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Abstract

Accurate transcript structure and abundance inference from RNA-Seq data is foundational for 

molecular discovery. Here we present TACO, a computational method to reconstruct a consensus 

transcriptome from multiple RNA-Seq datasets. TACO employs novel change-point detection to 

demarcate transcript start and end sites, leading to dramatically improved reconstruction accuracy 

compared to other tools in its class. The tool is available at http://tacorna.github.io and can be 

readily incorporated into RNA-Seq analysis workflows.

High-throughput RNA sequencing (RNA-Seq) has enabled a deep understanding of the 

transcriptome1–3. While efforts to annotate high fidelity gene models by manual and 

automated systems have relied primarily on low-throughput sequencing methods4–6, several 

studies using RNA-Seq have described an expansive transcriptome, suggesting that reference 

gene catalogs are far from complete3,7,8. This annotation gap has been widened further by 
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the rapid sequencing of thousands of high quality RNA-Seq datasets by consortia such as 

TCGA9, ICGC10, and GTEX11. Limitations of current reference annotation projects 

necessitate development of computational transcriptome assembly methods to utilize these 

large-scale RNA-Seq datasets for transcript discovery5.

Transcriptome reconstruction for single-sample experiments remains an active area of 

investigation. Although current reconstruction methods achieve high accuracy at the 

nucleotide or splice junction level, studies have shown that they do not reliably predict the 

splicing patterns of full-length transcripts12. Moreover, single-sample transcriptome 

reconstruction has limited utility for the downstream analyses of transcriptional dynamics 

across many samples. To address this issue, a consensus transcriptome from multiple input 

datasets must be constructed, which can be done by merging individual transcriptome 

reconstructions in a hierarchical fashion. We term this procedure “meta-assembly”.

Current software for meta-assembly include the Cuffmerge utility within the Cufflinks 

package13 and a merge mode within the StringTie software (hereafter denoted ‘StringTie-

merge’)14. We demonstrate that the performance of both Cuffmerge and StringTie-merge 

deteriorates as the number of input datasets increases, yielding myriad incorrectly predicted 

transcript structures with intron retentions, aberrantly long 3′ and 5′ ends, and read-through 

transcripts that concatenate multiple neighboring genes on the same strand. These errors 

may originate from contamination of the input libraries with incompletely processed RNA or 

genomic DNA8,15, or be propagated from genome-guided assembly. To remain scalable, 

meta-assembly methodology must be designed to mitigate these sources of error.

Here we present a new meta-assembly method, TACO (Transcriptome Assemblies 

Combined into One), as a robust solution for leveraging the vast RNA-Seq data landscape 

for transcript structure prediction. To prepare data for TACO, sequence reads are aligned to a 

reference genome by a spliced alignment tool. Then, genome-guided transcript assembly is 

performed which serve as input to TACO (Figure 1). As a pure meta-assembler TACO 

remains agnostic to the alignment and assembly strategy used, and therefore can be readily 

incorporated into existing RNA-Seq analysis protocols such as the Tuxedo suite16 (see 

Supplementary Note, “Integration with other tools”). The software, written in Python and C, 

and its documentation can be obtained at http://tacorna.github.io. Runtime and memory 

usage statistics can be found in the Supplementary Note.

Building on existing transcriptome assembly methods, TACO approaches meta-assembly by 

modeling alternatively spliced genes using directed acyclic graphs, or splice graphs, built 

from the input transcripts (Supplementary Figure 1a and Methods). To harness the splicing 

pattern information present in the input transcripts, TACO constructs path graphs wherein 

each node corresponds to a sequence of consecutive splice junctions (Supplementary Figure 

1b). TACO then applies dynamic programming to enumerate the set of isoforms with highest 

abundance. To mitigate the deleterious effects of incorrectly assembled input transcripts, 

TACO employs change point detection via binary segmentation to identify points of 

significant change of expression in the basewise transcript abundance landscape 

(Supplementary Figure 2). As evidenced by the performance tests detailed below, change 
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point detection effectively breaks apart read-through transcripts and accurately delineates 

transcript start and end sites.

To assess the performance of TACO compared to other tools, we initially computed the 

precision, recall (i.e. sensitivity), and F-measure (harmonic mean of precision and recall) at 

the nucleotide, splice junction, and transcript splicing pattern (i.e. isoform) level while 

varying the number of input transcriptomes. We used RNA-seq data from the CCLE17 and 

used GENCODE v24 as a reference standard. TACO outperformed Cuffmerge and 

StringTie-merge in its ability to predict bases covered, splice junctions, and splicing patterns 

for runs with more 10 samples (Figure 2a and Supplementary Tables 1,2). The performance 

of Cuffmerge and StringTie-merge decreased as the number of samples increased, whereas 

TACO was robust to sample size. The most prominent advantage of TACO was its ability to 

identify correct splicing patterns, which is the most challenging goal of transcriptome 

assembly12,14. Predicting correct isoforms is essential for downstream analysis, as 

abundance estimation applied to incorrectly assembled transcripts will likely be inaccurate. 

TACO achieved splicing pattern precision of approximately 30%, compared to about 5% for 

each of the other tools (Figure 2a, and Supplementary Table 3). Of note, the reported 

splicing pattern precision of individual sample transcriptome reconstruction tools is around 

30%12,14, suggesting that even when merging 500 samples, TACO displays little loss of 

accuracy.

All three merging tools offer a key parameter, termed the “isoform fraction cutoff”, for 

filtering out minor isoforms based on their abundance relative to the major isoform. 

Adjusting this parameter results in a trade-off between precision and recall. Thus, by 

modulating this parameter we assessed performance the tools’ full range of precision and 

recall (Figure 2b, Supplementary Figure 3 and Supplementary Tables 1,4). TACO 

outperformed Cuffmerge and StringTie-merge across the spectrum of isoform fraction 

cutoffs, achieving an average precision (a statistic that serves as a surrogate “area under the 

curve” for precision-recall plots) of 0.53, 0.78, and 0.21 for bases covered, splice junctions, 

and splicing patterns, respectively, compared to 0.33, 0.75, and 0.06 for Cuffmerge and 0.41, 

0.75, and 0.09 for StringTie-merge. Most prominent was TACO’s ability to reconstruct 

correct transcript splicing patterns with high precision (>50% for high isoform fraction 

cutoffs).

It is important to note that the selection of reference standard can heavily impact precision 

metrics, introducing potential biases depending on the nature of the reference selected. In 

addition to GENCODE, we also tested performance using long-read RNA-seq data as a 

reference standard, and the superior performance of TACO was consistent in these additional 

analyses (Supplementary Figure 4, Supplementary Table 5, and Supplementary Note, 

“Long-read RNA-seq as reference standard”).

We assessed how well the meta-assembly tools correctly prioritized transcripts that are 

highly expressed. Meta-assemblies using all three tools were generated, and transcript 

abundance from these assembled transcripts was quantified. We then measured each tool’s 

precision, recall, and F-measure on subsets of the top N most highly abundant transcripts, 

varying N from 500 to 30,000. TACO possessed a striking ability to predict the nucleotides, 
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splice junctions, and splicing patterns of highly expressed transcripts, achieving an average 

precision of 0.45, 0.59, and 0.17, respectively, compared to 0.35, 0.49, 0.01 for Cuffmerge 

and 0.41, 0.54, and 0.03 for StringTie. Notably, TACO attained a splicing pattern precision 

of 76.8% for the top 5,000 most highly abundant transcripts, dramatically better than the 

30% and 16.2% precision of StringTie-merge and Cuffmerge, respectively (Figure 2c, 

Supplementary Figure 5, and Supplementary Table 6).

In order to directly assess the efficacy of change point detection, we quantified the fraction 

of read-through genes produced by each tool (Supplementary Figure 6). At low isoform 

fraction cutoffs, ~10% and ~7.5% of the genes produced by StringTie-merge and Cuffmerge, 

respectively, contained multiple unique GENCODE genes (i.e., “read-throughs”), while only 

~2.5% of TACO transcripts were read-throughs. This finding supports the effectiveness of 

change point detection in detecting transcription start and end sites. Reduction of read-

through transcription is of potential benefit to downstream analyses, as read counting is 

particularly susceptible to the deleterious effects of read-through transcription, especially if 

the underlying genes encompassed by the read-through are highly discrepant in expression 

value. It is important to note, however, that some of this read-through transcription may be 

real transcriptional events (see Supplementary Note, “Read-through transcription” for 

further discussion).

As evidenced by the performance assessment above, TACO retains robust accuracy even 

when processing a large number of input datasets, producing higher-fidelity transcripts with 

read-throughs and spurious isoforms compared to Cuffmerge and StringTie-merge. We 

observed a representative example in the 3p21 genomic locus, which harbors three genes in 

close proximity on the negative strand (Figure 3). Although gene-dense regions are 

particularly challenging for meta-assembly, the change point detection and other algorithmic 

advances of TACO enable it to cleanly disambiguate all three genes, whereas Cuffmerge and 

StringTie-merge produce dozens of spurious isoforms, many of which are read-throughs. 

This problem is present when merging 50 samples and is exacerbated as the number of 

merged samples rises to 500 (Figure 3). Other examples are detailed in the Supplementary 

Note (“Examples”).

While extraordinary efforts of sequencing consortia have made thousands of high quality 

RNA-Seq datasets from diverse tissue types and disease states available to the scientific 

community, RNA-Seq continues to be an underutilized source of evidence for expanding 

reference transcript catalogs. The lack of a robust computational method to accurately 

coalesce large numbers of input datasets into a consensus transcriptome has been a major 

impediment to the use of RNA-Seq for this purpose. Given its accuracy and scalability, 

TACO has potential to facilitate progress in this area, and we expect that its adoption will 

help unravel the complexity of the transcriptome.

Online Methods

Genome-guided assembly

FASTQ files were obtained from DBGap (accession number phs000178) using the Cancer 

Genomics Hub (https://cghub.ucsc.edu). Reads were aligned to human genome version 
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GRCh38/hg38 using STAR18 version 2.4.2 with the following parameters: --

alignSJDBoverhangMin 3, --alignIntronMin 20, --alignSJoverhangMin 8, --

alignMatesGapMax 1000000, --alignIntronMax 1000000, --scoreGenomicLengthLog2scale 

0, --outSAMmode NoQS --outFilterType BySJout. Cufflinks13 (version 2.2.1) and 

StringTie14 (version 1.2.2) were utilized to produce transcriptome assemblies from the BAM 

alignments generated by STAR as detailed above.

Meta-assembly

Performance of Cuffmerge13 (version 2.2.1), StringTie-merge (version 1.2.2), and TACO 

were tested. Cuffmerge was run using default parameters except for the isoform fraction, “--

min-isoform-fraction”, which was adjusted according to the appropriate analyses. StringTie 

was run with the analogous parameter (“-f”) for isoform fraction cutoff. For all analyses 

unless otherwise indicated, StringTie was run with the “-T” and “-F” parameters set to zero 

and TACO was run with the --filter-min-expr set to zero. These parameters filter the input 

transcripts using a provided expression cutoff. While StringTie-merge and TACO provide an 

option to filter input assemblies by expression level, Cufflinks does not provide this option, 

and so all analyses reported above were done with the expression filter option turned off for 

these tools. Comparing the performance of StringTie-merge and TACO run with a 1 FPKM 

(the StringTie-merge default) filtration of input transcripts did not reveal substantial 

differences in the tools’ performance. StringTie-merge did display an increase in 

performance at the base level, but TACO remained a superior tool for all metrics (base, 

splice junctions, splicing patterns) (Supplementary Figure 7).

Performance assessment

The performance of all meta-assemblies were assessed using the “gffcompare” utility 

version 0.9.5 (https://ccb.jhu.edu/software/stringtie/gff.shtml). All meta-assemblies were 

compared to GENCODE version 24 (level 1 protein-coding genes). Only poly-exonic 

transcripts were utilized in performance assessment (“-M” and “-N” gffcompare flags), and 

precision-correction was performed by only utilizing test transcripts overlapping reference 

(“-Q” flag in gffcompare). The average precision metric was utilized as a surrogate measure 

of the AUC for the precision / recall curve19 and was calculated as follows:

where N is the number of points samples, P(k) is the precision at point k, and Δr is the 

change in recall that occurs between point k-1 and k.

Sample size performance assessment

Performance of all three meta-assembly tools was measured at varying numbers of input 

assemblies. Twenty batches of different sizes ranging from 1 to 500 (Supplementary Table 2) 

were selected randomly from the 935 CCLE samples (Supplementary Table 1). All three 

tools were run using their default setting for the isoform fraction cutoff parameter (i.e., 0.05 

for TACO, 0.05 for Cuffmerge, 0.01 for StringTie-merge).
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Isoform fraction cutoff assessment

Cuffmerge, StringTie, and TACO were tested at varying ranges of isoform fraction cutoffs as 

described above. Meta-assembly was performed on the 55 breast cancer cell lines in the 

CCLE. To test the full range of performance for all tools the following isoform fraction 

cutoffs were used: 0.001, 0.00115139, 0.0013257, 0.0015264, 0.00175748, 0.00202354, 

0.00232989, 0.00268261, 0.00308873, 0.00355633, 0.00409472, 0.00471462, 0.00542837, 

0.00625017, 0.00719638, 0.00828584, 0.00954024, 0.01098453, 0.01264748, 0.01456218, 

0.01676675, 0.01930507, 0.02222767, 0.02559271, 0.02946719, 0.03392823, 0.03906463, 

0.04497862, 0.05178793, 0.05962811, 0.06865521, 0.07904892, 0.09101613, 0.10479506, 

0.12065998, 0.1389267, 0.15995881, 0.18417497, 0.21205722, 0.24416056, 0.28112402, 

0.32368339, 0.37268581, 0.42910671, 0.49406917, 0.5688663, 0.65498696, 0.75414543, 

0.86831549, and 0.999.

Comparison to tissue PacBio long-read sequencing

Long-read PacBio RNA sequencing data was used as a comprehensive reference standard 

for meta-assembly performance assessment. Consensus split mapped molecules (CSMMs) 

for aligned PacBio reads from the Sharon et al. study20 were obtained from http://

stanford.edu/~htilgner/2013_NBT_paper/pacBio.index.html in GFF format. All GFF 

attributes arising from the same PacBio read were given a common transcript ID for 

conversion to GTF format to be utilized in reference statistics. Additonally, the gffread 
utility (part of the Cufflinks suite)13 was used to collapse overlapping CSMMs. Of the 20 

tissue and organ types represented in the Sharon et al. study, 17 were present in the GTEX 

dataset. Three samples from each tissue type were selected at random, and fastq files for 

these samples were downloaded from dbGAP (phs000424). RNA-seq data was aligned as 

described above and Cufflinks was used to obtain transcriptome assemblies to be used as 

input for meta-assembly. Assessment of performance for the meta-assemblies was 

performed as described above using the gffcompare utility.

Comparison to brain long-read sequencing

CSMMs from long-read SLR-RNA-seq of multiple brain samples was used as an additional 

comprehensive reference standard. CSMMs from the Tilgner et al. study21 were obtained 

from http://stanford.edu/~htilgner/2014_humanMouseBrain_SLR_RNA_Seq/

index_SLRseq.html in GFF format and converted to GTF format as described above. Fifty 

benign brain RNA-seq samples from GTEX were selected at random, and fastq files for 

these samples were downloaded from dbGAP (phs000424). RNA-seq data was aligned as 

described above and Cufflinks was used to obtain transcriptome assemblies to be used as 

input for meta-assembly. Assessment of performance for the meta-assemblies was 

performed as described above using the gffcompare utility.

Performance of highest expressed transcripts

In order to assess the performance of Cuffmerge, StringTie, and TACO, for the highest 

expressed transcripts, transcript abundance was estimated for the meta-assemblies produced 

from the merging of the 55 breast cancer CCLE samples using an isoform fraction cutoff of 

0.05. The Kallisto RNA-seq isoform abundance estimation tool22 was used to calculate 
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isoform abundance for all transcripts in the meta-assemblies produced by the three tools. 

Expression across the 55 samples was calculated as the sum of the TPM values reported by 

Kallisto for each transcript across all samples. The highest 100, 500, 1000, 1500, 2000, 

3000, 5000, 7000, 10000, 12000, 15000, 18000, 20000, 22000, 25000, 27000, and 30000 

transcripts were utilized to test performance of the tools.

Assessment of performance varying change point parameters

Performance of TACO was assessed by comparing to the GENCODE protein-coding genes 

as described above at different values for the change point p-value cutoff and the change 

point fold-change cutoff. The following p-value cutoffs were tested: 1, 0.5, 0.25, 0.1, 0.05, 

0.01, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7. The following fold-change cutoffs used: 1, 0.95, 0.9, 0.85, 

0.7, 0.6, 0.5, 0.35, 0.25, 0.125, 0.0625, 0.03125.

Visualization of meta-assemblies

Examples of the meta-assembly performance were visualized using IGV23. For the 

chromosome 3p21 locus the samples from run “0” (Supplementary Table 2) were utilized for 

batch sizes of 50, 100, 500. For all other loci, run “0” was used for a batch size of 100.

Overview of TACO meta-assembly approach

We developed TACO as a software package written in Python and C. The software adapts 

and builds upon methods that were developed previously by our bioinformatics group for the 

purposes of meta-assembly, and utilized for the MiTranscriptome project3. TACO accepts as 

input a set GTF files containing transcripts assembled from individual libraries. Transcripts 

can be filtered based on length in base pairs (--min-transfrag-length), with the TACO default 

set to filtering transcripts less than 200bp in length. TACO aggregates and sorts the input 

GTF files, and then parses the aggregated set of transcripts into independent loci with non-

overlapping genomic coordinates. Within each locus, TACO reassigns unstranded mono-

exonic transcripts to either the positive or negative strand whenever there is unambiguous 

supporting evidence of strandedness from the other transcripts in the locus. Transcripts on 

the positive and negative strand are then processed independently. TACO then clusters sets 

of overlapping transcripts on the same strand into splice graphs. Nodes in the splice graph 

comprise contiguous transcribed regions not interrupted by splicing. Once nodes are 

identified, the summed expression profile across each node is utilized to perform change 

point detection. For each change point identified, a new edge is created to the source or sink 

node, representing a potential transcript start or end site. Details of the various components 

of the TACO algorithm are found below. For further details, the TACO source code can be 

found at http://tacorna.github.io.

Details of TACO algorithm

Major Steps—

1. Aggregate: Prior to meta-assembly, the input GTF files are merged and 

transcripts are sorted by chromosome and position. Filters for transcript 

length (--filter_min_length) and expression (--filter_min_expr) are 

applied.
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2. Locus Identification: Transcripts in merged GTF file are partitioned into 

loci, where a locus is defined as a collection of input transcripts with 

overlapping genomic coordinates. Groups of transcripts from independent 

loci are then assembled in parallel.

3. Strand Imputation: TACO attempts to impute the strand for any unstranded 

transcripts included in the input data. See below for further details.

4. Determine Locus Expression: Stranded basewise expression of each locus 

is the summed expression from the input transcripts for each base 

determined by the individual transcriptome assembler utilized to generate 

the input transcriptome. Of note, TACO is compatible with any expression 

unit (as long as that unit is consistent for all samples used) and the unit of 

expression can be specified with the --gtf-expr-attr flag.

5. Build Splice Graphs: Transcripts within each locus are partitioned into 

splice graphs. A splice graph is a directed acyclic graph representing the 

stranded transcribed genomic regions of the input transcripts. See below 

for further details.

6. Change Point Detection: Change points are identified within each node in 

the splice graph (see definition below). Binary segmentation is used to 

recursively identify multiple points of change meeting significance criteria 

in each node’s expression profile. Upon identification of all change points 

in each node of a splice graph, the splice graph is updated with new 

connections to the source and/or sink. See below for further details.

7. Build Path Graph: A specialized graph structure called the path graph is 

derived from the splice graph. The path graph retains structural 

information from the input transcripts and encapsulates splicing pattern 

information into the graph. See below for further details.

8. Predict Isoforms: The path graph is iteratively traversed using a dynamic 

programming approach, yielding the most highly expressed isoforms in 

the gene. Users may specify how exhaustively the algorithm predicts 

isoforms using the --isoform-frac and/or --max-isoforms command line 

options.

9. Report output

Step Details

Strand Imputation: Unstranded transcript assemblies may arise from RNA-Seq data if the 

underlying reads are unstranded and the transcript is monoexonic. TACO attempts to impute 

the strand of each unstranded transcript using the following steps:

For each unstranded transcript T:

• If all stranded transcripts overlapping T are on the positive strand, then 

assign T to the positive strand
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• If all stranded transcripts overlapping T are on the negative strand, then 

assign T to the negative strand

• If there are transcripts overlapping T on both the positive and negative 

strands, then the strand of T is deemed ambiguous and is not imputed

• If no stranded transcripts overlap T, then the strand of T is deemed 

ambiguous and is not imputed.

• By default, transcripts with ambiguous strand are not assembled unless the 

--assemble-unstranded option is enabled.

Splice Graph: TACO partitions the input transcripts within a locus by strand, and builds 

splice graphs from sets of overlapping transcripts within the locus. A splice graph is a 

directed acyclic graph representing the stranded transcribed genomic regions and splice 

junctions of the input transcripts.

Properties:

• Node: a contiguous exonic genomic interval with no internal splice donors 

or acceptors in the input transcripts

• Edge: connects nodes x and y if an input transcript contains x and y 
consecutively

• Expression: The expression of each node is determined by summing the 

expression of input transcripts that contain the node.

Creation:

1. Define Nodes:

○ To define nodes, we first iterate through the input transcripts 

and define the set of node boundaries. Nodes are bounded by 

splice donor/acceptor sites and transcriptional start/stop sites 

(e.g. sites where the summed expression of the input transcripts 

changes from zero to nonzero).

2. Define Edges:

○ After defining the set nodes in the splice graph, we iterate 

through the input transcripts in a second pass. For each 

transcript, we map its exons across node boundaries, thus 

representing the transcript as a sequence of nodes. We then add 

the edges inferred by this sequence to the set of all edges in the 

splice graph.

Change Point Detection: Change point detection is performed at the level of each node 

within a splice graph. Using the basewise expression for each node, recursive binary 

segmentation24 of the change point detection algorithm is performed until potential change 

points fail to meet significance criteria. Once change points are detected for all nodes in a 
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splice graph, the splice graph is updated to account for the new connections to the source 

and sink.

Definitions:

• Expression vector: the input for the change point detection algorithm. 

Initially, the expression vector is the number of bases of the entire splice 

graph node, whose values are the basewise expression of that node. In 

subsequent recursive iterations of the algorithm, the expression vector 

represents the basewise expression of the node segment being tested, 

whose boundaries are defined by previously identified change points.

• Mean squared error (MSE):

○ Where X is the expression vector being tested, m is the index 

of point being tested in the expression vector, Xi is the 

expression at index i of the expression vector,  is the mean 

expression for bases 0 to m in the expression vector, l is the 

length of X, and  is the mean expression for bases m + 1 to l

• Significance criteria for potential change points:

○ Mann-Whitney U (MWU) test must meet defined p-value 

threshold (--change-point-pvalue). The MWU compares the 

expression values only at points of change on either side of a 

potential change point.

▪ E.g., if the expression on either side of the potential 

change point are X1 = [15, 15, 15, 15, 15, 14, 14, 

14, 13, 13, 12, 12, 10] and X2 = [10, 10, 10, 9, 9, 8, 

8, 8, 8, 7, 7, 4, 4, 2, 2, 2, 3, 2, 2], the MWU will 

compare only the values where expression values 

changed X’1 = [15, 14, 13, 12, 10] and X’2 = [10, 9, 

8, 7, 4, 2, 3, 2]

○ Fold-change comparing the mean expression on either side of 

the change point must meet a defined threshold (--change-
point-fold-change).

○ Default settings for change point p-value and fold-change were 

determined by testing the performance of TACO at varying p-

values and fold-changes (Supplementary Figure 8).

Algorithm:

For a given expression vector X:
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• If the length of X < 20, do not perform change point detection

• Identify the base/index within X with the minimum MSE as a potential 

change point, PC.

• Test whether PC meets significance criteria

• If PC meets criteria:

○ Append point of change, C, to list of change points for a given 

node

○ Utilizing the expression on either side of C as a new expression 

vector to be fed back into the change point detection algorithm, 

recursively test for other change points (a.k.a, binary 

segmentation)

▪ As change points are often gradual and sloping, in 

order to prevent calling multiple change points 

along one slope, when a change point is identified, 

all bases on the same slope as the identified change 

point are removed from the expression vector used 

for future binary segmentation iterations

• If PC does not meet significance criteria, stop change point detection 

binary segmentation

Path Graph: After detecting change points in a splice graph, TACO builds a new graph 

structure called a path graph to encapsulate sequences of consecutive splice junctions. The 

data structure of the path graph is reminiscent of the De Bruijn graph model used for de 
novo assembly.

Properties:

• Node: a sequence of k nodes from the splice graph that appears in at least 

one input transcript. We subsequently refer to nodes in the path graph as 

“subpaths”.

• Edge: connects subpaths x and y if the last k-1 nodes in subpath x are 

equal to the first k-1 nodes in subpath y.

• Expression: the expression at each node equals the summed expression of 

all of the input transcripts that contain the node

• Source: subpaths originating at a transcriptional start site are connected to 

a common source node

• Sink: subpaths terminating at a transcriptional stop site are connected to a 

common sink node

Algorithm:

Creation of a path graph with subpaths of length k:
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• For each input transcript T:

○ Define the sequence of splice graph nodes represented by T as 

NT

○ If the length of NT is less than k:

▪ If the first node of NT is a transcriptional start site 

and the last node of NT is a transcriptional stop site:

– Add NT to the path graph as a 

single node with connections to the 

source and sink regardless of the 

length of NT or the value of k.

▪ Else:

– Append NT to a list of short 

transcripts, to be dealt with later

○ Else:

▪ Add nodes NT[0..k], NT[1..k+1], NT[2..k+2], etc. 

to the path graph, with edges connecting 

consecutive nodes.

• Determine and remove unreachable nodes from the path graph:

○ If a node in the path graph is unreachable from either the 

source node or the sink node, remove it from the path graph

• Attempt to rescue short input transcripts

○ For each short input transcript ST (length of the sequences of 

nodes NT less than k):

▪ Determine all the nodes in the path graph that 

contain ST

– This is done by first creating a suffix 

array index of all of the nodes in the 

path graph and then aligning the 

sequence ST to this index. Further 

details are available in the online 

source code.

▪ Allocate the expression of T to all matching nodes 

proportionally using the relative expression of each 

matching node.

• Extend transcripts that do not begin at a start site and end at a stop site:

○ If the first node of NT is not a transcriptional start site:

Niknafs et al. Page 12

Nat Methods. Author manuscript; available in PMC 2017 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



▪ Allocate the expression of T to all predecessor 

nodes of NT in a weighted fashion (see below). This 

is implemented using breadth first search starting at 

NT[0], traversing the graph in reverse until all 

possible paths to the source node are visited.

○ If the last node if NT is not a transcriptional stop site:

▪ Allocate the expression of T to all successor nodes 

of NT in a weighted fashion (see below). This is 

implemented using breadth first search starting at 

NT[−1], traversing the graph in the forward 

direction until all possible paths to the sink node are 

visited.

○ Expression is allocated to neighbor nodes (either predecessor 

or successor nodes depending on whether NT is being extended 

from its start site or stop site, respectively) in a weighted 

fashion, by using the fractional expression levels of all 

neighbor nodes. For example, if NT[0] with an expression level 

of 12 is being extended upstream to two possible neighbor (e.g. 

predecessor) nodes NA and NB with expression levels of 30 

and 60, respectively, NA and NB will be allocated 4 and 8 

expression units, respectively.

This procedure ensures that the summed expression at the 

source node equals the summed expression at the sink node.

Choice of k for creating the Path Graph

The choice of k for path graph construction poses an interesting tradeoff. As k decreases, the 

chances of assembling transcripts that do not represent the input data increases. In this case, 

even if input transcript predictions are incorrect the algorithm could still assemble correctly 

by utilizing expression information. By contrast, as k increases, the assembled transcripts 

will be increasingly constrained to precisely match paths in the input transcripts, and less 

dependent upon expression information in the input data. Optimal performance could 

theoretically be achieved by selecting a k that balances this tradeoff25. Intuitively, the 

number of nodes in a path graph could be used as a surrogate measure for graph complexity. 

With more nodes (i.e., more subpaths) comes an increase in the potential diversity within the 

graph from which transcript isoforms are generated. Therefore, we select a value of k by 

maximizing the number of nodes in the ensuing path graph (efficient selection of the k 
yielding the maximum numbers of nodes is done using a bisection algorithm 

implementation). In practice, we observed that for most problems, plotting the value of k 
versus the number of nodes in the path graph follows a gaussian distribution, wherein there 

is a kopt that results in a maximum of potential subpaths to traverse when generating 

transcript isoforms.
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Predict Isoforms—Isoforms are predicted using a dynamic programming algorithm that 

traverses the nodes of path graph to find the most highly expressed isoform in the following 

steps:

1 Predict isoform, I, and its expression, EXPRI, that represents the most highly 

expressed path in the current path graph via dynamic programming.

a. The first isoform identified is designated Imax, with expression, EXPRmax. The absolute 

expression value at which to stop predicting additional isoforms is determined by 

multiplying EXPRmax by the value of the command line parameter --isoform-frac.

2 Subtract EXPRI from all of the nodes contained within I

3 Repeat steps 1-2 to predict isoforms I and their expression values EXPRI, 

terminating when EXPRI is less than EXPRmax × isoform-frac

The dynamic programming algorithm is implemented as follows:

• For each node i in the path graph, initialize the following state variables:

○ Let min_expr[i] equal 0.0

○ Let prev[i] equal NULL

• For each node i in the path graph, ordered by topological sort:

○ For each successor node j of i:

▪ If (prev[j] is NULL) or min(min_expr[i], expr[j]) > 

min_expr[j]:

– Let min_expr[j] equal 

min(min_expr[i], expr[j])

– Let prev[j] equal i

A traceback loop then reconstructs the highest expression isoform by starting at the SINK 
node and prepending nodes in the prev vector until reaching the SOURCE.

Data Availability

Transcriptome assemblies and all references used as for this manuscript can be found at 

tacorna.github.io. TACO source code can also be found there.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic detailing the transcriptome meta-assembly workflow for TACO. Reads are 

initially aligned to the genome. Ab initio assembly is then performed, generating a 

transcriptome assembly for each input sample. These transcriptome assemblies are then 

merged into a meta-assembly using the TACO tool, which leverages change point detection 

and a dynamic programming algorithm to generate robust transcript isoforms from the 

underlying network of splicing patterns.
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Figure 2. 
Assessment of TACO performance. a. Performance metrics for TACO, Cuffmerge, and 

Stringtie when merging different numbers of input assemblies. Recall (i.e., sensitivity), 

precision and the F-measure for all three tools were assessed for splicing patterns, splice 

junctions, and bases. Points represent the mean statistic across the 20 runs, error bars 

represent the 95% confidence interval. (Data to make this panel can be found in 

Supplementary Table 3) b,c. Precision-recall plots (left) and bar plots depicting the average 

precision (right) depicting performance for the three tools merging 55 CCLE breast cancer 

cell lines (a) at 50 different isoform fraction cutoffs ranging from 0.001-0.999, and (b) for 

the highest expressed transcripts in the meta-assemblies. Points represent statistics for the 

top N transcripts, with N ranging from 500-30,000. (Data to make panels b and c can be 

found in Supplementary Tables 4 and 6, respectively).
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Figure 3. 
Examples of TACO performance. The 3p21 genomic locus is depicted. Assembly of the 

genes SLC26A6, CELSR3, and NCKIPSD are shown for 50, 100, and 500 samples merged. 

The assembly produced by Cuffmerge is shown in blue, Stringtie in orange, and TACO in 

green. The Refseq reference annotation is shown above in red.
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