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An immortalised mesenchymal 
stem cell line maintains mechano-
responsive behaviour and can be 
used as a reporter of substrate 
stiffness
Asier Galarza Torre1,2,4,6, Joshua E. Shaw1,2,4, Amber Wood3,4, Hamish T. J. Gilbert 1,2,4,  
Oana Dobre1,2,4,7, Paul Genever5, Keith Brennan3,4, Stephen M. Richardson   2,4 & Joe Swift   1,2,4

The mechanical environment can influence cell behaviour, including changes to transcriptional and 
proteomic regulation, morphology and, in the case of stem cells, commitment to lineage. However, 
current tools for characterizing substrates’ mechanical properties, such as atomic force microscopy 
(AFM), often do not fully recapitulate the length and time scales over which cells ‘feel’ substrates. 
Here, we show that an immortalised, clonal line of human mesenchymal stem cells (MSCs) maintains 
the responsiveness to substrate mechanics observed in primary cells, and can be used as a reporter 
of stiffness. MSCs were cultured on soft and stiff polyacrylamide hydrogels. In both primary and 
immortalised MSCs, stiffer substrates promoted increased cell spreading, expression of lamin-A/C and 
translocation of mechano-sensitive proteins YAP1 and MKL1 to the nucleus. Stiffness was also found to 
regulate transcriptional markers of lineage. A GFP-YAP/RFP-H2B reporter construct was designed and 
virally delivered to the immortalised MSCs for in situ detection of substrate stiffness. MSCs with stable 
expression of the reporter showed GFP-YAP to be colocalised with nuclear RFP-H2B on stiff substrates, 
enabling development of a cellular reporter of substrate stiffness. This will facilitate mechanical 
characterisation of new materials developed for applications in tissue engineering and regenerative 
medicine.

Mechanical homeostasis is a fundamental property inherent to all tissues of the adult body. Establishment of 
the right stiffness for each tissue and stage in development is vital for the correct function of various organs1: 
bones, for example, must be stiff, while skin must be reversibly deformable. In order to maintain homeostasis in 
surrounding tissue, cells have mechanisms that allow them to ‘feel’ the mechanical properties of the extracellular 
matrix (ECM) and respond accordingly. Cells process physical stimuli through a set of mechanotransduction 
pathways2,3, such as mechanically-regulated ion channels4 or focal adhesion (FA) complexes that assemble at the 
plasma membrane where cells pull on the surrounding ECM5. Mechanical signals are propagated within cells 
through pathways such as RhoA (Ras homolog gene family, member A) and ROCK (Rho-associated protein 
kinase) signalling6, and through regulation of transcription factors (TFs). Stiff substrates cause TFs such as YAP1 
(yes-associated protein 1)7 and MKL1 (myocardin-like protein 1, also known as MRTF-A or MAL)8 to translo-
cate to the nucleus, thus modulating their activity. Mechanical signals may also be transmitted through cells by a 
system of interlinked structural proteins that connect the ECM through FAs to the cytoskeleton, and then to the 
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nucleus through the linker of nucleo- and cyto- skeleton (LINC) complex9. Mechanical inputs can therefore be 
passed from substrate to nucleus where they can affect chromatin conformation and thus influence how genes 
are regulated10.

A broad range of cellular processes have been shown to be influenced by mechanical inputs. Adherent cells 
pull on and probe the surrounding microenvironment11, activating signalling pathways in FA complexes1 and 
prompting reorganisation of the actin cytoskeleton12. Mechanical signals are propagated to regulate aspects of 
cell morphology13, such as the extent to which cells spread when adhering to a two-dimensional substrate, and 
the amount of force that cells apply to deform their surroundings14. Changes to cell morphology and contractility 
require regulation of protein content within the cells, and this has been characterised in the cytoskeleton and the 
nuclear lamina15. Apoptosis pathways and the rate of proliferation are also influenced by substrate stiffness16, 
and cells such as fibroblasts have been shown to migrate along gradients of increasing stiffness, a process called 
durotaxis17. Mesenchymal stem cells (MSCs) have been used as a model system to examine a number of mech-
anotransduction processes6,7,15,18, with sensitivity to mechanical stimulation noted in even seminal characteri-
sations19. MSCs are multipotent cells with lineage potential that can be influenced by substrate mechanics15,20: 
culture on soft substrates favours adipogenesis, while stiff substrates favour osteogenesis. Previous work has also 
shown that characteristics of MSC morphology, assessed through ‘high-content’ analysis of cells imaged by fluo-
rescence microscopy, can serve as early predictors of lineage specification21.

The multipotent nature of MSCs combined with a capacity to modulate immune responses22 have led to inves-
tigations of their suitability for regenerative medicine, and the possibility of replacing damaged tissues with engi-
neered scaffolds repopulated with stem cells23,24. James et al. have reported the generation of immortalised MSCs 
through overexpression of telomerase reverse transcriptase (TERT)25. Clonal lines were selected for expansion 
that showed exponential growth, matched the expected cell-surface marker profile for MSCs and presented no 
evidence of tumorigenicity in immuno-compromised mice. Endogenous populations of MSCs are typically het-
erogeneous, but the selected clonal lines exhibited specific characteristics of MSC behaviour. Some of the clones 
exhibited immuno-modulatory behaviour, while the clonal line “Y201” maintained potential for chemical induc-
tion of adipogenic, chondrogenic and osteogenic lineages25.

Here we compared the responses of primary and Y201 MSCs to culture on soft and stiff collagen-I coated 
polyacrylamide (PA) hydrogels to determine the extent to which mechanosensitive behaviour was maintained in 
the immortalised line. We found that the Y201 MSCs preserved the mechanosensitive features of primary cells: 
morphological responses such as cell spreading on stiffer substrates, the ability to remodel the nucleoskeleton, 
translocate TFs and regulate genes associated with adipogenesis and osteogenesis.

Recent efforts in the field of tissue engineering have sought to harness the multipotent nature of stem cells to 
rebuild or replace damaged tissues. This has required the development of substrates and scaffolds on which cells 
can be cultured for use in therapy or to produce synthetic tissues that can ultimately be implanted into patients. 
Substrates have been generated using diverse chemistries, enabling properties such as tuneable stiffness26–29 or 
the incorporation of ECM molecules30. Scaffolds have been constructed using a variety of technologies, from 
bio-inspired, synthetic polymers31 to decellularised tissues32. The behaviour of cells seeded onto such materials 
is directed by the combined chemical and mechanical characteristics of the microenvironment33. It is therefore 
often desirable to characterise the mechanical properties of culture substrates and scaffolds, as well as the tis-
sues that they are engineered to mimic. The mechanical properties of biological tissues are best characterised 
by a combination of viscous and elastic (‘viscoelastic’) characteristics34 which vary with deformation over time. 
Atomic force microscopy (AFM), nanoindentation and rheometry offer means of measuring material parameters, 
such as the elasticity (Young’s modulus, E), but each have limitations. Measurements of time-dependent viscoe-
lastic mechanical properties are challenging to make by indentation methods, requiring careful selection of the 
loading regime and indentation tip35. Rheometry methods can report on viscoelastic properties (loss and storage 
moduli), but lack spatial resolution and are restricted to measuring bulk material properties (see Canovic et al. 
for a comparison of indentation and rheometry methods applied to soft, viscoelastic brain tissue36). Cell behav-
iour within a tissue or synthetic matrix may be influenced by deformations over specific length or time scales, 
by complex viscoelastic material properties, by heterogeneity, or by dimensionality and topologies that would be 
difficult to examine with a mechanical probe (such as an AFM tip) or bulk measurement method (such as rheom-
etry). We reasoned that the best predictor of how cells would experience and respond to a particular mechanical 
environment may therefore be to use the intrinsic behaviours of cells themselves to report on the properties of 
their surroundings. With this aim, having established the mechanosensitivity of the Y201 MSCs, we used them 
as a platform to develop a fluorescent stiffness probe. Here we demonstrate the use of immortalised MSCs stably 
expressing a red/green fluorescent reporter construct that can be analysed by microscopy to differentiate soft and 
stiff substrates.

Results
Immortalised MSCs maintain a morphological response to substrate stiffness.  In order to deter-
mine whether an immortalised MSC cell line, previously reported to show the multipotent capacity of primary 
cells25, also maintained sensitivity to mechanical inputs, the response of the cells to culture on soft or stiff sub-
strates was characterised. Immortalised MSCs, along with a comparison set of primary cells from four human 
donors, were cultured on soft (2 kPa) or stiff (25 kPa) collagen-I coated PA hydrogels for three days, before 
being fixed and stained with DAPI and phalloidin (Fig. 1a). Cells on stiffer substrates appeared larger with more 
pronounced and ordered stress fibres. Quantitative analysis of cell morphology showed that the mean spread 
area of primary MSCs was increased 1.4-fold (p = 0.007; n = 4 donors) on stiff versus soft hydrogels; the spread 
area of the immortalised line was increased 1.5-fold under the same conditions (p < 0.0001; Fig. 1b). Cell aspect 
ratio (defined as the ratio of long to short side lengths of the smallest rectangle that can enclose the perimeter of 
a cell) was not significantly affected by substrate stiffness in either primary or immortalised cells (Fig. 1c). Cell 
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circularity (proportional to the ratio between the area and the square of the perimeter of a cell) was significantly 
lower on the stiff substrate for primary cells (p = 0.004; n = 4 donors), but not significantly altered in immor-
talised cells (Fig. 1d). Analysis of nuclear morphology in the same samples yielded a parallel set of characteris-
tics. The spread areas of the nuclei of primary cells were increased 1.1-fold in both primary and immortalised 
cells, although this effect was only significant in the immortalised line (p < 0.0001), perhaps reflecting the greater 
variation amongst cells from primary donors (Fig. 1e). Nuclear aspect ratio was significantly increased on stiff 
substrates in both primary and immortalised MSCs (p = 0.003 and p < 0.0001, respectively; Fig. 1f). Nuclear 

Figure 1.  Cellular and nuclear morphology are stiffness-responsive in primary and immortalised MSCs. (a) 
MSC morphology was assessed using phalloidin and DAPI staining following 3 days culture on soft (2 kPa) or 
stiff (25 kPa) collagen-I coated PA hydrogels. (b) The spread areas of both primary and immortalised MSCs 
were significantly greater on stiff substrates than on soft. (c) Cell aspect ratios were not significantly affected by 
stiffness. (d) Cell circularity was significantly decreased in primary MSCs on stiff substrates; this effect was not 
observed in immortalised cells. (e) Nuclear area was increased on stiff substrates, although this effect was only 
significant in immortalised MSCs. (f) Nuclear aspect ratio was significantly increased on stiff substrates in both 
primary and immortalised MSCs. (g) Nuclear circularity was not significantly affected by increased stiffness 
in primary MSCs, but was lowered in immortalised MSCs (p-values from paired t-tests and Kruskal-Wallis 
(KW) tests as indicated; n.s. = not significant; n = 4 primary donors; a minimum of 38 cells were analysed per 
condition for each primary donor; a minimum of 363 immortalised cells were analysed per condition).
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circularity was not affected by stiffness in primary cells, although it was fractionally reduced on stiff substrates in 
the immortalised line (p < 0.0001; Fig. 1g). These results established that immortalised MSCs broadly replicated 
the characteristic morphological responses of primary cells when subjected to modulated substrate mechanics.

The nuclear lamina of primary and immortalised MSCs is stiffness-responsive.  The composition 
of the nuclear lamina has been shown to be affected by substrate stiffness15. Primary and immortalised MSCs 
were cultured on soft (2 kPa) and stiff (25 kPa) collagen-I coated PA hydrogels for three days before being fixed 
and imaged with immuno-staining against lamins A/C and B1 (Fig. 2a). In order to compensate for changes in 
nuclear spread area, the ratio of lamin A/C to B1 stain intensity within the nucleus was calculated. Lamin B1 was 
used for normalisation as it has been reported to be relatively unresponsive to substrate stiffness15. Analysis of 
MSCs from four primary donors, in comparison to the immortalised line, showed that the response to stiffness 
was maintained: the LMNA:B1 ratio was significantly greater on the stiffer substrate (p < 0.0001; Fig. 2b). The 
mean LMNA:B1 ratio was increased 2.2-fold on stiff versus soft substrates in the primary MSCs (p = 0.02; n = 4 
donors); in the immortalised MSCs, the increase was 2-fold (p < 0.0001; Fig. 2c). This result suggests that the 
mechanosensitivity of cell adhesions, and consequent cell spreading with increased substrate stiffness, was prop-
agated to the nucleus in primary MSCs, consistent with earlier reports15, and that the mechanism was preserved 
in the immortalised cell line.

Immortalised MSCs maintain the mechano-sensitive translocation of transcription factors 
YAP1 and MKL1.  Primary and immortalised MSCs cultured on soft (2 kPa) and stiff (25 kPa) hydrogels 
for three days were also examined with immunofluorescence microscopy to determine the subcellular localisa-
tion of TFs YAP1 and MKL1, previously reported to translocate to the nucleus on stiff substrates7,8. YAP1 was 
found to be increasingly localised to the nucleus on the stiffer hydrogel in both primary and immortalised MSCs 
(Fig. 3a). Quantification of the ratio of nuclear to cytoplasmic YAP1 (determined by using DAPI and phalloidin 

Figure 2.  Composition of the nuclear lamina is stiffness-responsive in primary and immortalised MSCs.  
(a) Immunofluorescence imaging was used to quantify lamins -A/C and -B1 (LMNA and LMNB1) in primary 
and immortalised MSCs cultured on soft (2 kPa) or stiff (25 kPa) collagen-I coated PA hydrogels. Lamin-B1 
expression appeared constant in all conditions, consistent with earlier reports15. (b) Quantification of lamin 
A/C to B1 ratio (LMNA:LMNB1) from immunofluorescence images showed that lamin-A/C was consistently 
upregulated on stiff substrates, relative to lamin-B1, in each of four primary donors and the immortalised MSCs 
(N indicates number of cells analysed per condition). (c) LMNA:LMNB1 was significantly increased on stiff 
substrates (p-values from paired t-tests and Kruskal-Wallis (KW) tests as indicated; n = 4 primary donors).
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Figure 3.  Transcription factors YAP1 and MKL1 respond to stiffness in primary and immortalised MSCs.  
(a) Immunofluorescence imaging was used to examine the location of yes-associated protein 1 (YAP1) in 
primary and immortalised MSCs cultured on soft (2 kPa) or stiff (25 kPa) collagen-I coated PA hydrogels. The 
nucleus and extent of the cytoplasm were identified by DAPI and phalloidin staining respectively. (b) YAP1 
became increasingly localised in the nucleus on stiff substrates in MSCs from three of four primary donors, and 
in immortalised MSCs (N indicates number of cells analysed per condition). (c) Relative nuclear localisation 
of YAP1 was significantly increased in immortalised MSCs on stiff substrates. (d) The total amount of YAP1 
(integrated signal from the whole cell) was significantly lower on stiff substrates in primary cells, but unchanged 
in immortalised cells. (e) Cellular location of myocardin-like protein 1 (MKL1, also known as MRTF-A or 
MAL) was imaged by immunofluorescence in primary and immortalised MSCs on soft and stiff substrates.  
(f) MKL1 was increasingly localised in the nucleus on stiff substrates in MSCs from three of four primary 
donors, and in immortalised MSCs (N indicates number of cells analysed per condition). (g) MKL1 was 
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channels to define cell and nuclear boundaries) showed donor-to-donor variation across four samples (Fig. 3b). 
Nonetheless, YAP1 was significantly more localised to the nucleus in three of the four samples (p < 0.0001). The 
mean nuclear:cytoplasmic ratio of YAP1 increased 1.7-fold on stiff versus soft substrates in the primary MSCs 
(not significant, p = 0.08; n = 4 donors) while the increase was 1.3-fold (p < 0.0001) in the immortalised cells 
(Fig. 3c). Mean total YAP1 (the sum of nuclear and cytoplasmic protein) was significantly downregulated on stiff 
substrates in the primary MSCs (p = 0.02), but was not affected in the immortalised cells (Fig. 3d). Examination 
of samples prepared in parallel showed the distribution of MKL1 to be similarly affected by substrate mechanics 
(Fig. 3e). The nuclear:cytoplasmic ratio of MKL1 was significantly higher on stiff than soft substrates in three of 
the four primary donor samples (p < 0.0009; Fig. 3f). Interestingly, the cells from donor 2 (d2) that showed no 
mechano-responsiveness in YAP1 cellular location also showed no significant regulation of MKL1. This reflects 
the variability among primary MSCs from different donors, and suggests the potential experimental utility of an 
immortalised line that reproduces canonical mechanosensitive features. The mean nuclear:cytoplasmic ratio of 
MKL1 was increased 1.5-fold in the primary cells (p = 0.04; n = 4 donors) and 1.3-fold in the immortalised line 
(p < 0.0001; Fig. 3g). In contrast to YAP1, total MKL1 was highly responsive to substrate stiffness, increasing 
2.7-fold on stiff substrates in the primary cells (p = 0.03; n = 4 donors) and 5.5-fold in the immortalised cells 
(p < 0.0001; Fig. 3h). Both primary and immortalised MSCs thus exhibited substrate-directed regulation of TF 
subcellular localization.

Substrate stiffness modulates lineage markers CEBPA and RUNX2 in immortalised MSCs.  Primary  
MSCs cultured for three weeks on tissue culture plastic (TCP) in media supplemented with an adipo-induction 
cocktail formed lipid droplets that could be imaged by Oil Red O staining. Consistent with previous reports25, the 
immortalised MSCs also formed lipid droplets under the same conditions (Fig. 4a). The influence of substrate 
stiffness alone was sufficient to alter transcript levels of adipogenic marker CEBPA (CCAAT/enhancer-binding 
protein alpha) in immortalised MSCs: CEBPA was 2.4-fold higher in cells cultured on soft (2 kPa) versus stiff (25 
kPa) collagen-I coated PA hydrogels in standard media for three weeks (p = 0.0006; Fig. 4b). Regulator of adipo-
cyte differentiation PPARG (Peroxisome proliferator-activated receptor gamma) was also 1.3-fold higher on soft 
than stiff substrates, but this effect was not significant. Modulation of substrate stiffness did not significantly affect 
levels of CEBPA or PPARG transcripts in immortalised cells treated with adipo-induction media (Fig. 4c). Culture 
of primary MSCs on TCP for three weeks in media supplemented with an osteo-induction cocktail showed posi-
tive staining for alkaline phosphatase (ALP) activity. As reported previously25, the immortalised line also showed 
ALP activity under the same conditions (Fig. 4d). The influence of substrate stiffness was again found to be suffi-
cient to affect genes indicative of lineage in the absence of chemical induction: culture of immortalised MSCs on 
stiff substrates caused a 4-fold increase in RUNX2 (runt-related transcription factor 2) relative to culture on soft 
(p = 0.03; Fig. 4e). BGLAP (osteocalcin) was also increased, but the change was not significant. RUNX2 transcript 
was increased 16-fold on stiff versus soft in immortalised MSCs cultured with osteo-induction media (p = 0.02), 
suggesting a synergistic relationship between chemical and mechanical stimuli (Fig. 4f). These results reproduce 
earlier observations of differentiation potential in the clonal, immortalised Y201 MSC line and furthermore show 
that genes associated with adipogenesis and osteogenesis are mechanically regulated.

A stably expressed reporter construct responds to substrate stiffness.  The immortalised MSC 
line was transformed to stably express histone H2B labelled with red fluorescent protein (RFP-H2B) and either 
wildtype YAP1 tagged with green fluorescent protein (GFP-YAP(wt)) or a tagged YAP1 with four point mutations 
to serine residues (GFP-YAP(4SA)). The construct with the mutant YAP1 was considered here to investigate 
whether point mutations affecting protein turnover could produce a more stable reporter system. The reporter 
cells were cultured on soft (2 kPa) or stiff (25 kPa) substrates for three days under standard conditions, fixed 
and imaged (Fig. 5a). The RFP-H2B was localised to the nuclei of the MSCs; the GFP-YAP constructs appeared 
throughout the cell, but were observed with increasing intensity in the nuclei of MSCs on stiff substrates, par-
ticularly in the case of the wildtype YAP construct. The mechanosensitivity of cell spreading was maintained in 
MSCs with GFP-YAP(wt) and GFP-YAP(4SA) constructs (p = 0.0002 and 0.03, respectively; Fig. 5b), reflecting 
the observations made of primary and non-transformed cells (Fig. 1). Nuclear area also showed sensitivity to the 
stiffness of the substrate in the GFP-YAP(wt) MSCs (Fig. 5c). Quantification of the nuclear:cytoplasmic ratio of 
GFP-YAP(wt) showed the construct to be 1.5-fold more intensely localised to the nucleus in MSCs cultured on 
stiff (25 kPa) than on soft (2 kPa) hydrogels (p < 0.0001; Fig. 5d). The GFP-YAP(4SA) construct also maintained 
significant mechanosensitivity (p < 0.0001), although the fold change in nuclear:cytoplasmic ratio was decreased. 
The integrated, whole-cell intensity of GFP-YAP(wt) was significantly lower on stiff substrates (p = 0.03), but 
levels of the GFP-YAP(4SA) construct showed no significant sensitivity to stiffness (Fig. 5e).

Discussion
An immortalised MSC line maintains mechanosensitive characteristics of primary cells.  Since 
the earliest characterisations, MSCs have been reported to be responsive to mechanical input19, and have subse-
quently been used as a model system to study a wide range of mechanosensitive phenomena6,7,15,18. The immor-
talised MSCs (clonal line Y201, initially isolated from human bone marrow) generated by James et al. have been 

significantly more localised to the nucleus on stiff substrates in primary and immortalised cells. (h) Total levels 
of MKL1 were also highly dependent on substrate stiffness in both primary and immortalised cells: in both 
cases, MKL1 was significantly higher on stiff substrates (p-values from paired t-tests and Kruskal-Wallis (KW) 
tests as indicated; n.s. = not significant; n = 4 primary donors).
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shown to maintain the adipogenic, chondrogenic and osteogenic potential observed in primary MSCs when 
treated with standard, differentiation-inducing chemical cocktails25. However, the extent to which immortalised 
MSCs preserved their responsiveness to substrate mechanics – and, by extension, could be used as a platform to 
develop mechanosensing tools – had not been established. Here, primary and immortalised cells were cultured 
on soft and stiff collagen-I coated PA hydrogels and aspects of recognised mechanosensing pathways compared. 
Hydrogel stiffnesses were chosen to be representative of the bone marrow microenvironment: fat and marrow 
tissues are soft while precalcified bone is comparatively stiff, modelled by 2 and 25 kPa gels, respectively15,37.

The immortalised MSCs reproduced the characteristic morphological responses to substrate stiffness 
observed in primary MSCs (Fig. 1). Primary and immortalised MSCs were found to spread more on the stiffer 
substrate (Fig. 1b), although cellular aspect ratio and circularity were more sensitive to substrate in primary cells 
(Fig. 1c,d). Cell elongation has previously been reported for MSCs cultured on substrates of around 10 kPa38. The 
ECM, cytoskeleton and nucleoskeleton are considered to be part of a continuous, mechanically linked system9,39. 
Changes in cellular morphology were matched by coincident changes in nuclear morphology (Fig. 1e), suggesting 
that the LINC complex that tethers the cytoskeleton to the nucleoskeleton remained functional in the immor-
talised cells. The nucleoskeleton, and specifically an increase in the ratio of A-type to B-type lamins, has been 
shown to report on a more contractile cell phenotype consequent of a stiffer substrate15. The ratio of lamin A/C 

Figure 4.  Substrate stiffness modulates lineage markers in immortalised MSCs. (a) Images of MSCs cultured 
on tissue culture plastic (TCP) for three weeks in the presence of adipogenic induction media, with Oil Red O 
staining (in red). Both primary and immortalised MSCs showed positive staining of lipid droplets, indicating 
adipogenic potential and confirming observations reported previously25. (b) Culture on soft (2 kPa) collagen-I 
coated PA hydrogels significantly increased the adipogenic marker CEBPA, relative to culture on stiff (25 
kPa) hydrogels, measured by RT-qPCR in immortalised MSCs after three weeks in standard media. A second 
adipogenic marker PPARG was also higher on soft substrates, although this effect was not significant. (c) 
Combining substrate stiffness cues with adipogenic induction media did not significantly change levels of 
CEBPA or PPARG. (d) MSCs cultured on TCP for three weeks in the presence of osteogenic induction media 
and stained for alkaline phosphatase activity (ALP). Both primary and immortalised MSCs showed positive 
ALP staining, indicating an osteogenic potential in agreement with earlier reports25. (e) Culture on stiff PA 
hydrogels significantly increased the osteogenic marker RUNX2, relative to culture on soft, measured in 
immortalised MSCs after three weeks in standard media. Osteogenic marker BGLAP was also higher on stiff 
substrates, although this effect was not significant. (f) Stiff substrate significantly amplified the effect of chemical 
osteogenic induction on RUNX2 in immortalised MSCs; BGLAP levels were not significantly altered. A 
synergistic interaction between mechanical and chemical inputs in influencing lineage potential has previously 
been reported in primary MSCs15 (p-values from Mann-Whitney (MW) and un-paired t-tests as indicated; 
n.s. = not significant).
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to B1 was found here to be significantly higher on stiff substrates in both primary and immortalised cells (Fig. 2). 
This result again suggested that mechano-transmission pathways remained functional in the immortalised line. 
This is important as a range of signalling pathways, such as serum response factor (SRF), have been shown to be 
downstream of lamin-A/C regulation40.

Translocation of TFs between cytoplasm and nucleoplasm is a common motif within mechanosensing path-
ways, allowing TF activity to be modulated and thus providing control over specific transcriptionally regulated 
programs, such as lineage selection41,42. Regulation of the subcellular localization of TFs YAP1 and MKL1 as a 
function of substrate stiffness was found to be maintained in the immortalised MSCs (Fig. 3). Stiffness-directed 
regulation of YAP1 has been shown to be necessary for mechanically influenced lineage determination in MSCs, 
with nuclear YAP1 driving osteogenesis7. A mechanism that explains the mechanosensitivity of YAP transloca-
tion was recently reported, based on mechanical regulation of transport through the nuclear pores43; however, 
the universality of this mechanism, both in terms of the cell types and cellular factors it affects, remains to be 
established. The mechanical regulation of MKL1 and its influence on SRF have also been well characterised44, 
including through interactions with lamin-A/C and emerin8. MKL1 has also been shown to be important for 
PPARG mediated adipogenesis in pre-adipocyte cell lines45.

The differentiation potential of MSCs has been shown to be influenced by the mechanical properties of 
the microenvironment, with soft substrates favouring soft tissue specification, such as adipogenesis, and stiff 

Figure 5.  Application of a GFP-YAP/RFP-H2B fluorescent construct to report on substrate stiffness. (a) 
Immortalised MSCs were virally transformed to express RFP-H2B and either GFP-YAP(wt) (wild type) or 
GFP-YAP(4SA) (YAP1 modified with mutations to four serine residues49). Cells were cultured on soft (2 kPa) or 
stiff (25 kPa) hydrogels for three days, fixed and stained with phalloidin and anti-GFP. (b) Analysis of cell areas 
of the transformed immortalised MSCs showed that responsiveness to substrate mechanics was maintained: 
spread area was significantly greater on stiff (25 kPa) versus soft (2 kPa) hydrogels with both the GFP-YAP(wt) 
and GFP-YAP(4SA) construct. (c) Nuclear spread area of the GFP-YAP(wt) transformed cells was significantly 
greater on stiffer hydrogels; nuclear spread of GFP-YAP(4SA) was also greater, although not significant. (d) 
Image analysis showed that nuclear localisation of the YAP reporter constructs was higher on stiff (25 kPa) than 
soft (2 kPa) substrates. Translocation was significant for both GFP-YAP(wt) and GFP-YAP(4SA) constructs, 
although the magnitude of the effect was greater with the wildtype construct. (e) Total GFP-YAP(wt) was 
significantly lower on stiff substrates. Total GFP-YAP(4SA) was greater than in the wildtype construct, although 
not significantly so, and responsiveness to substrate stiffness was lost. (p-values from Mann-Whitney (MW) and 
un-paired t-tests as indicated; n.s. = not significant; outliers in box-whisker plots were identified by the Tukey 
method; a minimum of 17 cells were analysed under each condition).
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substrates favouring osteogenesis7,15,20. Seminal characterisation of the Y201 immortalised MSC line showed that 
adipogenic lineage was induced by treatment with a standard adipo-induction cocktail, evidenced by positive Oil 
Red O staining and increased levels of LPL (lipoprotein lipase) and PPARG transcript after 14 and 21 days25. Here, 
chemically-induced adipogenesis was confirmed in immortalised MSCs cultured on TCP (Fig. 4a). Additionally, 
levels of the adipogenic reporter gene CEBPA were found to be increased in cells cultured on soft versus stiff sub-
strates for 21 days in the absence of chemical stimulation (Fig. 4b). James et al. also reported chemically-induced 
osteogenesis in the Y201 line on TCP, coincident with increased levels of ALP and RUNX2 transcripts25. In addi-
tion to reproducing positive ALP staining on TCP (Fig. 4d), RUNX2 transcript was found here to be increased in 
the immortalised MSCs cultured on stiff versus soft hydrogels for 21 days in the absence of chemical stimulation 
(Fig. 4e). Furthermore, RUNX2 was more substantially affected by substrate stiffness when the immortalised 
MSCs were cultured in the presence of the osteo-inducing chemical cocktail, suggesting a synergistic relationship 
between chemical and physical inputs (Fig. 4f). Taken together, these results show that the mechano-responsive 
nature of MSC behaviour was maintained in an immortalised clonal line, from initial responses in cell morphol-
ogy driven by ECM-FA interactions, through mechano-transmission to the nuclear skeleton and modulation of 
TF activity, and to influence the gene regulation that can affect cell fate (Fig. 6a).

Generation of a stable cell line with a fluorescent stiffness reporter.  Here we showed that cells 
could be used as tools to report on substrate stiffness (Fig. 5). Using MSCs as a platform on which to base such a 
technology is rational given their well-characterised mechanoresponse and long-established use in regenerative 
medicine research23,46. However, we found the extent of mechanosensitivity to vary between cells from different 
primary donors (Figs 2 and 3b,f) and variation has been described within heterogeneous populations derived 
from single donors47. Furthermore, a tool based on primary MSCs would have a limited lifespan as these cells 
typically show senescence over 8–12 passages48. The availability of an immortalised clonal MSC line (Y201)25 with 
maintained mechanosensing properties therefore represented an opportunity to develop a more reproducible 
measurement system. Two mechanosensitive TFs were identified as candidates on which to base a fluorescent 
stiffness probe. Both YAP1 and MKL1 maintained mechanosensitivity in the immortalised MSC line, translo-
cating to the nucleus on stiff substrates (Fig. 3c,g). However, YAP1 was considered a better basis for a reporter 
construct as its mechanoresponse in the immortalised cells manifested only in its subcellular localisation, whereas 
both total MKL1 and its cellular compartment were affected by substrate stiffness (Fig. 3d,h).

The immortalised MSCs were transformed to express nuclear-localised, RFP-tagged histone H2B and wild-
type YAP1 labelled with GFP. In addition, immortalised MSCs were transformed to express the RFP-H2B 
plus a GFP-tagged YAP1 with point mutations to four serine residues (S61A, S109A, S164A and S381G; 
“GFP-YAP(S4A)”). The intracellular location of both the GFP-YAP(wt) and GFP-YAP(S4A) probes was sensitive 
to substrate stiffness, being significantly more localised to the nucleus on a stiff (25 kPa) versus soft (2 kPa) hydro-
gel in both wildtype and mutant cases (Fig. 5a,d). YAP is phosphorylated by the serine/threonine protein kinase 
LATS (large tumour suppressor) at five serine residues as part of the Hippo signalling cascade. Phosphorylation 
at serine-127 – not mutated in the GFP-YAP(S4A) construct – is thought to regulate translocation between 
cytoplasm and the nucleus, while phosphorylation at serine-381 – mutated to a glycine in the GFP-YAP(S4A) 
construct – heads a cascade leading to proteasomal degradation of YAP49. It was therefore reasoned that the 
GFP-YAP(S4A) construct might retain the ability to report on stiffness because of its location within the cell, 
but be more stable and less liable to disturb other cellular functions. This was partially borne out by an increased 

Figure 6.  Mechanosensitive features of primary MSCs maintained in the immortalised MSC line. (a) Mechano-
regulatory pathways observed in both primary and immortalised cells included: modulation of cell spreading 
and morphology, regulation of the nuclear lamina, translocation of transcription factors YAP1 and MKL1, 
and changes to differentiation potential. (b) The maintained sensitivity of YAP1 location to substrate stiffness 
enabled development of a reporter cell line: cytoplasmic GFP-YAP was indicative of a soft substrate, while 
colocalisation with nuclear RFP-H2B indicated a stiff substrate.
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stability of cytoplasmic GFP-YAP(S4A) that resulted in no significant change to total levels of the construct on 
soft and stiff substrates (Fig. 5e). However, the sensitivity and dynamic range of GFP-YAP(4SA) translocation was 
also reduced with respect to the wildtype construct (Fig. 5d). Previous reports have shown that overexpression 
of YAP can override the influence that substrate stiffness has over MSC lineage7. However, here the presence of 
the reporter constructs was found not to affect the initial mechanosensitive cell and nuclear spreading responses 
(Fig. 5b,c), found in the primary and untransformed immortalised MSCs (Fig. 1) and interpreted as being indic-
ative of intact mechanosensing mechanisms at FAs. The GFP-YAP(wt) construct was thus found to translocate 
such that the nuclear:cytoplasmic ratio could be used to report on substrate stiffness (Fig. 6b).

In conclusion, we have shown that an immortalised, clonal line of human-derived MSCs maintained the 
mechanosensitive features of primary MSCs. Furthermore, when stably transformed with a YAP-based fluores-
cent construct, the immortalised cells maintained sensitivity to the mechanical properties of the microenviron-
ment and could be used to distinguish soft from stiff surroundings. Given the continued interest in MSCs in 
tissue engineering and regenerative medicine, and the growing appreciation of the roles of mechanical signalling 
in determining a broad range of cell behaviours, these cells and derivative technologies have potential to benefit 
scientists wishing to understand the mechanical properties of substrates and scaffolds from a cellular perspective.

Methods
Cell culture.  Experiments were performed in accordance with relevant guidelines and regulations, and with 
relevant National Research Ethics Service and University of Manchester approvals. Primary human MSCs were 
harvested from the bone marrow of male and female donors aged 58–80 undergoing knee and hip surgery, under 
provision of informed written consent. MSCs were isolated according to established methodology50. Primary 
MSCs were used at passages 3–5. Immortalised human MSCs (line Y201) were used as described previously25. 
MSCs were cultured in low glucose (1 g/L) DMEM (Gibco). 293 T cells were cultured in high glucose (4.5 g/L) 
DMEM (Lonza). All media was supplemented with 10% fetal bovine serum (FBS, Labtech) and 1% penicillin/
streptomycin cocktail (P/S, Sigma). Investigations into the effects of substrate stiffness were performed on colla-
gen-I coated PA gels (Matrigen).

Immunofluorescence.  Cells were cultured on polyacrylamide hydrogels of defined stiffnesses (Matrigen) 
at a density of 450 cells/cm2 for 3 days. Cells were fixed with 4% paraformaldehyde (PFA, VWR International) 
in phosphate buffered saline (PBS) for 10 min at room temperature (RT), followed by 2 × 5 min washing in PBS. 
Cells were permeabilized using 1% Triton X-100 (Sigma-Aldrich) in PBS and blocked with 2% bovine serum 
albumin (BSA, Sigma-Aldrich), 0.25% Triton-X in PBS at RT for 30 mins. Cells were incubated with primary 
antibodies against YAP (from rabbit; Proteintech; used at 1:100 dilution overnight at 4 °C), MKL1 (from rabbit; 
Abcam; used at 1:300 dilution overnight at 4 °C), lamin-A/C (from mouse; Santa Cruz Biotechnology, sc-7292; 
used at 1:200 dilution overnight at 4 °C), lamin-B1 (from rabbit; Proteintech; used at 1:300 dilution overnight 
at 4 °C) and GFP (from rabbit; Invitrogen; used at 1:150 dilution for 1 hour at 37 °C). Following 3 × 5 min PBS 
washes, cells were incubated with secondary antibodies (Life Technologies, used at 1:1000 dilution) for 1 hour 
at 37 °C: AlexaFluor-488 donkey anti-rabbit, AlexaFluor-594 donkey anti-rabbit, AlexaFluor-594 donkey 
anti-mouse and AlexaFluor-647 donkey anti-rabbit. Following further 3 × 5 min PBS washes, DAPI (1:500; 
Sigma Aldrich, D9542) was used to stain cells at 37 °C for 1 hour; AlexaFluor-488 or 647 Phalloidin (1:100; Cell 
Signaling Technology) was added with the DAPI stain. Samples were washed in PBS for 3 × 5 mins prior to imag-
ing. Secondary-only controls for antibody staining are shown in Supplemental Fig. 1.

Cells were imaged using an Axio Examiner A1 microscope (Zeiss) with an EC Epiplan-Neofluar 20 × /0.5 
NA dipping objective lens (Zeiss). Images were processed in ImageJ (version 2.0.0, National Institutes of Health, 
USA)51; CellProfiler (version 2.1.1, Broad Institute, USA)52 was used to characterize cell morphometric param-
eters: cell area; nuclear area; ratios of nuclear to cytoplasmic protein intensities; aspect ratio (ratio of major to 
minor axes of an ellipse enclosing the cell or nucleus); and circularity (ratio of (4π x area) to square of the perim-
eter). Multiple random fields of view were analysed in order to characterise cell morphologies and immunofluo-
rescence intensities. When making quantitative comparisons between images from different conditions, the same 
procedures and parameters were used in the image analysis software. Images were corrected for background 
fluorescence by subtracting the mean intensity of a cell-free area from each pixel; all images under comparison in 
the same experiment had matched exposure and contrast settings.

Differentiation assays.  Osteogenesis was chemically induced by culture in StemXVivo Osteogenic/
Adipogenic Base Media (R&D Systems), supplemented with StemXVivo Human Osteogenic Supplement (R&D 
Systems) and 1% P/S. Adipogenesis was chemically induced in high glucose (4.5 g/L) DMEM with 1 µM dexa-
methasone, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 10 µg/mL insulin and 100 µM indomethacin (all rea-
gents from Sigma), supplemented with 10% FBS and 1% P/S as described previously53. MSCs were grown in 
osteogenic, adipogenic or control media for three weeks on collagen-I coated PA hydrogels for RT-qPCR assays, 
with seeding densities of 2000 and 1000 cells/cm2, for primary and immortalised MSCs respectively (seeding rates 
were adjusted to account for a greater rate of proliferation in the immortalised cells). For cytochemistry assays, 
cells were seeded on tissue culture plastic (TCP) at densities of 1200 or 650 cells/cm2, for primary and immortal-
ised MSCs respectively.

Cytochemistry.  Adipogenesis was quantified by positive staining of lipid droplets with Oil Red O (Sigma) 
and osteogenesis by alkaline phosphatase activity (Sigma, following the manufacturer’s protocol). Adipogenic 
cells were imaged using an EVOS XL Core microscope (Life-Tech) with a Plan PH2 achromatic infinity-corrected 
20 × lens.
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RT-qPCR.  Total RNA was extracted with miRNeasy Mini Kit (Qiagen) and its concentration was measured 
with a NanoDrop 2000 spectrophotometer (Thermo Scientific). mRNA was reverse transcribed using miScript 
II RT Kit with the HiFlex buffer (Qiagen) in a Verity Thermal Cycler (Applied Biosystems). Adipogenic (PPARG 
and CEBPA) and osteogenic markers (RUNX2 and BGLAP) were quantified with SYBR Select Master Mix 
(Applied Biosystems) according to the manufacturer’s instructions, with normalisation against PPIA (Sigma), 
in a StepOnePlus Real-Time PCR System (Applied Biosystems). Experiments were performed in technical trip-
licates and relative gene expression was calculated using the 2-ΔΔCt method54. Primers were purchased from 
PrimerDesign:

PPARG (Forward, AACACTAAACCACAAATATACAACAAG; Reverse, GGCATCTCTGTGTCAACCAT)
CEBPA (CGGCAACTCTAGTATTTAGGATAAC; CAAATAAAATGACAAGGCACGATT)
RUNX2 (TTCTCCCCTTTTCCCACTGA; CAAACGCAATCACTATCTATACCAT)
BGLAP (CAGCGAGGTAGTGAAGAGACC; TCAGCCAACTCGTCACAGTC)
PPIA (ATGCTGGACCCAACACAAA; TTTCACTTTGCCAAACACCA)

Preparation of reporter constructs.  A construct expressing GFP-YAP/RFP-H2B (“GFP-YAP(wt)”) was 
cloned from a plasmid provided by the Discher laboratory (University of Pennsylvania, USA), with inclusion of 
peptide T2A to obtain a bicistronic vector (see Supplemental Fig. 2). A second construct expressing the same, 
but with four point mutations to serine residues in YAP (S61A, S109A, S164A and S381G; “GFP-YAP(4SA)”) was 
generated by site-directed mutagenesis (Agilent QuikChange Lightning kit, used according to the manufacturer’s 
instructions). Plasmid identities were confirmed by sequencing (GATC Biotech) and analysis with DNADynamo 
(Blue Tractor Software Ltd.) and BLAST (NCBI, National Institutes of Health, USA). Plasmids were amplified in 
competent E. coli cells, harvested and purified with a HiSpeed Plasmid Maxi Kit (Qiagen), following the manu-
facturer’s instructions.

Viral delivery of reporter constructs.  Lentiviral envelope plasmid pMD2.G and packaging plasmid 
psPAX2 were gifts from Didier Trono (Addgene plasmids #12259 and #12260). 293T cells were transiently 
transfected with the reporter, packaging and envelope plasmids (at a ratio 2:1.5:1) using polyethylenimine (PEI; 
Merck-Millipore). Virus production was enhanced by addition of 10 mM sodium butyrate (Merck-Millipore) and 
viral particles concentrated using Vivaspin 20 ultracentrifugation column (Sartorius). Y201 cells were transduced 
with the viral particles and 8 µg/mL polybrene (Merck-Millipore). Two weeks following infection RFP-positive 
cells were selected by FACS-sorting.

Statistical analysis.  All data is presented as mean ± SEM. All experiments were performed with four bio-
logical primary donors. Data was checked for normal distribution using D’Agostino-Pearson or Shapiro-Wilk 
tests. Differences in means of normally distributed data were analysed with t-tests (paired when applied to 
donor-matched samples), otherwise Kruskal-Wallis (KW) or Mann-Whitney (MW) non-parametric tests were 
used. Analysis was performed using Prism 7 (GraphPad Software Inc.) and Mathematica (Wolfram Research Inc.).
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