatonin that corre-
sponds to photoperiod informs the organism about the season
within a year (Reiter, 1993). Melatonin has been implicated in a
wide variety of physiological and behavioral functions, such as
circadian and seasonal rhythms, reproduction, growth, antioxi-
dant action, immune response, sleep, feeding, locomotor activ-
ity, and depression (Pandi-Perumal et al., 2006; Falcón et al.,
2010).

The actions of melatonin are mediated via melatonin recep-
tors that belong to the G protein-coupled receptor super-
family (Reppert et al., 1996). In vertebrates, there are three
types of melatonin receptors, Mel1a (MT1), Mel1b (MT2), and
Mel1c. Mel1a and Mel1b have been identified in all vertebrate

species investigated, whereas Mel1c has been found only in
non-mammalian species (Ebisawa et al., 1994; Reppert et al.,
1995). Furthermore, two different subtypes of Mel1a (Mel1a1.4
and Mel1a1.7) have been identified in zebrafish (Reppert et al.,
1995), rainbow trout (Mazurais et al., 1999), goldfish (Ikegami
et al., 2009a), grass puffer (Ikegami et al., 2009b), and mudskip-
per (Hong et al., 2014). Accordingly, phylogenetic analyses have
shown that there are four subtypes of melatonin receptor genes in
fish (Reppert et al., 1995).

Synchronous reproduction is crucial to reproductive suc-
cess in most vertebrate species. The daily and seasonal con-
trol of reproduction involves cyclic and photoperiod-dependent
changes in the activity of neurons secreting hypothalamic neu-
ropeptides such as kisspeptin, gonadotropin-inhibitory hormone
(GnIH) and gonadotropin-releasing hormone (GnRH) (Khan
and Kauffman, 2012; Williams and Kriegsfeld, 2012; Simonneaux
et al., 2013). These changes are brought in part by melatonin
signals that transmit daily and photoperiodic information via
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melatonin receptors (Ubuka et al., 2005; Revel et al., 2008;
Simonneaux et al., 2009; Yasuo et al., 2009). However, the mode
of melatonin action on the reproductive neuroendocrine system
remains to be determined.

The grass puffer (Takifugu niphobles) exhibits unique repro-
ductive physiology and behavior that are synchronized with sea-
sonal, lunar, and daily cycles. During the spawning season from
spring to early summer, spawning occurs only during spring tide
every 2 weeks (Yamahira, 2004; Motohashi et al., 2010; Ando
et al., 2013). The fish aggregate at a certain seashore location
for spawning that takes place in groups of 10–60 individuals, of
which one is female. The fish usually aggregate at the spawning
ground 2.5–3 h before high tide at night. Then, spawning starts
1.5–2 h before high tide and continues for 1 h during the ris-
ing tidal phase (Motohashi et al., 2010). Therefore, the timing
of spawning is tightly connected with lunar and tidal rhythms
as well as daily rhythm. Since we are aware of the time and
place of the spawning, we can obtain spawning fish easily by
dip net at the spawning bed. Thus, the grass puffer provides a
unique animal model for studying the neuroendocrine mecha-
nisms underlying the seasonal, lunar, and circadian control of
reproduction.

Lunar-synchronized reproduction has been reported in a wide
variety of organisms, particularly those living in shallow waters
and reef areas. In these organisms, changes in moonlight and tide
are considered to act as an environmental cue that entrains an
internal clock for the synchronization of reproduction. However,
the molecular mechanisms for lunar-synchronized spawning are
poorly understood (Leatherland et al., 1992; Takemura et al.,
2004a). In the golden rabbitfish, which spawns around the first
quarter moon, the plasma levels of melatonin at midnight are
higher on the day of new moon than full moon. This lunar phase-
dependent variation in the plasma melatonin concentrations is
critical for the occurrence of the lunar-synchronized spawning
in the golden rabbitfish (Takemura et al., 2004b). The levels of
melatonin receptor gene expression for mt1 and mel1c showed
variations depending on moonlight brightness in the pineal gland
(Park et al., 2014). In addition, the levels of mudskipper mel1a1.4
expression in the diencephalon show a lunar cycle-dependent
variation with two peaks at the first and last lunar quarters
when the fish spawns (Hong et al., 2014). These facts sug-
gest that melatonin signals may play a key role in transmitting
the photoperiodic information of moonlight to the reproductive
neuroendocrine system in the hypothalamus.

Our previous studies on the grass puffer spawning rhythm
also showed possible involvement of melatonin signals in the
control of the semilunar-synchronized spawning. In the dien-
cephalon, all four melatonin receptor subtype genes are syn-
chronously expressed with daily and circadian variations under
light/dark (LD) and constant darkness (DD) conditions, respec-
tively (Ikegami et al., 2009b). In addition, not only kisspeptin
(kiss2) and its receptor (kiss2r) genes but also LPXRFamide pep-
tide gene (lpxrfa), fish ortholog of GnIH gene, and its receptor
(lpxrfa-r) gene clearly showed daily and circadian oscillations in
expression, and their expression patterns are almost synchronized
with each other (Shahjahan et al., 2011; Ando et al., 2014). These
results indicate that melatonin signals are highly dependent on

light/dark cycle in the diencephalon, and melatonin may have
an important role in the cyclic expressions of kiss2/kiss2r and
lpxrfa/lpxrfa-r in the grass puffer.

In the present study, to further elucidate the role of melatonin
signals in the control of the semilunar-synchronized spawning,
daily and circadian oscillations in expression of the four mela-
tonin receptor subtype genes were examined in the pineal gland
of grass puffer. The pineal gland is one of the master clocks
in fish (Falcón et al., 2009), and melatonin may have a local
action on the pineal gland via melatonin receptor that leads to
the production of the semilunar-synchronized spawning rhythm.
In addition, daily and circadian changes in melatonin synthesis
and secretion from the pineal gland was examined by cloning
and expression analyses of gene encoding arylalkylamine-N-
acetyltransferase (AANAT) 2, a rate-limiting enzyme in mela-
tonin synthesis, and by measurement of melatonin secreted from
primary pineal organ culture.

MATERIALS AND METHODS
ANIMALS
Mature grass puffer of both sexes were caught by dip net at
a spawning ground in Tomioka Bay, Kumamoto, Japan dur-
ing spawning period in July and August 2009 and July 2010.
They were transferred to the Fishery Research Laboratory Station,
Kyushu University, Fukutsu, Japan and were kept in indoor tanks
(500 l) with flow of seawater and under natural photoperiod
(14L:10D, exact time of dawn and dusk were as follows: 5:20 and
19:30 in July 2009; 5:35 and 19:15 in August 2009; 5:25, and 19:25
in July 2010). The fish were fed commercial pellets equivalent
to 1% of body weight (BW) at 9 a.m. daily. The experimental
procedures followed the guidance approved by the Animal Care
and Use Committees of Kyushu University, Fukuoka, Japan and
Niigata University, Niigata, Japan.

SAMPLE COLLECTION
Daily variations of melatonin receptor and AANAT2 genes were
examined by real-time PCR using the fish obtained in July 2009
(n = 56, 49 males, 50.0 ± 1.6 g in BW and 7 females, 49.9 ± 1.9 g
in BW, July 18–19, age of the moon 26.0/middle tide, time of high
tide 20:17, time of low tide 13:35) and July 2010 (n = 108, all
males, 44.9 ± 0.7 g in BW, July 23–25, age of the moon 12.0/mid-
dle tide, time of high tide 21:33, time of low tide 15:17). The
fish were transferred into indoor tanks (60 l) and acclimatized at
22◦C for 6 days under natural photoperiod (14L:10D). After 3
days of fasting, the fish were anesthetized in 0.03% MS222, and
killed by decapitation at 3 h intervals for 1 day at Zeitgeber time
(ZT) 3, ZT6, ZT9, ZT12, ZT15, ZT18, ZT21, and ZT24 in 2009
(n = 7 for each time point) and for 2 days in 2010 (n = 6 for
each time point). The whole brain including the pineal gland was
removed and soaked in RNAlater (Ambion, TX, USA) and was
kept at 4◦C for 1 day. The pineal gland was removed from the
brain under a stereoscopic microscope and immediately frozen in
liquid nitrogen and stored at −80◦C.

For circadian variation, the fish obtained in August 2009 (n =
62, 48 males, 44.7 ± 1.4 g in BW and 14 females, 60.6 ± 3.3 g in
BW, August 3–4, age of the moon 13.0/spring tide, time of high
tide 21:37, time of low tide 15:22) and July 2010 (n = 136, 132
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males, 45.2 ± 0.7 g in BW and 4 females, 47.9 ± 4.5 g in BW, July
7–9, age of the moon 25.0/middle tide, time of high tide 19:47,
time of low tide 13:05) were acclimatized in the indoor tanks (60 l)
for 6 days as described above. Then, the fish were left under DD
condition without feeding for 3 days. The fish were anesthetized
in 0.03% MS222 and killed by decapitation at 3 h intervals for
1 day at circadian time (CT) 3, CT6, CT9, CT12, CT15, CT18,
CT21, and CT24 in 2009 (n = 6–7 for each time point) and for 2
days in 2010 (n = 8 for each time point). The whole brain includ-
ing the pineal gland was removed under red dim light, and soaked
in RNAlater (Ambion, TX, USA). The pineal gland was collected
as described above.

REAL–TIME PCR ASSAY OF MELATONIN RECEPTOR mRNAs
Real–time PCR assay was carried out as described previously
(Ikegami et al., 2009b). Briefly, total RNA was extracted from
the pineal gland and 200 ng of total RNA was used for syn-
thesis of first strand cDNA by reverse transcription reaction
using Multiscribe Reverse Transcriptase (Applied Biosystems,
USA) according to the manufacturer’s instruction. PCR reaction
mixture (10 µl) contained 2 µl of sample cDNA, 0.2 µM of for-
ward and reverse primers (Table 1) and 5 µl of SYBR Premix
DimerEraser (Takara, Ohtsu, Japan). Amplification was carried
out at 95◦C for 30 s, followed by 40 cycles at 95◦C for 5 s, 55◦C
for 30 s, and 72◦C for 30 s. Specific amplification of each subtype
cDNA was verified by melting curve analysis, gel electrophoresis
of the product. The cross-reactivity with other subtype mRNAs
in each assay was less than 0.29%. The slope and correlation
coefficient (r) of the standard curve and the intra- and inter-
assay coefficients of variation (CVs) in each assay are shown in
Supplementary Table 1.

PARTIAL CLONING OF aanat2 AND REAL–TIME PCR ASSAY
Genomic DNA of grass puffer was prepared from blood using a
Puregene DNA Purification Kit (Gentra, MN, USA). In order to
design primers for cloning the grass puffer aanat2, the genome
database of tiger puffer (http://uswest.ensembl.org/Takifugu_
rubripes/Info/Index) were BLAST searched. There are three
aanats (aanat1a, aanat1b, and aanat2) in the tiger puffer genome,
and all of them consist of 3 exons. PCR primers for the grass
puffer aanat2 were designed in the region from intron 1 to exon
3 (Table 1). PCR amplification using the grass puffer genomic
DNA as template DNA was performed using a HotStar Taq Master
Mix (Qiagen, Japan). Amplification was carried out at 95◦C for

Table 1 | Primers used in the present study.

Forward primer Reverse primer

REAL-TIME PCR FOR MELATONIN RECEPTOR mRNAs

Mel1a1.4 GGCTCTTCACAGCCAGCTA CGGAACTTGAAGACGATCAG

Mel1a1.7 TGGACTCGGTCTGAGCCAG TCACGAAGCACCATGGTACAG

Mel1b CCATAGATCCGTCCCACGTA TGTTGAGCAGGCCATAGATG

Mel1c ACGGAGACGTCGCGTTG TCATGACGTTGGTCAACACG

PARTIAL CLONING OF aanat2 cDNA

AANAT2 TCCTCACCTCGACTCTGTC TGGAAGTGCATGTTGGATATG

REAL-TIME PCR FOR aanat2 mRNA

AANAT2 ATCCACGTGTTGTCAGTACACC AAGTCCTCGCAGATGAGCAG

15 min, followed by 35 cycles of 94◦C for 30 s, 53◦C for 30 s
and 72◦C for 1 min, and finally by additional 10 min at 72◦C.
The PCR fragment of expected size was purified by a StrataPrep
PCR Purification Kit (Stratagene, CA, USA) and cloned into a
pGEM-T easy cloning vector (Promega, USA). The purified plas-
mid DNA was sequenced by a CEQ8800 DNA Analysis System
(Beckman, Coulter).

Real–time PCR assay of aanat2 mRNA was carried out as
described above. PCR reaction mixture (10 µl) contained 2 µl
of sample, 0.2 µM of forward and reverse primers (Table 1)
and 5 µl of SYBR Premix DimerEraser (Takara, Ohtsu, Japan).
Amplification was carried out at 95◦C for 30 s, followed by 40
cycles at 95◦C for 5 s, 55◦C for 30 s, and 72◦C for 30 s. Specific
amplification of aanat2 cDNA was verified by melting curve
analysis and gel electrophoresis of the product. The slope, r,
intra-assay CV, and inter-assay CV are shown in Supplementary
Table 1.

PRIMARY ORGAN CULTURE OF THE PINEAL GLAND
The pineal gland was dissected out from adult grass puffer
at ZT10, and were transferred to RPMI medium containing
20 mM HEPES, 9 mM sodium bicarbonate, penicillin (100 U/ml),
streptomycin (100 U/ml) and fungizone (0.25 mg/ml), and pre-
incubated at 20◦C for 4 h. Two pineal glands were placed on
sterile glass wool in a superfusion chamber (5 mm in diameter,
20 mm in height). The medium was superfused to keep the vol-
ume in the chamber 0.2 ml. The entire apparatus including the
culture medium stock and the culture chamber was placed in an
incubator at 20◦C. A white fluorescent light was set in the incu-
bator, and light intensity at the surface of the incubation chamber
was approximately 1400 lux. The pineal glands were maintained
for 1 day under LD condition (14L:10D) and then the light was
turned off to keep them under DD condition for 31 h. The cul-
ture medium was continuously pumped at a rate of 1 ml/h and the
perfusate was collected hourly by a fraction collector (FRAC-200,
Amersham Biosciences). This primary culture experiment using
two pineal glands was repeated four times.

MELATONIN MEASUREMENT
The melatonin concentrations in the culture medium were mea-
sured as described previously (Itoh et al., 1997). Melatonin was
extracted from 0.3 ml of perfusate by mixing with chloroform
(4 ml) and distilled water (1 ml). After centrifugation at 3000 rpm
for 1 min, the aqueous phase was discarded and the organic phase
was evaporated with a vacuum evaporator. The extracts were
redissolved in 300 µl of HPLC mobile phase solution consisting of
50 mM ammonium acetate and 30% methanol (vol/vol), adjusted
to pH 4.8 with acetic acid. After centrifugation at 500 × g for
1 min at room temperature, the supernatant was filtrated through
a Millex LH 0.45 µm filter unit (Millipore, Bedford, MA, USA)
and subjected to chromatography using a CAPCELL PAC C18
MGII 5 µm column (4.6 × 250 mm) (Shiseido, Tokyo, Japan) and
RF-10AXL fluorometric detector (Shimadzu, Kyoto, Japan). The
detector was operated at an excitation wavelength of 280 nm and
an emission wavelength of 340 nm. All separations were per-
formed isocratically at mobile phase flow rate of 0.8 ml/min and
40◦C. The fraction corresponding to the authentic melatonin
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peak was collected. Peaks were identified by retention time and
melatonin was quantified by peak area. The limit of sensitivity
of the assay was as low as 1 pg for a 2:1 signal-to-noise ratio.
Intra- and inter-assay CVs were 0.52% (n = 3) and 1.15% (n =
5), respectively. Melatonin was obtained from Sigma (St. Louis,
MO, USA).

STATISTICAL ANALYSIS
The amounts of melatonin receptor and aanat2 mRNAs are
expressed as means ± SEM. Data were analyzed by one-way
analysis of variance (ANOVA) followed by Tukey’s test or Games–
Howell’s multiple comparisons test to assess statistically signifi-
cant differences among the different time points in the daily and
circadian variation experiments. The periodicity of daily and cir-
cadian variations was calculated with COSINOR (http://www.

circadian.org/softwar.html).

RESULTS
DAILY AND CIRCADIAN VARIATIONS IN MELATONIN SECRETION FROM
THE PINEAL GLAND
The secretion pattern of melatonin from the pineal gland was
examined using the primary organ culture system. Under LD
conditions, the medium melatonin concentrations significantly
increased during dark phase and quickly dropped after exposure
to light (Figure 1). During the light phase, the medium melatonin
levels remained at almost zero. This daily change was repeated at
least for 3 days under the LD conditions in this culture system
(data not shown). Under DD conditions, the medium melatonin
levels showed a circadian variation with lowest levels at CT9 (mid-
dle of subjective light phase), but the levels were significantly
higher than that at ZT9 (0.07 ± 0.01 ng/ml at ZT9 vs. 0.68 ±
0.05 ng/ml at CT9, n = 4, p < 0.001 by t-test). The levels were
initiated to increase at the end of subjective light phase. The
COSINOR analysis revealed a significant circadian rhythm with
23.7 h period (p < 0.001).

DAILY AND CIRCADIAN OSCILLATIONS IN EXPRESSION OF aanat2 IN
THE PINEAL GLAND
Partial DNA sequence determined for the grass puffer aanat2
was 454 bp including exons 2–3 (Accession No. LC010911). The
coding region of 383 bp encodes a predicted AANAT2 protein
that contains conserved regions including C/c-1, D/c-1, D/c-2,
and motifs A and B (Supplementary Figure 1). The nucleotide
sequence similarity of aanat2 between grass puffer and tiger
puffer is 98.2%.

Under LD conditions, the absolute amounts of aanat2 mRNA
were low during the light phase and significantly increased at
the end of the light phase or during the dark phase, although
the peak levels and positions were different (3 × 106 copies/µg
RNA at ZT21 in 2009 and approximately 11 × 106 copies/µg RNA
at ZT12-15 in 2010 (Figure 2). The COSINOR analyses for the
variations in 2009 and 2010 revealed significant daily rhythms
with 19.3 h period (p < 0.05) and 21.0 h period (p < 0.001),
respectively.

Under DD conditions, aanat2 showed circadian oscillation,
but the profiles were different between 2009 and 2010 (Figure 3).
In 2009, the mRNA levels showed a peak at CT9 and the lowest

FIGURE 1 | Daily and circadian changes in melatonin secretion from

the pineal gland in vitro. Two pineal glands were placed in a superfusion
chamber and maintained for 1 day under LD condition (14L:10D, 1400 lux at
the surface of the incubation chamber) and then the light was turned off to
keep them under DD condition for 31 h. The culture medium was collected
hourly by a fraction collector, and the concentrations of melatonin in the
perfusate were determined by high performance liquid chromatography.
This primary culture experiment using two pineal glands was repeated four
times and a representative profile is shown.

FIGURE 2 | Daily variations in the amounts of aanat2 mRNA in the

pineal gland. The fish were kept under natural photoperiod (14L:10D), and
the brain samples were taken at 3 h intervals for 1 day at ZT3, ZT6, ZT9,
ZT12, ZT15, ZT18, ZT21, and ZT24 in 2009 (n = 7 for each time point) and
for 2 days in 2010 (n = 6 for each time point). Values accompanied by
different letters are statistically significantly different (p < 0.05).

level at CT18 with a significant circadian rhythm with 18.3 h
period (p < 0.01). In 2010, aanat2 showed a somewhat differ-
ent circadian oscillation to that in 2009: the low levels of mRNA
continued for longer period from CT21 to CT6 with a significant
circadian rhythm with 24.0 h period (p < 0.001).
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FIGURE 3 | Circadian variations in the amounts of aanat2 mRNA in the

pineal gland. The fish were kept under constant darkness condition for 3
days, and then the brain samples were taken under red dim light at 3 h
intervals for 1 day at CT3, CT6, CT9, CT12, CT15, CT18, CT21, and CT24 in
2009 (n = 6–7 for each time point) and for 2 days in 2010 (n = 8 for each
time point). Values accompanied by different letters are statistically
significantly different (p < 0.05).

DAILY AND ULTRADIAN OSCILLATIONS IN EXPRESSION OF FOUR
MELATONIN RECEPTOR SUBTYPE GENES IN THE PINEAL GLAND
In the pineal gland, the absolute amounts of melatonin recep-
tor subtype mRNAs were comparable for mel1a1.4, mel1a1.7, and
mel1b with highest levels of mel1b mRNA (Figure 4). The amounts
of mel1c mRNA were as low as approximately one thirtieth
those of mel1b mRNA. In 2009 under LD conditions, the mRNA
amounts of mel1a1.4, mel1a1.7, and mel1c showed a synchronous
daily variation with a sharp peak at ZT18, whereas mel1b showed
a somewhat arrhythmic expression pattern. In 2010, the expres-
sion levels of four melatonin receptor subtype genes showed a
synchronous variation for 2 days. The levels tended to be high
during the dark phase, although these changes were less cyclic.

Under DD conditions, all subtype genes showed a synchronous
ultradian oscillation in expression (Figure 5). In 2009, all four
subtype genes showed synchronous variations with two peaks at
CT9 (middle of subjective light phase) and CT24 (start of sub-
jective light phase). The COSINOR analyses revealed significant
circadian rhythms with 14.6 h period for mel1a1.4 (p < 0.05),
15.4 h period for mel1a1.7 (p < 0.05), and 14.5 h period for
mel1b (p < 0.05). In 2010, the four subtype genes also exhibited
ultradian oscillation in expression continuously for 2 days. The
COSINOR analyses revealed significant circadian rhythms with
15.4 h period for mel1a1.4 (p < 0.01), 14.5 h period for mel1a1.7
(p < 0.001), 14.9 h period for mel1b (p < 0.01), and 14.0 h period
for mel1c (p < 0.001).

DISCUSSION
In the present study, melatonin receptor gene expression as well as
melatonin synthesis and secretion activites were examined in the

pineal gland of grass puffer, a semilunar-synchronized spawner.
Melatonin synthesizing activity was assessed by the abundance
of aanat2 mRNA, which encodes a rate-limiting enzyme in the
conversion of serotonin to melatonin. The amount of aanat2
mRNA were low during light phase and was initiated to increase
after the light was turned off. The secretion of melatonin from
the pineal organ culture was drastically stimulated after the light
was turned off and ceased immediately after the light turned on.
Accordingly, the melatonin synthesis and secretion is certainly
dependent on light, and melatonin is secreted only during dark
phase. On the other hand, four melatonin receptor subtype genes
mostly showed synchronous expression with a peak during dark
phase. These results suggest that the action of melatonin on the
pineal gland is highly dependent on light and photoperiod, pos-
sibly with stronger action during night time. Interestingly, the
four melatonin receptor genes showed unique ultradian oscilla-
tions with the period of 14.0–15.4 h under DD conditions. To our
knowledge, this is the first description of ultradian oscillation in
melatonin receptor gene expression under DD conditions. This
unique ultradian expression of melatonin receptor genes may be
involved in the control of the semilunar-synchronized spawning
rhythm in the grass puffer.

In this study, we identified three aanats in the tiger puffer
genome, and a partial nucleotide sequence of the grass puffer
aanat2 was determined. Two aanat genes, aanat1 and aanat2,
have been identified in teleosts (Coon et al., 1999; Benyassi
et al., 2000; Shi et al., 2004; Zilberman-Peled et al., 2004;
Vuilleumier et al., 2007). In addition, two subtypes of aanat1
genes, aanat1a and aanat1b, have been predicted in the genomes
of tiger puffer and medaka (Falcón et al., 2009), and their
cDNAs were isolated from the Senegalese sole retina (Isorna
et al., 2011). aanat1 is mainly expressed in the retina, whereas
aanat2 is expressed exclusively in the pineal gland. The deduced
grass puffer AANAT2 contains plausible arylalkylamine bind-
ing domains (C/c-1, D/c-1, and D/c-2) (Klein et al., 1997),
and highly conserved regions of N-acetyltransferase superfam-
ily (motifs A and B). Site directed mutagenesis in yeast MAK3
and human spermidine/spermine N-acetyltransferases revealed
that motifs A and B are important to maintain enzyme activi-
ties (Tercero et al., 1992; Coleman et al., 1996). The nocturnal
expression of the grass puffer aanat2 was apparent in both 2009
and 2010 (Figure 2), and this is well-consistent with the noc-
turnal secretion of melatonin in vitro (Figure 1). Under DD
conditions, the grass puffer aanat2 exhibited cyclic expression
patterns with a peak at CT9 in 2009 and at CT12 or CT15 in
2010. The profiles of aanat2 expression were somewhat differ-
ent between 2009 and 2010 possibly due to variation in natural
light conditions in the 2 years. It is assumed that the grass puffer
aanat2 expression shows daily and circadian oscillation through
regulation by the internal circadian clock, as reported in other
species (Foulkes et al., 1997; Coon et al., 1999; Kashiwagi et al.,
2013).

Melatonin secreted from the pineal gland has been shown
to be involved in the control of daily and seasonal rhythms
in many physiological and behavioral functions through mela-
tonin receptors. The present study demonstrated cyclic changes
in expression of all four melatonin receptor genes in the pineal

www.frontiersin.org January 2015 | Volume 9 | Article 9 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Neuroendocrine_Science/archive


Ikegami et al. Ultradian expression of melatonin receptor genes

FIGURE 4 | Daily variations in the amounts of four melatonin

receptor subtype mRNAs in the pineal gland. The fish were
kept under natural photoperiod (14L:10D), and the brain samples
were taken at 3 h intervals for 1 day at ZT3, ZT6, ZT9, ZT12,

ZT15, ZT18, ZT21, and ZT24 in 2009 (n = 7 for each time point)
and for 2 days in 2010 (n = 6 for each time point). Values
accompanied by different letters are statistically significantly different
(p < 0.05).

gland, and their expression patterns are mostly synchronized.
It is thus conceivable that melatonin may serve local functions
in the pineal gland that are most probably connected to rhyth-
mic processes. In mammals, melatonin has been shown to play a
role in resetting the circadian pacemaker activity in the suprachi-
asmatic nucleus (SCN) via MT2 (Liu et al., 1997). Melatonin
directly influences on the electrical and metabolic activities of
the SCN, resulting in the phase-shifting effect and also a signif-
icant increase in amplitude of the oscillations (Pévet et al., 2002).
Since in fish the master circadian clock is considered to be located
in the pineal organ in addition to eyes and probably hypotha-
lamus (Falcón et al., 2009), the pineal melatonin may exhibit a
local action on the activity of circadian clock. The expression of
the four melatonin receptor genes tended to increase during the

dark phase (Figure 4), indicating that melatonin’s chronobiotic
effect is certainly dependent on light and time. Taken together
with the nocturnal melatonin secretion, the effect may be more
drastic during the dark phase.

The daily oscillation in expression of melatonin receptor genes
has been reported in the brain of various fish species (Park
et al., 2006, 2007a,b; Ikegami et al., 2009a,b; Confente et al.,
2010; Chai et al., 2013). In the diencephalon of grass puffer, all
four subtype genes showed a peak at ZT15 under LD condi-
tions like in the pineal gland (Ikegami et al., 2009b). Similarly,
ZT-dependent fluctuations in expression of the four melatonin
receptor genes were observed in the grass puffer retina and optic
tectum, although in some cases including the pineal glands in
2010, the mRNA amounts showed arrhythmic variations. This
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FIGURE 5 | Ultradian variations in the amounts of four melatonin

receptor subtype mRNAs in the pineal gland. The fish were kept
under constant darkness condition for 3 days, and then the brain
samples were taken under red dim light at 3 h intervals for 1 day at

CT3, CT6, CT9, CT12, CT15, CT18, CT21, and CT24 in 2009 (n = 6–7
for each time point) and for 2 days in 2010 (n = 8 for each time point).
Values accompanied by different letters are statistically significantly
different (p < 0.05).

might be due to effects on melatonin receptor gene expression
of some other environmental and internal conditions, such as
water temperature, nutrition, sexual maturation, and infection
(immune response) (Pandi-Perumal et al., 2006; Falcón et al.,
2010). Nevertheless, it is of considerable interest to note that in
the grass puffer diencephalon, kiss2/kiss2r and lpxrfa/lpxrfa-r also
showed daily and mostly synchronized oscillations (Shahjahan
et al., 2011; Ando et al., 2014). These results suggest that the
reproductive neuroendocrine activity may be cyclic within a day
under the control of melatonin signals directly or indirectly via
circadian clock in the pineal gland (Ando et al., 2013, 2014). The
involvement of MT1 in the control of gnrh1 expression through
kiss2 was reported in the orange-spotted grouper (Chai et al.,
2013).

Recently, studies on melatonin receptor gene expression
in lunar-dependent spawner indicated that their expressions
are dependent on the lunar phase, e.g., mt1 and mel1c in
the pineal gland of golden rabbitfish (Park et al., 2014) and
mel1a1.4 in the diencephalon of mudskipper (Hong et al.,
2014). Thus, the melatonin signals may play a key role in
transmitting the photoperiodic information of moonlight to
the reproductive neuroendocrine system. Taking together with
the clear daily and circadian expressions of kisspeptin and
LPXRFa genes in the grass puffer (Shahjahan et al., 2011;
Ando et al., 2014), it is possible that the lunar cycle-dependent
changes in the melatonin/melatonin receptor levels may pro-
duce lunar-related oscillations of kisspeptin and LPXRFa gene
expressions in addition to the daily oscillations. So far, the
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plasma melatonin levels could not be determined in the grass
puffer due to the presence of interfering material in the
assay, and monthly variations of the plasma melatonin levels
and melatonin receptor gene expression are currently under
investigation.

Under DD conditions, all four melatonin receptor genes
showed ultradian oscillations with the period of 14.0–15.4 h in
both 2009 and 2010 (Figure 5). This unique ultradian rhythm
in melatonin receptor gene expression leads us to speculate that
this rhythm might be related to circatidal rhythm, the period of
which is 12.4 h, and there must be a circasemidian clock in the
pineal gland of the grass puffer in addition to the circadian clock.
Circatidal rhythms have been reported in behavioral and physio-
logical activities of various marine aminals, for example in crab
(Saigusa, 2002; Chabot et al., 2004), cumacean (Akiyama, 2004),
cricket (Satoh et al., 2008) and ragworm (Last et al., 2009). On
the other hand, circasemidian rhythms have been reported in
humans (Wan et al., 1992; Hayashi et al., 2002; Tarquini et al.,
2005). Interestingly, the combination of a circatidal oscillator
with a circadian oscillator can produce circasemilunar oscilla-
tions which enable an animal to synchronize its rhythms with
the environmental situation that reoccurs every 15 days at the
same time of day (Bünning and Müller, 1961). It should be of
considerable interest and importance to determine if this ultra-
dian rhythm of melatonin receptor gene expression is entrained
with the tidal changes when the fish are reared under such situa-
tion. If so, the pineal gland would be able to produce semilunar
oscillations of melatonin signals without changes in moonlight.
Alternatively, there may be a circasemilunar oscillator that can
be entrained with moonlight (Neumann, 1989). Although fur-
ther studies will be needed to examine which hypothesis is correct
for the semilunar spawning rhythm of grass puffer, the present
results indicate that the grass puffer provides a unique and use-
ful animal model for studying the molecular and physiological
mechanisms underlying the semilunar-synchronized biological
rhythm.

In conclusion, in the grass puffer pineal gland, the activity of
melatonin synthesis and secretion was solely dependent on light
and time, and melatonin is secreted only during dark phase. Four
melatonin receptor subtype genes mostly showed synchronous
expression with a peak during dark phase, suggesting that mela-
tonin may serve local chronobiotic functions in the pineal gland
that might be influenced by moonlight. Moreover, the four mela-
tonin receptor genes showed unique ultradian oscillations under
DD conditions with the period of 14.0–15.4 h, suggesting the
presence of a circasemidian oscillator. Taken together, the cyclic
expressions of melatonin receptor genes may be important in the
control of the semilunar-synchronized spawning rhythm in the
grass puffer.
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