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Abstract

Nowadays, the diagnosis of viral infections is receiving broad attention. We have developed a non-competitive fluorescence
polarization immunoassay (NC-FPIA), which is a separation-free immunoassay, for a virus detection. HS subtype avian influenza
virus (H5-AIV) was used as a model virus for the proof of concept. The fluorescein-labeled Fab fragment that binds to HS
hemagglutinin was used for NC-FPIA. The purified H5-AIV which has H5 hemagglutinin was mixed with the fluorescein-
labeled Fab fragment. After that, the degree of fluorescence polarization was measured with a portable FPIA analyzer. H5-AIV
was successfully detected with an incubation time of 15 min. In addition, the portable FPIA analyzer enables performance of on-
site NC-FPIA with a sample volume of 20 uL or less. This is the first research of detecting a virus particle by FPIA. This NC-
FPIA can be applied to rapid on-site diagnosis of various viruses.
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Introduction

The outbreak of infectious diseases caused by viruses has a
great impact not only on the health of humans and animals but
also on social and economic aspects. For example, the emer-
gence of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) in 2019 which causes COVID-19 has resulted
in many deaths worldwide and has had a great economic im-
pact [1, 2]. Also, epidemics of serious animal infectious
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diseases such as avian influenza and African swine fever
may cause catastrophic damage to livestock industries [3, 4].
Fast initial response for a suspected infection is essential to
minimize the damage caused by such viral infections [5].
Therefore, a rapid and highly sensitive method for the diag-
nosis of viral infections is critically required. The detection of
viral nucleic acid by a polymerase chain reaction (PCR) is
used as a gold standard method for the diagnosis of viral
infections [6—8]. PCR testing has good sensitivity and
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specificity and is suitable for definitive diagnosis. However,
PCR testing requires complicated procedures and long analy-
sis times, conditions which are not suitable for an initial diag-
nosis. On the other hand, simple analytical methods for de-
tecting antigens and antibodies by lateral flow immunoassay
(LFIA) have been developed [9-12]. Typical LFIA devices
with visual observation do not have high accuracy and sensi-
tivity. In order to obtain high sensitivity with LFIA devices,
expensive materials such as metal nanoparticles and quantum
dots, and read-out equipment are often required for higher
sensitivity. However, these methods compromise the simplic-
ity and inexpensiveness of LFIA. To construct an appropriate
detection system for the initial diagnosis of a viral infectious
disease, we have developed a novel virus detection method
using fluorescence polarization immunoassay (FPIA) to en-
able rapid on-site detection of the virus.

FPIA is one example of a homogeneous immunoassay. The
difference in rotational movement due to the antibody binding
to the fluorescence-labeled antigen is measured as the change
in the degree of fluorescence polarization (P) [13]. Since FPIA
does not require bound-free separation, it has the advantage that
the assay procedure is rapid and simple compared to heteroge-
neous immunoassays like enzyme-linked immunosorbent as-
say (ELISA). Conventional FPIA is a competitive immunoas-
say, which uses a fluorescence-labeled target (tracer) and an
antibody as reagents. Most applications of conventional com-
petitive FPIA have been for quantifying small molecules such
as drugs and mycotoxins [13]. Using the advantages of FPIA,
we have developed a portable FPIA analyzer that can measure
multiple samples simultaneously on site with a small amount of
sample [14-16]. In addition, recently, we have demonstrated
non-competitive FPIA (NC-FPIA) using a nanobody [17] or a
Fab fragment [18] for proteins to expand the applications of
FPIA. On the other hand, the detection of virus particles by
FPIA has not been reported so far. Shokri et al. [19] reported
the competitive fluorescence anisotropy immunoassay for the
capsid protein of citrus tristeza virus. However, the pretreat-
ments of sample and long incubation time were needed in their
method. If NC-FPIA using our portable FPIA analyzer can be
applied to a virus particle detection, it will greatly contribute to
speeding up the diagnosis of viral infectious diseases. NC-
FPIA requires adding only a fluorescence-labeled antibody
fragment and short incubation time. Furthermore, unlike
ELISA, FPIA has the advantage of being easy to apply to
various animal species because FPIA does not require a suit-
able secondary antibody for each animal species.

In this paper, we applied NC-FPIA using the Fab fragment
to virus detection. The HS subtype avian influenza virus (H5-
AIV) was used as a model virus for the proof of concept. AIV
is a bird-adapted influenza A virus and this virus is character-
ized by two membrane proteins, hemagglutinin (HA) and
neuraminidase (NA) [20]. There are several highly pathogenic
strains of H5-AIV, and human infections have been reported.
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Therefore, rapid initial response is required when an H5-AIV
infection is suspected [21]. For the detection of H5-AIV, we
prepared a fluorescein-labeled Fab fragment (F-Fab) and used
it for NC-FPIA. After the F-Fab was reacted with H5-HA on
the H5-AIV surface, the P value was measured with a portable
FPIA analyzer. As far as we know, this is the first report of
virus detection by FPIA.

Materials and methods
Materials

H5N1 hemagglutinin polyclonal antibody (anti-H5-HA rabbit
IgG polyclonal antibody) was purchased from Bioss
Antibodies (USA). Albumin from bovine serum (BSA) was
purchased from FUJIFILM Wako Pure Chemical Corporation
(Japan). Fluorescein labeling kit-NH, was purchased from
Dojindo Molecular Technologies, Inc. (Japan). The Micro
BCA Protein Assay Kit and phosphate-buffered saline (PBS)
were purchased from Thermo Fisher Scientific, Inc. (USA).
Polydimethylsiloxane (PDMS; SILPOT 184 W/C) was pur-
chased from Dow Corning Toray Co., Ltd. (Japan). The
PDMS included black silicon rubber to decrease the back-
ground signal of fluorescence. SU-8 3050 and the SU-8 de-
veloper were purchased from Nippon Kayaku Co., Ltd.
(Japan). Rosetta-gami™ 2 (DE3) pLysS Competent Cells
and expression vector pET-32b (+) were purchased from
Novagen (USA). SuperScript® III Reverse Transcriptase was
purchased from Invitrogen (USA). Isogen-LS RNA extraction
reagent was purchased from Nippon Gene (Japan).
Isopropyl-3-d-thiogalactopyranoside was purchased from
Wako Pure Chemical Industries (Japan). TaKaRa Ex Taq
was purchased from TaKaRa (Japan). Nickel-nitrilotriacetic
acid (Ni-NTA) agarose was purchased from Qiagen
(Germany).

Preparation of antigen

Recombinant HA of H5-AIV (H5-rHA), which is derived
from H5N3 subtype AIV (A/whistling swan/Shimane/499/
1983), was produced using the bacterial expression system
as we previously described [16]. The purification of H5N3
subtype AIV (A/duck/Hong Kong/820/1980) and HINT1 sub-
type influenza A virus (A/Puerto Rico/8/34) was performed as
previously described [22]. Shimane strain and Hong Kong
strain were kindly provided by Dr. Toshihiro Ito (Tottori
University, Japan) and Dr. Yoshihiro Sakoda (Hokkaido
University, Japan), respectively. A/Puerto Rico/8/34 strain
was purchased from ATCC (Manassas, VA: Catalog No.
VR-95™)_ The concentration of H5-rHA and purified HSN3
and HIN1 viruses was measured by the Micro BCA Protein
Assay Kit.
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Preparation of F-Fab

Anti-H5-HA Fab fragment was purchased from Hokudo
Co., Ltd. (Japan). Fab fragment was produced by the papain
digest of commercial anti-H5-HA rabbit IgG polyclonal
antibody (Bioss antibodies). Labeling of fluorescein on
the amino groups of the Fab fragment was conducted fol-
lowing the procedures described in the manufacturer’s in-
structions of the fluorescein labeling kit-NH,. Unreacted
fluorescent molecules were separated using a modified pol-
yethersulfone membrane (Nanosep 3 K Omega, Pall
Corporation, USA). Concentration of Fab fragment and
fluorescein was determined based on absorbance at
280 nm and 500 nm acquired with a fluorometer
(NanoDrop One, Thermo Fisher Scientific, Inc.). The label-
ing rate (fluorescein concentration (M)/Fab fragment con-
centration (M)) was 1.45.

PDMS microdevice fabrication

The PDMS microdevice was designed and fabricated by the
standard soft lithography technique, in accordance with the
literature [16]. In short, the mold was fabricated from neg-
ative photoresist SU-8 3050 and a silicon wafer (Sumco
Co., Japan). The mixture of PDMS prepolymer with black
silicon rubber and the cross-linking agent was poured onto
the mold. After 24 h of curing at room temperature, the
PDMS was removed from the master mold by peeling off
and cutting.

Assay procedure

NC-FPIA was demonstrated using a portable FPIA analyzer
with a microfluidic device (Fig. S1) [15, 16]. Antigen
(purified virus or H5-rHA) in PBS, 80 ng/mL F-Fab, and
1% BSA in PBS were added to a microtube. The mixing
volume ratio was antigen:F-Fab:1% BSA-PBS =8:1:1. BSA
was used as a blocking agent and reduced the variation by
non-specific adsorption (Fig. S2). The mixture was incubated
at room temperature for 15 min. Then, 20 pL of the mixture
was injected into the microfluidic device and the P value was
measured with our portable FPIA analyzer. All data points are
means + standard deviations (n = 3).

Results and discussion

We constructed a NC-FPIA with a portable FPIA analyzer for
virus detection. Unlike conventional competitive FPIA, only
fluorescence-labeled Fab is used as the reagent. F-Fab was
added to a virus sample and the P value was measured after
incubation (Fig. 1). If we apply conventional competitive
FPIA to a virus, antigens that competitively react with the
antibody are needed as a tracer. The smaller the molecular
weight of the tracer is, the greater the difference in the P value
before and after binding to the antibody is, resulting in high
sensitivity. Therefore, it is desirable to use only a part of the
virus like a membrane protein as a tracer. However, it is dif-
ficult to react a small tracer and a virus to the antibody com-
petitively because the diffusion coefficient in the solution
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Fig. 1 Schematic illustration of the NC-FPIA using F-Fab for H5-AIV quantification
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greatly differs between the small tracer and the virus particle.
In our proposed NC-FPIA, only F-Fab was used as a reagent.
When a F-Fab is bound to a virus, the P value becomes high
due to the much slower rotational motion of the virus-Fab
complex. High detection sensitivity can be achieved by using
a Fab fragment (~50 kDa) instead of the commonly used IgG
antibody (~150 kDa) [18].

We prepared a calibration curve for the purified HSN3 AIV
(Fig. 2). The P value increased with increasing virus concen-
tration, and the detection limit was 2.8 pg/mL. The difference
of the P value between the maximum value in this calibration
curve and blank was 13.0 mP. We clarified that the Fab-based
NC-FPIA can detect viruses as well as protein targets with
equivalent sensitivity [17]. It is possible to change the measur-
able concentration range by changing of the F-Fab concentra-
tion or using a Fab fragment with different affinity to H5-HA.
Then, we evaluated the selectivity of F-Fab for H5-AIV.
Figure 3 shows the results of the selectivity test for H5-AIV
using the purified HIN1 virus as a negative control. The P
value after reaction between F-Fab and HSN3 AIV was signif-
icantly higher than that of blank and HINT1 virus. In addition, it
was confirmed that F-Fab had the high affinity for H5-rtHA
(Fig. S3). These results indicated that F-Fab had high selective-
ly to H5-HA. To achieve the detection of H5-AIV with much
higher sensitivity and selectively, using the Fab fragment
which has a higher selectivity and affinity for H5-HA is ideal.
However, the present results are promising in that Fab-based
NC-FPIA has a greater possibility for achieving the rapid on-
site diagnosis of viral infectious diseases.

From the above results, we demonstrated that AIV can be
detected by NC-FPIA with an incubation time of 15 min by
using a Fab fragment that selectively binds to a protein on the
virus surface. Also, since a portable FPIA device is used for
measurement, the sample volume required for one assay is
20 uL or less. By preparing a suitable fluorescently labeled
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Fig. 2 Calibration curve for the purified HSN3 AIV in PBS. F-Fab con-
centration: 80 ng/mL. AmP = 1000 X (Pgampie — Polank)
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Fig. 3 Selectivity of the F-Fab for NC-FPIA of H5-virus. HIN1 virus
was used as a negative control. Concentrations of HSN3 virus and HIN1
virus were each 5 pg/mL. AmP = 1000 X (Pgampie — Poiank)

Fab fragment, this method can be applied to various viral
infectious diseases like COVID-19.

Conclusions

In this paper, we demonstrated that H5-AIV can be detected
by NC-FPIA using Fab fragment. The reaction is completed
by simply mixing the F-Fab with the sample, and the portable
FPIA device enables rapid virus detection on site. Detection
with high sensitivity and selectively by this method can be
achieved by using a Fab fragment which has a high affinity
and selectively. The use of smaller antibody fragments such as
a nanobody and a single-chain fragment variable is also con-
sidered to be effective in improving sensitivity. In the future,
we plan to optimize the assay conditions in detail and evaluate
the performance with field samples. Our research group has
also demonstrated the possibility of antibody testing using a
portable FPIA analyzer [16]. Rapid on-site antigen and anti-
body tests for viral infectious diseases on the same platform
will be implemented in the future.
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material available at https://doi.org/10.1007/s00216-021-03193-y.
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