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MicroRNA‑101 inhibits the expression 
of Rhes, a striatal‑enriched small G‑protein, 
at the post‑transcriptional level in vitro
Hideya Mizuno*   and Ayako Taketomi

Abstract 

Objective:  Ras homolog enriched in striatum (Rhes) is a small GTP-binding protein that is predominantly localized 
in the striatal region of the brain. Rhes affects various signaling pathways and plays important roles in Huntington’s 
disease development caused by striatal anomalies. However, the mechanism underlying the regulation of Rhes 
expression is not fully understood. We hypothesized that Rhes expression might be regulated by microRNAs (miRNAs), 
which are small noncoding RNAs that regulate gene expression by interacting with the 3′-untranslated region (3′UTR) 
of mRNA. This study therefore investigated the interaction between miRNAs and the Rhes mRNA 3′UTR.

Results:  The results of luciferase assay showed that miR-101, the miRNA determined to have the highest possibility 
of interacting with the Rhes mRNA 3′UTR using DIANA-microT, significantly inhibits luciferase activity, suggesting that 
miR-101 directly targets the Rhes mRNA 3′UTR. Additionally, Rhes protein levels in cultured cells co-transfected with a 
plasmid containing the complete Rhes cDNA and miR-101 were significantly downregulated by miR-101 as demon-
strated by western blot analysis. These results support our hypothesis that Rhes expression is regulated by miRNA and 
indicate that miR-101 may be a potent modulator of Rhes expression in striatal neurons.
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Introduction
Ras homolog enriched in striatum (Rhes) is a small GTP-
binding protein predominantly localized in the striatal 
region of the brain. Despite being a Ras family mem-
ber, overexpression of the wild-type or mutant of Rhes 
does not induce cellular transformation [1]. Rhes affects 
dopamine-mediated signaling and behavior [2–5] and 
regulates the PI3K-AKT pathway [6–8]. Notably, Rhes 
plays important roles in the development of specific dis-
eases caused by striatal anomalies. Subramaniam et al. [9] 
implicated Rhes in the pathology of Huntington’s disease 
(HD), which is characterized by striatal neuronal death 
and is caused by mutant Huntingtin (HTT) containing 
an expansion of glutamine residues. In their study, Rhes 
bound more strongly to mutant HTT than to wild-type 

HTT and induced cytotoxicity in in vivo and in vitro HD 
models. Furthermore, Rhes affects mammalian target 
of rapamycin (mTOR) signaling activation in the stria-
tum [10]. Since mTOR signaling is implicated in diverse 
biological activities that are critical for cell survival and 
function [11], altered expression of Rhes might affect the 
cellular condition. Therefore, it is important to elucidate 
the regulatory mechanism underlying Rhes expression, 
which is not fully understood.

In order to study the mechanism, we hypothesized 
that Rhes expression might be regulated by microR-
NAs (miRNAs). miRNAs are small, approximately 22 
nucleotide-long noncoding RNAs that interact with the 
3′-untranslated region (3′UTR) of mRNA and physi-
ologically regulate gene expression at the transcriptional 
and post-transcriptional levels [12]. The expression lev-
els of specific miRNAs are altered in various diseases 
[13]. Because miRNA expression is altered by epigenetic 
changes and environmental factors, miRNAs may alter 
protein expression levels and influence disease onset. 
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Therefore, it is possible that miRNA-associated changes 
in Rhes expression are involved in the onset of diseases 
such as HD.

In order to investigate the hypothesis, we examined the 
expression of Rhes with synthesized miRNAs in cell cul-
ture systems using HEK293 cells transfected with each 
construct by liposome-mediated transfection.

Main text
Materials and methods
Plasmids, miRNA mimics, and miRNA inhibitors
Full-length cDNA of human Rhes (pOTB7-RASD2) 
was provided by RIKEN BRC through the National Bio-
Resource Project of MEXT, Japan. For its expression in 
cultured cells, Rhes cDNA was inserted into pcDNA3.1 
vector (Invitrogen; Carlsbad, CA, USA). For the luciferase 
assay, the part of the 3′UTR (1731–1770) in the human 
Rhes gene containing the expected miR-101 binding site 
was cloned into pmirGLO Dual-Luciferase miRNA Tar-
get Expression Vector (Promega; Madison, WI, USA). 
The sequences in pmirGLO-Rhes were modified using 
a PrimeSTAR Mutagenesis Basal Kit (Takara Bio; Shiga, 
Japan) according to the manufacturer’s instructions. 
microRNA mimics (double-stranded synthesized mature 
microRNA), hsa-miR-101, hsa-miR-132, hsa-miR-124 
and miR-sc (scrambled) as a negative control were pur-
chased from B-Bridge (Tokyo, Japan).

Cell culture and transfection
HEK293 cells (provided by RIKEN BRC through the 
National Bio-Resource Project of MEXT, Japan) were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM; 
Nacalai Tesque; Kyoto, Japan) supplemented with 10% 
fetal bovine serum (FBS; Biowest; Nuaille, France) in air 
containing 5% CO2 at 37 °C. SH-SY5Y cells (provided by 
ATCC; Manassas, VA, USA) were cultured in DMEM/
Ham’s F-12 medium with 10% FBS in air containing 5% 
CO2 at 37  °C. The cells were transfected with each con-
struct using Lipofectamine 2000 (Invitrogen) or Neuro-
Mag (Oz Biosciences; San Diego, CA, USA) at 1 day after 
plating (70–80% confluency) according to the manufac-
turer’s instructions.

Luciferase reporter assay
Luciferase activity of lysates of cells transfected with the 
reporter vector was measured using the Dual-Glo Lucif-
erase Assay System (Promega). Briefly, HEK293 cells 
were co-transfected with miRNA mimics and pmirGLO-
Rhes or pmirGLO (as a control) in a 96-well plate. At 
24 h after transfection, the Dual-Glo Reagent was added 
to each well containing transfected cells and mixed well. 
After 10  min, luminescence from firefly luciferase was 

measured using a Tristar LB 941 Multimode Microplate 
Reader (Berthold Technologies; Bad Wildbad, Ger-
many). Dual-Glo Stop & Glo Reagent was then added to 
each well, and luminescence from Renilla luciferase was 
measured after 10  min. Firefly luciferase activity was 
normalized to Renilla luciferase activity, and this ratio 
was then normalized to that of a control well containing 
cells transfected with negative miRNA mimics. The rela-
tive activities were finally calculated from the normalized 
ratios.

Western blot analysis
Cells were disrupted in cell lysis buffer (20 mM Tris pH 
8.0, 150 mM NaCl, 1 mM EDTA, 1% Nonidet P-40, 0.1% 
Triton, 50  mM NaF) containing a protease inhibitor 
cocktail (Nacalai Tesque). SDS-PAGE and western blot-
ting were performed according to general procedures. 
Anti-Rhes and anti-actin clone C4 (Millipore; Burling-
ton, MA, USA) were used as primary antibodies, and 
horseradish peroxidase (HRP)-conjugated anti-mouse 
and anti-rabbit IgG were used as secondary antibod-
ies (Jackson Immuno Research; West Grove, PA, USA). 
The protein bands on the membrane were detected by a 
chemiluminescence method using an Immobilon™ West-
ern Chemiluminescent HRP substrate (Millipore) or 
Amersham™ ECL™ Prime Western Blotting Detection 
Reagent (GE Healthcare; Buckinghamshire, UK) and ana-
lyzed using the ImageQuant™ LAS 4000 biomolecular 
imager (GE Healthcare).

RNA isolation and quantification of mRNA and miRNA
Total RNA, including miRNA, was extracted from cul-
tured cells using the mirVana miRNA isolation kit 
(Ambion, Austin, TX, USA) according to the manufac-
turer’s instructions. For mRNA quantification, total RNA 
was reverse transcribed using a High-Capacity cDNA 
Reverse Transcription Kit (Life Technologies; Gaithers-
burg, MD, USA). The real-time polymerase chain reac-
tion (PCR) with specific primers and SYBR green dye 
was carried out on an Applied Biosystems™ 7000 Real-
Time PCR System (Life Technologies). The forward (F) 
and reverse (R) primer sequences were as follows: Rhes 
5′-CAG​TGT​GCC​CGC​CAA​AAC​-3′ (F), 5′-TGG​GTG​
TGT​ACT​GGT​CCT​CAA-3′ (R); Ribosomal protein L32 
(RiboL32) 5′-GAA​ACT​GGC​GGA​AAC​CCA​-3′ (F), 
5′-TGG​TGA​TCC​TCT​TGT​AGC​TCTCC-3′ (R). The PCR 
conditions were 50  °C for 2  min, 95  °C for 10  min, fol-
lowed by 40 cycles of 95 °C for 15 s, and 60 °C for 1 min.

For miRNA quantification, total RNA was reverse 
transcribed using the TaqMan miRNA Reverse Tran-
scription kit (Life Technologies) and miRNA-specific 
stem-loop primers (part of TaqMan miRNA assay kit; 
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Life Technologies). The miRNA expression levels were 
quantified by real-time PCR using individual miRNA-
specific primers (part of TaqMan miRNA assay kit) on 
the Applied Biosystems™ 7000 Real-Time PCR System 
according to the manufacturer’s instructions.

Statistical analysis
The data are expressed as mean values ± SEM. Statistical 
analysis was performed with one-way ANOVA followed 
by Tukey’s multiple comparison test or Student’s t-test 
using Prism software (GraphPad Software; San Diego, 
CA, USA). The significance level was set at p < 0.05.

Results and discussion
Rhes mRNA 3′UTR is a target of miR‑101
Rhes mRNA transcribed from RASD2 has a 3′UTR of 
almost 2000 bases (Fig.  1a). We used DIANA-microT 
to predict the miRNAs that possibly interact with Rhes 
mRNA and obtained miR-101 as the ranked candidate, 
which was also predicted by other programs (PicTar and 
TargetScan) (Fig. 1a and Additional file 1) [14]. miR-101 
is expressed ubiquitously, and its dysregulation is report-
edly involved in some types of cancer [15–17]. In the 
brain, miR-101 is involved in Alzheimer’s disease [18, 19], 
schizophrenia [20], and spinocerebellar ataxia type 1 (a 
polyglutamine disease caused by the expansion of CAG 
repeats in ataxin1) [21]. Because miR-101 is expressed 
abundantly in the brain, it may interact with Rhes mRNA 
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whose expression is limited to the striatum under physi-
ological conditions.

Therefore, we prepared a plasmid construct containing 
part of the Rhes mRNA 3′UTR with the putative bind-
ing sites for miR-101 and investigated its interaction with 
miR-101 by a luciferase assay using HEK293 cells, which 
are widely used for reporter gene assays because they 
show high efficiency of gene transduction. Luciferase 
activity was significantly inhibited by miR-101 but not 
by miR-132 or miR-124, which are abundant in neurons 
(miR-132: Fig. 1b, upper; miR-124: Additional file 2). Fur-
thermore, miR-101 inhibited luciferase activity in a dose-
dependent manner (Fig. 1b, lower). We then mutated the 
seed match sequence in the Rhes mRNA 3′UTR as indi-
cated in Fig. 1c to exclude off-target effects and observed 
elimination of luciferase activity inhibition by miR-101 
(Fig.  1d). These results indicated that miR-101 directly 
targets the Rhes mRNA 3′UTR.

miR‑101 inhibits Rhes expression in vitro
We investigated the effects of miR-101 on Rhes expres-
sion in cultured cells by western blotting. miR-101 was 
found to significantly downregulate Rhes protein levels 
(Fig. 2a). We then analyzed endogenous Rhes expression 
in human neuroblastoma SH-SY5Y cells after introduc-
tion of miR-101 (Fig.  2b). Overexpression of miR-101 
was not accompanied by altered Rhes mRNA expression, 
suggesting that miR-101 inhibits Rhes expression at the 
post-transcriptional level without affecting its mRNA. 
Then, we tried to investigate the endogenous Rhes pro-
tein expression in these cells but could not detect it in 
our system (data not shown).

Conclusion
In this study, we indicated that miR-101 inhibits Rhes 
expression at the post-transcriptional level in vitro. These 
results support our hypothesis that Rhes expression is 
regulated by miRNAs and suggest that miR-101 may be a 
potent modulator of Rhes expression in striatal neurons.

Limitations
We were not able to detect endogenous Rhes expression 
in cultured cells with our system. Thus, we could not 
show any results with the endogenous levels of Rhes and 

miR-101. However, our results indicated that miR-101 
directly targets the Rhes mRNA 3′UTR and inhibits exo-
geneous Rhes expression. An in vivo animal model may 
provide further information regarding the role of miR-
101 in Rhes expression under normal physiological and 
pathological conditions.
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Fig. 2  Effect of miR-101 on Rhes expression. Proteins or total RNAs 
were extracted from HEK293 cells or SH-SY5Y cells transfected 
with Rhes expression vector and 50 nM miRNA mimics (miR-sc 
or miR-101). The cells were harvested at 24 h after transfection. 
a Western blot analysis of Rhes expression in HEK293 cells. The 
immunoblots were normalized to actin expression. Data are 
presented as the mean ± SEM, n = 6. b Quantitative PCR analysis of 
miR-101 and Rhes mRNA expression in SH-SY5Y cells. Expression was 
quantified by real-time PCR and normalized to RNU48 or RiboL32 
levels. Data are presented as the mean ± SEM, n = 3. **p < 0.01
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Additional files

Additional file 1. Predicted miRNAs that bind to Rhes mRNA 3′UTR by 
using DIANA-microT.

Additional file 2. Luciferase activity was not inhibited by miR-124. 
Luciferase assay using a portion of the Rhes mRNA 3′UTR and miRNAs. 
HEK293 cells were co-transfected with a reporter vector without the insert 
(Control) or with Rhes 3′UTR (Rhes) and 50 nM miRNA mimics (miR-sc or 
miR-124). At 24 h after transfection, the cells were lysed, and the luciferase 
activity of the cell lysates was measured. The activity was normalized to 
that of a control transfected with miR-sc. Data are presented as the mean 
± SEM, n = 5.
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