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Abstract
Early studies shed light on the immune suppression of immune checkpoint molecules in the cancer micro-
environment, with later studies applying immune checkpoint blockade (ICB) in treatment of various malig-
nancies. Despite the encouraging efficacy of ICBs in a substantial subset of cancer patients, the treatment
response varies. Gene mutations of both tumor cells and immune cells in the tumor microenvironment have
recently been identified as potential predictors of the ICB response. Recent developments in gene expression
profiling of tumors have allowed identification of a panel of mutated genes that may affect tumor cell
response to ICB treatment. In this review, we discuss the association of the ICB response with gene expression
and mutation profiles in tumor cells, which it is hoped will help to optimize the clinical application of ICBs in
cancer patients.
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Introduction
With the emergence of immune checkpoint blockades,
the field of anti-cancer therapy has currently shifted its
focus to antagonizing agents that target inhibitory signal-
ing molecules on tumor and immune cells.1,2 Once the
immune suppression of immune checkpoints is released
by immune checkpoint blockades (ICBs), the immune sys-
tem is then activated, which can be best characterized
with the inflammatory response observed at tumor sites.
In addition to the most intensively studied ICBs such as
the antibodies targeting CTLA-4 (cytotoxic T lymphocyte-
associated antigen-4),3,4 PD-1 (programmed cell death-1),5–7

and PD-L1 (PD-1 ligand),8,9 a wide range of other ICBs have
also exhibited striking clinical benefits in cancer patients.
An increasing number of ICBs are currently under evalu-
ation for treatment of various advanced diseases, many of
which are approved by the Food and Drug Administration
each year.10–14

Despite the considerable clinical benefit of ICBs in a
substantial subset of cancer patients, their efficacy var-
ies. It is of paramount importance to identify predictive
biomarkers for ICB responses. Previous reports have
suggested the accumulation of gene mutations as a
tumor hallmark. Although the mutational burden varies
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widely both within and among cancer types,15 a subset
of cancer patients has demonstrated similar gene muta-
tion profiles. It is therefore conceivable that gene altera-
tions play a functional role in tumor response of ICBs.

Application of genomic and transcriptomic analyses
can facilitate accessible gene expression profiling of
tumors to identify potential prognosis predictors.16–19

Tumor-related genes described thus far are mostly
involved in cytokine and chemokine signaling path-
ways. Many of these genes including EREG and AREG,
have been reported to predict response to chemother-
apy in cancer patients20,21 and their differential expres-
sion may also affect the treatment response to ICBs.22,23

Compared with the traditional quantitative immunohis-
tochemical (IHC) method, the identification of gene
expression can establish a more comprehensive
response profile, in that it simultaneously evaluates
substantial parameters including expression of immune
checkpoint molecules and inflammatory genes.
However, the gene expression assay fails to present
spatial and structural details that may also serve as
prognostic factors.24 The integration of multiple detect-
ing platforms is therefore warranted to provide compre-
hensive data to predict ICB response.24

In this review, we briefly discuss the association of
ICB response with gene expression and mutation pro-
files in tumor cells. With a growing body of study on the
underlying mechanism of the association, we also discuss
the intratumoral mutational burdens and mutational het-
erogeneity, which aids the stratification of ICB treatment
to minimize the potential treatment resistance.

Response to ICB in the context of tumor
cell gene expression
Intense investigation is currently under way into poten-
tial predictive biomarkers of the response to ICBs.
Akiyama et al. established a gene panel consisting of
164 immune therapy response-associated genes from
1000 tumors based on whole-exome sequencing and
gene expression profiling.25 Multiple molecular predic-
tors have been proposed of tumor response to the ICB.
High levels of PD-L1 expression, IFN-γ induced gene
expression in tumor cells, and CD8+ T cell infiltrates
have all been detected in patients responsive to
immune checkpoint therapy.26,27 Some studies of tumor
biopsies have suggested a predictive role for CD8+,
CD4+, PD-1+, and PD-L1+ in tumor cells in terms of the
therapeutic response to ICBs.28,29

Tumor expression of PD-L1

Based on the PD-1/PD-L1 signaling pathway, it is con-
ceivable that anti-PD-1/anti-PD-L1 therapy is largely
associated with expression of PD-L1 in tumor cells or
tumor-infiltrating immune cells. Previous studies have
demonstrated a correlation between tumor expression
of PD-L1 and response to PD-1 inhibitors in some cancer
types.5,6,27,30,31 Expression of PD-L1 on tumor cells varies

from absent in Merkel cell carcinomas to 100% in lipo-
sarcomas and chondrosarcomas.32 Meanwhile, triple-
negative breast cancers and colon cancers with high
microsatellite instability (MSI) have significantly higher
PD-L1 expression than that seen in non-triple-negative
breast cancers and microsatellite stable tumors,
respectively.32 In a clinical trial evaluating patients trea-
ted with the anti-PD-1 agent pembrolizumab, the higher
expression of PD-L1 on tumor cells was associated with
a better outcome compared with tumors with low PD-L1
expression.33 In this trial, a proportion score of ≥50%
was used as the cut-off value, referred to as the PD-L1
expression on at least 50% of the tumor cells. A
response rate of around 90% to nivolumab has been
observed in patients with Hodgkin’s lymphoma with
amplified PD-L1/PD-L2.11 Moreover, higher levels of
CTLA-4 mRNA are also found to indicate better
response to both anti-CTLA-4 and anti-PD-L1 ther-
apy.22,27 The PD-L1 copy number gains in non-small-cell
lung cancer (NSCLC) cells display higher expression of
PD‑L1, which can potentially serve as a predictor of
response to anti-PD-1/PD-L1 therapy. However, PD-L2
copy number gains fail to result in augmented PD-L2
expression.34 Kim et al. later identified nine genes
related to immune checkpoints, including PD-1, PD-L1,
and CTLA-4, the expression of which is positively corre-
lated with the number of infiltrating lymphocytes in
metastatic breast cancers, suggesting a potential pre-
dictive function of these gene markers.35 Taken
together, this evidence suggests that expression of PD-
L1/PD-L2 and CTLA-4 can be used as a target for gene
expression-based immunotherapy.

However, in some reports, tumors classified as PD-
L1-positive did not respond and the baseline PD-L1 sta-
tus was not an independent predictor of treatment
response.14,27,36,37 Such differing reports can probably be
attributed to use of different tumor types and histologic
categories, and heterogeneity of PD-L1 expression
within the tumors themselves. Differences may also
reflect the limitations of IHC staining as the detection
method used for PD-L1 expression, given that IHC stain-
ing can be performed on different staining platforms
with different antibodies. One such example is the com-
parison staining performed by Smith et al.38 They com-
pared the performance of two PD-L1 clones (SP263 and
E1L3N) and found that SP263 IHC assays had higher sen-
sitivity and a wider dynamic range than E1L3N assays.
On the other hand, Carbognin et al. found that the cut-
off value for PD-L1 positive melanomas could have an
impact on study conclusions.39

Despite the dramatic efficacy of PD-1/PD-L1 block-
ades, some patients fail to respond to the initial PD-1/
PD-L1 therapy, which is known as primary resist-
ance.7,40 Moreover, a subset of responders eventually
develop acquired resistance after initial treatment.
Therefore, it is of paramount importance to identify bio-
markers related to ICB resistance. PD-1/PD-L1 blockade
responses can be greatly impacted by biomarkers such
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as tumor neoantigens and MSI, which we briefly
describe in the following discussion. The tumor PD-L1
expression serves as another biomarker to predict
responses to PD-1/PD-L1 blockade, the clinical applica-
tion of which needs in-depth consideration for tumor
types.41 The tumor PD-L1 expression has been identified
as an acquired resistance mechanism for tumor cells in
response to immunotherapies.1,42 Importantly, it has to
be addressed that one single biomarker is insufficient to
predict drug resistance and combining different biomar-
kers is therefore a valuable option for prediction.

Tumor expression of MHC

Given that T cells recognize tumor cells through recog-
nition of peptides that bind to the major histocompati-
bility complex (MHC), theoretically, decreasing
expression of MHC I would promote tumor survival and
reduce ICB efficacy. An early study by Restifo et al. found
that melanoma patients with β2 microglobulin defi-
ciency, which led to the incompleteness of MHC I, did
not respond to T-cell-based immunotherapy.43 A grow-
ing body of literature has reinforced this finding
that the loss of MHC I expression on tumor-infiltrating
immune cells leads to the immune evasion of melan-
oma cells and their acquired resistance to anti-PD-1
agents following the initial response.44–46 On the other
hand, MHC II expression on melanoma cells has also
been found to predict response to anti-PD-1 treat-
ment,47 and expression of MHC II on some melanoma
cell lines can be restored with IFN-γ treatment.48

Response to ICB in the context of tumor
cell gene alterations
Multiple oncogenic events have been reported to con-
tribute to acquisition of the phenotype and malignant
properties of cancer. Developments in techniques for
identification of genetic abnormalities, have allowed
identification of a subset of cancer patients with similar
gene mutation profiles. It is therefore conceivable that
gene alterations play a functional role in tumor
response to ICBs. Although no clear associations have
been established, this review focuses on the potential
gene mutations that are predictive of therapeutic sensi-
tivity to ICBs.

Ras and RAF gene mutation

The Ras/Raf/MEK/MAPK pathway is involved in prolifer-
ation of both normal and tumor cells, and is therefore
associated with tumorigenesis and tumor progression.49

The RAS oncogene family includes KRAS, NRAS, and
HRAS, which have all been characterized as potential
predictors of anti-epidermal growth factor receptor
(EGFR) treatment response in colorectal cancer.50 KRAS
mutations occur in approximately 20% of NSCLC,51 and
are associated with poor prognosis in cancer
patients.52,53 Patients with KRAS mutations exhibit

intrinsic resistance to anti-EGFR treatment,54 but are
sensitive to MEK/ERK inhibitors such as selumetinib.55,56

Previous studies have shown that patients with KRAS
mutations, especially those with concomitant TP53
mutations, had increased PD-L1 expression and remark-
able clinical response to PD-1 inhibitors.57 Compared
with patients with wild-type TP53, there was a signifi-
cantly higher proportion of patients with mutations in
TP53 who exhibited high PD-1 expression (10.9% com-
pared with 34.2%, P = 0.023). As for NRAS mutations,
patients with NRAS mutant melanoma displayed a sig-
nificantly worse overall survival of 8.2 months com-
pared with patients with wild-type BRAF/NRAS (15.1
months, P = 0.004).58 And it has been reported that
patients with NRAS mutation-positive melanomas dem-
onstrate better disease control (median progression-free
survival 4.1 vs. 2.9 months, P = 0.09) when treated with
CTLA-4 and PD-1 antibodies,59 and prolonged overall
survival (OS, 12.1 vs. 8.03 months) when treated with
ipilimumab.60 Kirchberger et al. suggested that immune
checkpoint inhibition induced encouraging responses in
both NRAS-mutated and NRAS wild-type melanoma
patients; however, worse OS was observed in the case
of NRAS mutation, but this could be overcome by add-
itional use of MEK inhibitors.61

The predictive value of BRAF mutation in the context
of treatment response to ICBs remains incompletely
defined. BRAF mutation status appears to be irrelevant
of disease progression or OS,62,63 but some reports have
identified BRAF mutation as a negative prognostic indi-
cator.62,64 Although immune checkpoint inhibitors have
significant benefitted cancer patients in randomized
clinical trials,3,4,14,65,66 the BRAF mutation status is inde-
pendent of the response difference.67,68 A recent report,
however, suggested that the BRAF mutation is moder-
ately related to worse survival in melanoma patients
treated with ipilimumab.69

EGFR gene mutation

EGFR mutations are often seen in patients with lung
cancer, and different mutation types can potentially
affect the treatment response to anti-cancer therap-
ies.70–72 The T790M EGFR mutation has been reported to
account for more than half of patients resistant to first-
line EGFR tyrosine kinase inhibitors.73 Moreover, T790M
mutation status is also associated with PD-L1 expres-
sion levels. Previous studies have detected a lower rate
of PD-L1 positivity in patients with EGFR mutations.74

And in cancer patients with PD-L1 overexpression who
are treated with pembrolizumab, those with EGFR
mutations have exhibited significantly shorter OS than
those with wild-type EGFR.75 In patients with EGFR
mutations, increased PD-L1 expression indicates higher
response rates to immuno-oncology agents.76,77 IHC
results have suggested a high expression profile of PD-
L1 and PD-1 in tumor specimens of patients with EGFR-
mutant NSCLC, suggesting that PD-1/PD-L1
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immunotherapy could potentially benefit such
patients.78 Lee et al. reported that compared with
chemotherapy, immune checkpoint inhibitors failed to
bring survival benefits in patients with EGFR-mutant
NSCLC.79 Moreover, anti-PD-1/PD-L1 therapy does not
achieve a significant survival improvement in patients
with EGFR mutations.80 However, compared with ICB
monotherapy, the concomitant use of PD-1 and CTLA-4
inhibitors can augment the immunogenicity of EGFR-
mutant tumors and increase the treatment response.81

The 2-year overall survival of advanced melanoma
patients was 63.8% in a group of patients receiving nivo-
lumab plus ipilimumab versus 53.6% in a group receiv-
ing ipilimumab monotherapy.82

Janus kinase (JAK) gene mutation

The JAK family includes four members, JAK1, JAK2,
JAK3, and TYK2 (non-receptor protein-tyrosine kinase
2).83 Multiple studies have explored the role of a gene
locus adjacent to JAK2, the 9p24.1, the amplicon of
which is often seen in both solid tumors and hemato-
logic malignancies.84,85 The emergence of JAK2 at the
9p24.1 gene site is crucial to PD-L1 expression, as JAK2
signaling has been found to increase PD-L1 expres-
sion.85 A study has identified the synergistic amplifica-
tion of PDL1/PD-L2/JAK2 as a potential predictor for the
response to immune checkpoint therapy.86 Furthermore,
amplifications of the PD-L1 and JAK2 genes are mutually
correlated, as observed after use of the JAK2 inhibitor
TG-101348 which can cause a decrease in PD-L1
protein.87 Both somatic and germline genomic alterations
of JAK3 have been reported to promote PD-L1 activation
in lung cancer cells and potentially impact their response
to the PD-L1 immune checkpoint therapy.88

MSI

Resulting from an intrinsic deficiency in DNA mismatch
repair (MMR), MSI often occurs throughout the genome
in colorectal cancers.89 Accumulation of DNA altera-
tions is an essential step towards carcinogenesis, which
reflects the somatic and germline variants involved in
DNA damage and repair. Previous studies have identi-
fied use of MSI as a potential biomarker to predict sensi-
tivity to anti-PD-1 therapy as a less than ideal
treatment strategy in colorectal cancers.90

A phase II study suggested that the anti-PD-1 agent
nivolumab induced encouraging anti-tumor activity in
patients with MMR-deficient cancers.91 A recent study
presented a case of a cancer patient with high levels of
MSI who demonstrated a striking response to another
PD-1 inhibitor, pembrolizumab.92 In this case, after the
patient received the initial pembrolizumab treatment,
her chest wall lesion was significantly softened with
tumor tissue necrosis. There are also cases of other
tumors, such as glioblastoma and extrahepatic cho-
langiocarcinoma, which lacked the expression of
potential response predictors for PD-L1 inhibitors.93,94

In a phase II clinical trial,95 a more robust response to
pembrolizumab was observed in patients with MMR-
deficient colorectal cancer than in patients with profi-
cient MMR, suggesting that cancers with intensive
somatic mutations caused by MMR deficiency are sus-
ceptible to immune checkpoint blockade. A growing
body of literature has reported similar results in an
expanding tumor type profile,95–99 including the left
frontal glioblastoma with DNA-repair defects in which
ICB treatment results in certral nervous system (CNS)
immune activation.100

Other gene mutations

Current knowledge on gene mutations as biomarkers
predicting ICB response represents only the tip of the
iceberg. Recent publications have highlighted the altera-
tions of other potential predictive genes. A significant
proportion of cancer patients with targetable mutations
in SMO, DDR2, FGFR1, PTCH1, FGFR2, and MET have
been reported to be eligible for certain checkpoint inhi-
bitors.101 Matsuo et al. identified a subset of patients
with BRCA mutant epithelial ovarian, fallopian tubal,
and primary peritoneal cancers who responded to nivo-
lumab monotherapy.102 Moreover, gene mutations of
DNA polymerase epsilon (POLE) are also correlated with
increased expression of certain immune checkpoint
genes, indicating that cancers with POLE mutations are
candidate predictors for immune checkpoint therapy.103

More recently, Miao et al. found that loss-of-function
mutations of the PBRM1 gene in clear cell renal cell car-
cinoma can lead to remarkable responsiveness to
immune checkpoint therapy.104 PTEN mutations and
decreased expression of neoantigen genes have also
been demonstrated as having potential predictive value
for resistance to immune checkpoint therapy.105

Ongoing studies are likely to result in development of
an expanding repertoire of gene mutations.

Mechanism of the correlation between ICB
response and gene mutations
Tumor neoantigens and mutational load

Neoantigens are also referred to as the proteins result-
ing from DNA mutations within tumor cells that can be
recognized as foreign proteins by the immune sys-
tem.106–113 Previous reports have emphasized that tumors
with higher mutational frequency generate larger num-
bers of neoantigens than tumors with lower mutational
frequency.114 When neoantigens are released from tumor
cells, cytotoxic T lymphocytes engage the tumor micro-
environment, exert killer functions on the tumor cells,
and induce tumor cell apoptosis, which in turn promotes
release of more neoantigens and enhances the anti-
tumor activities of the immune system.115 To reach max-
imum anti-tumor efficacy, the anti-tumor therapy needs
to overcome the suppressive tumor microenvironment
including the inhibitory immune checkpoint molecules.
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Figure 1 illustrates the interaction between tumor neoan-
tigens, T cells, and antigen-presenting cells.

To understand the key to the success of ICBs, it is
important yet challenging to identify antigens uniquely
expressed on tumor cells and not on normal tissues.
One approach is application of tumor mutational bur-
den to represent mutated peptides on T cells that exist
only on tumor cells and not the normal genome.114

Correlations of durable responses to ICBs with muta-
tional load and neoantigens have long been con-
firmed,106,114 with some evidence suggesting that the
mutational load may be more accurate than PD-L1 IHC
in predicting the presence of clinical variables such as
the number of tumor infiltrating lymphocytes.106

Sequencing of tumor genomes can be used to predict
the clinical benefit of ICBs because cancer patients with
higher mutational loads have demonstrated improved
OS after receiving ICBs.116

Previous studies on cancer-related gene profiles have
demonstrated a significantly higher tumor mutation bur-
den in immunotherapy responders compared with non-
responders.9,117 On the other hand, Hellmann et al. used
whole-exome sequencing to evaluate the therapeutic
efficacy of PD-1 plus CTLA-4 blockade in NSCLC patients,
and found that patients with higher tumor mutation had
improved objective response and progression-free sur-
vival.118 It has been reported that melanoma cells are
prone to damage by ultraviolet radiation, which causes
an accumulating number of mutations in the melano-
cyte genome, leading to a higher level of mutational
load.119–121 In this subset of melanoma patients, higher
mutational load is associated with better response to
anti-CTLA4 therapy.22 However, in one subtype of mel-
anoma, the desmoplastic melanoma, no significant dif-
ference was detected between mutational loads in PD-1
blockade responders and non-responders.122

Although a higher mutational load is reported to be
correlated with a durable clinical response to CTLA-4

blockade, tumor mutational load alone is not sufficient
to indicate the clinical benefit, because not all tumors
with high mutational loads respond to immune check-
point therapy.117 Furthermore, the mutation burden
varies dramatically within tumors and among different
tumor types, reflecting vast differences in the DNA-
damage-repairing abilities of different tumors.15

Intratumoral mutational heterogeneity

In addition to high levels of neoantigens, therapeutic
sensitivity to ICBs is also associated with low intratu-
moral heterogeneity.113 Tumors with DNA damage
response-deficiency exhibit random gene mutations,
leading to profoundly high intratumoral heterogen-
eity.123 High levels of mutational heterogeneity poten-
tially enhance the interaction between tumor antigens
and MHC molecules, and consequently induce the anti-
gen presentation to T cells. Moreover, heterogeneous
gene mutations increase the chance of tumor cells
being identified by T cells by widening the T-cell killing
repertoire, including recognition of hidden neoantigens
by ICBs.124 Safonov et al. recently suggested that the
mutational heterogeneity is negatively associated with
some immune metagenes in breast cancers, and that
mutational heterogeneity leads to minimal immune cell
infiltration, pointing to an escape mechanism of tumor
cell from immune surveillance.125 Therefore, more
immunotherapy strategies are warranted to activate the
anti-cancer immune activities against a genetically
diverse neoplastic population.

Perspectives
An accumulation of new literature in recent years has
reported therapeutic resistance to ICBs in cancer
patients, which is one of the main obstacles in applica-
tion of ICBs. Several mechanisms for such resistance
have been proposed including PTEN loss which reduces
the intratumoral infiltration and tumor killing of T cells,
leading to resistance to anti-PD-1 or anti-CTLA-4 treat-
ment in this subset of patients.126 Immune resistance
has also been detected in melanoma patients with the
loss of β2-microglobulin.43 Using whole genome shot-
gun (WGS) technology, patients failing to respond to
anti-PD-1 therapy display increased expression of genes
involved in the carcinogenesis process such as epithe-
lial mesenchymal transition.127 All these efforts provide
new insights into the mechanism of drug resistance,
suggesting that the gene mutation may be an attractive
biomarker for predicting therapeutic efficacy.

Another challenge is how we broaden the utility of
gene mutations in immune checkpoint therapy. One
avenue is to identify more potential mutated genes that
would have an impact on treatment response. One such
strategy, genomic analysis, has been refined in recent
decades and introduces new opportunities for cancer
treatment. Genomic analysis technology, such as next-
generation sequencing, can help to identify expressed

Figure 1. Simplified overview of the interaction between tumor
neoantigens, T cells, and antigen-presenting cells (APCs). MHC,
class I major histocompatibility complex; TCR, T cell receptor.
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mutations of tumors and predicts candidate peptides
that may still remain after ICB treatment.128 Another
potential option is improvement of the cancer vaccine
concept. Cancer vaccines involve injection of cancer-
specific elements into patients to induce anti-tumor
immune responses. To achieve an adequate and dur-
able T cell response, multiple vaccinations and incorp-
oration of MHC class II peptides are required.129,130

Study on these subjects will undoubtedly provide new
perspectives for improvement of the ICB treatment
response.
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