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Abstract

Background: Rapid and thorough quality assessment of sequenced genomes on an ultra-high-throughput scale is crucial
for successful large-scale genomic studies. Comprehensive quality assessment typically requires full genome alignment,
which costs a substantial amount of computational resources and turnaround time. Existing tools are either
computationally expensive owing to full alignment or lacking essential quality metrics by skipping read alignment.
Findings: We developed a set of rapid and accurate methods to produce comprehensive quality metrics directly from a
subset of raw sequence reads (from whole-genome or whole-exome sequencing) without full alignment. Our methods offer
orders of magnitude faster turnaround time than existing full alignment–based methods while providing comprehensive
and sophisticated quality metrics, including estimates of genetic ancestry and cross-sample contamination. Conclusions:
By rapidly and comprehensively performing the quality assessment, our tool will help investigators detect potential issues
in ultra-high-throughput sequence reads in real time within a low computational cost at the early stages of the analyses,
ensuring high-quality downstream results and preventing unexpected loss in time, money, and invaluable specimens.
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Findings
Introduction

Efficient and thorough quality assessment from deeply se-
quenced genomes on an ultra-high-throughput scale is crucial
for successful large-scale sequencing studies. Delay or failure in
detecting contamination, sample swaps, quality degradation, or
other unexpected problems in the sequencing or library prepa-
ration protocol can result in enormous loss of time, money, and
invaluable specimens if, e.g., hundreds or thousands of samples
are found to be contaminated weeks or months later. Currently,
quality control (QC) tools for sequencing data analyses either
have to wait hundreds of CPU hours for sequence alignment re-
sults to generate comprehensive QC metrics or completely skip
the sequence alignment step and ignore alignment information

to achieve faster turnaround. A desired strategy that can gen-
erate comprehensive QC metrics of sequence data at real-time
speed will ensure the generation of high-quality sequence reads
and successful outcomes in the downstream analyses.

Existing quality assessment or QC tools mainly fall into
2 categories—pre-alignment and post-alignment methods—on
the basis of whether they require full alignment of the genome
prior to the quality assessment. Pre-alignment methods, such as
FASTQC [1], PIQA [2], and HTQC [3], produce read-level summary
statistics that can be obtained from sequence reads, such as base
compositions, k-mer distributions, base qualities, and GC bias
levels. However, these pre-alignment methods do not estimate
many key quality metrics required for comprehensive quality
assessment. These missing metrics include mapping rate, depth
distribution, the fraction of genome covered, sample contami-
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nation, or genetic ancestry information. Other post-alignment
methods, such as QPLOT [4], Picard [5], GotCloud [6], and veri-
fyBamID [7], provide a subset of these key quality metrics but
require full alignment of sequence reads, which typically takes
hundreds of CPU hours for deep (e.g., >30×) sequence genome
(Table 1).

We describe FASTQuick, a rapid and accurate set of algo-
rithms and software tools, to combine the merits of QC tools
from both categories. By focusing on a variant-centric subset
of a reference genome (reduced reference genome), our meth-
ods offer up to 30–100-fold faster turnaround time than existing
post-alignment methods for deeply sequenced genome while
providing a comprehensive set of quality metrics comparable
with QPLOT and verifyBamID (full-alignment–based results from
these 2 tools together constitute most of the important QC met-
rics from the GotCloud-based QC pipeline, which we compare
against below) with the help of statistical adjustments to ac-
count for the reduced reference genome.

Computational efficiency

The primary goal of FASTQuick is to achieve comprehensive QC
with much less computational cost than full-alignment–based
QC procedures. A large fraction of the computational gains come
from the use of the reduced reference genome and filtering
of unalignable reads through mismatch-tolerant spaced k-mer
hashing (Fig. 1A) [8]. Compared to alignment to the full hu-
man reference genome, aligning a 3× HG00553 genome on the
reduced reference genome reduced the run time by 34.9-fold
(94,020 vs 2,697 seconds) using the same algorithm. Using a hash
table built from mismatch-tolerant spaced k-mers, >90% of un-
alignable reads can be filtered out with very little loss (Supple-
mentary Table S1) of alignable reads, when ≥3 hits are required
(default parameter) for a read to be considered as alignable, sav-
ing an additional 65% of computational time (Fig. 1B). Putting
them together, the alignment step of FASTQuick (with default
parameters) was 100-fold faster (94,020 vs 939 seconds) than the
full genome alignment. We observed that >99% of unalignable
reads could be filtered out with a more stringent threshold (≥7
hits) at the expense of 0.01% loss of alignable reads. However,
the additional computational gain was only 14% (939 vs 811 sec-
onds).

We also evaluated the overall computational efficiency be-
tween FASTQuick and the GotCloud-based QC pipeline (typical
sequence processing pipeline based on full genome alignment
as in 1000 Genomes Project and TOPMed project) on the high-
coverage genome (38×) and low-coverage (3×) genomes from the
1000 Genomes Project (Table 2). The results demonstrate that
FASTQuick produces a comparable set of QC metrics to GotCloud
with a 30–100-fold faster turnaround time.

QC metrics produced by FASTQuick

FASTQuick can automatically generate and visualize the QC
metrics listed in Supplementary Table S2. Briefly, FASTQuick
generates 3 types of generic QC summary statistics—per-base,
per-read, and per-variant summary statistics. Per-base summary
statistics inform mapping rate, depth distribution, GC bias, and
base quality. Per-read summary statistics allow us to estimate
PCR duplication rate and insert size distribution adjusted to ac-
count for pair-end alignment bias due to the reduced reference
genome. Per-variant summary statistics allow us to estimate

DNA contamination rate and genetic ancestry. These summary
statistics are combined, jointly analyzed, and visualized into an
interpretable and user-friendly quality report shown as in Sup-
plementary Items S1 and S2.

Accuracy of QC metrics

We compared the distribution of QC metrics generated from
FASTQuick with those from GotCloud on multiple sequenced
genomes. The QC metrics shared between FASTQuick and Got-
Cloud are listed in Supplementary Table S2. The visualization
QC metrics such as base quality recalibration (Fig. 1E), normal-
ized mean depth by GC content (Fig. 1F), and depth distribu-
tion are very close between FASTQuick and GotCloud. For exam-
ple, the 2-sample Kolmogorov-Smirnov (KS) test statistic, which
quantifies the maximum differences between 2 empirical cu-
mulative distributions of depth, was D = 0.040. Similarly, the
Wasserstein-1D distance, which quantifies the average distance
between 2 cumulative distributions of depth, was W = 0.0038.
The Wasserstein distance is a widely used metric to evaluate
the similarity between 2 distributions in generative adversarial
networks [9]. Even though such differences are statistically sig-
nificant (mainly because of the large number of observations),
it is arguably a small amount of difference that is typically ob-
served between different QC tools on the same sequence data.
We also evaluated the estimated PCR duplication rate by com-
paring with QPLOT’s result using 10 randomly selected samples
from the 1000 Genomes Project, which shows a difference al-
most within 1.5% (Supplementary Table S3). To further facilitate
other potential analyses that require genotype availability, such
as relatedness2, we also generated a VCF file that contains GT,
PL, and GP fields. The genotype accuracy is ∼99% by comparing
with the 1000 Genomes Project phase3 call set (Supplementary
Table S4).

One challenge in quality assessment based on the partial
alignment of sequence reads to the reduced reference genome
is the estimation of insert size distribution. To systematically
correct for biased estimation of insert sizes, we statistically in-
tegrated the observed insert sizes across all contigs with in-
verse probability weighting based on the Kaplan-Meier curve
[10] (see Methods). Applying our correction produces an esti-
mated insert size distribution much closer to that from the full
alignment (Fig. 1G). The KS-test statistic and the Wasserstein-
1D distance were D = 0.60 and W = 0.0591, respectively, when
using 500-bp contigs only, but they decreased to D = 0.18 and
W = 0.0170 when using both 500- and 2,000-bp contigs when
comparing the insert size distributions between FASTQuick and
GotCloud. When adjusting the insert-size distribution using a
Kaplan-Meier estimator, they substantially decreased to D =
0.017 and W = 0.0066, respectively.

To evaluate the estimation accuracy of contamination rate
and genetic ancestry, we prepared artificially contaminated 1000
Genomes Project samples in silico (see Methods). Then we com-
pared the estimated contamination rate and genetic ancestry
from FASTQuick with the estimation from the full-alignment QC
pipeline-based result. Our results demonstrate that FASTQuick
can estimate contamination rate (Fig. 1H) and genetic ancestry
(Supplementary Table S5) as accurately as the standard method
VerifyBamID2 relying on the full-alignment result. For exam-
ple, HG00553(PUR) and NA12878(CEU) are correctly mapped
onto their corresponding genetic ancestry group (Supplemen-
tary Items S1 and S3).
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Table 1: Quality assessment metrics provided by different QC tools

Metric FASTQC PIQA HTQC QPLOT Picard verifyBamID2 FASTQuick

Base quality per cycle � � � � � �

GC bias � � �

PCR duplication rate � � �

Insert size distribution � � �

Contamination estimate � � �

Genetic ancestry � �

% Mapped reads � � �a

Depth distribution � � �

Total No. of reads � � � �

Read length distribution � � � � �

Full alignment not required � � � �

aCurrently only recommended for whole-genome sequencing dataset.

Figure 1: Illustration of FASTQuick. (A) Spaced k-mer hash filter design with the tolerance of mismatches for each 32-mer. (B) Effect of minimum spaced k-mer hits to be
considered for BWA alignment on the overall run time, fraction of total reads filtered, and fraction of falsely filtered alignable reads. k = 3 was used in our experiment.
(C) Procedure to build FASTQuick indices with a reduced reference genome for spaced k-mer hash and the BWA algorithm. (D) Procedure to process sequence reads
and produce QC metrics using FASTQuick. (E) Comparison of visualizations of reported base qualities (in Phred scale) and empirical base qualities between QPLOT and

FASTQuick for a 38× genome. (F) Comparison of visualization of GC bias (in normalized mean depth) between QPLOT and FASTQuick for a 38× genome. (G) Comparison
of estimated insert size distributions between QPLOT and FASTQuick (after Kaplan-Meier adjustment) for a 38× genome. (H) Comparison of estimated contamination
rates in in silico contaminated 1000 Genomes Project samples between verifyBamID2 and QPLOT. The purple diagonal dotted line represents y = x.

Table 2: Running time comparison

No. of threads
FASTQuick Time (h) GotCloud QC Time (with BWA) (h)

HG00553 (3×) NA12878 (38×) HG00553 (3×) NA12878 (38×)

1 1.03 5.48 30.95 369.56
2 0.53 2.46 21.53 230.85
4 0.33 1.76 15.83 154.91
8 0.24 1.75 12.74 131.85

Running time is evaluated as wall-clock elapsed time on a machine with Intel R© Xeon R© CPU (X7560 at 2.27 GHz). Reference indexing time is independent of the input

sequence dataset and not included. (It takes 3min20s to index human genome under default settings.)
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Methods
Overview of FASTQuick

FASTQuick first constructs a reduced reference genome from a
set of flanking sequences surrounding known single-nucleotide
polymorphisms (SNPs) and builds a Burrows–Wheeler trans-
form (BWT) index [11] and mismatch-tolerant k-mer hash table
(Fig. 1C). Once the indices are built, FASTQuick rapidly filters out
unalignable reads whose first 96 bp have <3 hits (out of 18 po-
tential hits, among which 6 hits per 32-mer) against the spaced
k-mer hash indices, and aligns filtered sequence reads to the
reduced reference genome using the BWT index (Fig. 1D). The
small fraction of filtered aligned reads will be stored in binary
Sequence Alignment/Map format (BAM) [12]. Next, all the sum-
mary statistics that are generated from the aligned reads are col-
lected and jointly analyzed to form various QC metrics that are
reported in a user-friendly report in HTML (Supplementary Item
S1).

Construction of reduced reference genome using
flanking sequences of SNPs

FASTQuick constructs a reduced reference genome based on
well-alignable flanking sequences around known common SNPs
to enrich the reads that are informative for both genetic infer-
ence (e.g., contamination and ancestry) and other genomic qual-
ity metrics that require read alignment. Starting from an arbi-
trary set of known SNPs, FASTQuick randomly selects a des-
ignated number of SNPs from a known common (minor allele
frequency >5%) SNP set, such as HapMap3 [13], while exclud-
ing SNPs near hard-to-align regions (e.g., 1000 Genomes Project
strict mask region). FASTQuick then constructs a reduced refer-
ence genome using short flanking sequences of the majority of
SNPs (e.g., 90%) and long flanking sequences of the remaining
SNPs.

Filtering unalignable reads with mismatch-tolerant
hash

Because the reduced reference genome is a small subset of the
whole genome sequence, we expect that only a small fraction of
reads will be alignable. However, attempting to align all the reads
is still computationally expensive. FASTQuick builds a hash-
based index to rapidly filter out the reads that are unlikely to be
aligned to the reduced reference genome. To make the hash ro-
bust against sequencing errors, FASTQuick builds 6 locally sen-
sitive hash tables of 16-mers for each 32-mer (Fig. 1A) so that
32-mers with ≤2 mismatches can still be guaranteed to match
to ≥1 of the hash tables [8].

FASTQuick partitions each sequence read into multiple 32-
mers and performs hash lookups for each possible 16-mer. For
example, for a 100-bp read, eighteen 16-mers (6 per 32-mer)
across three 32-mers will be matched to the hash table. For reads
longer than 96-bp reads, only the first 96-bp reads are used.
FASTQuick’s decision whether to filter out a read is based on
whether the number of matching 16-mers is less than a certain
threshold k. For example, if k is 3, reads with <7 mismatches are
guaranteed to pass the filter, and many other reads with more
mismatches will pass the filter. If k is 10, reads with <3 mis-
matches are guaranteed to pass the filter. We chose k = 3 on
the basis of empirical observations (see Findings). The remain-
ing reads will then be aligned by the optimized BWA-like algo-
rithms to the reduced reference genome.

Generating base-level, read-level, and variant-level QC
metrics

Using the reads aligned to the reduced reference genome,
FASTQuick generates a full list of base-level, read-level, and
variant-level QC metrics (Supplementary Table S2). Base-level
metrics, such as base quality, and sequencing cycle, are recorded
directly without using the alignment information. Because the
reads spanning the end of flanking sequences may be poorly
aligned, FASTQuick produces metrics only on the fully alignable
portion of flanking sequences. Let the length of the flanking se-
quence be w and the read length be r; then only 2 × (w − r)
+1 bases spanning the variant site will be considered when cal-
culating base-level summary statistics. Read-level QC metrics,
such as the fraction of mapped reads and insert size distribu-
tion, are estimated and reported on the basis of the read align-
ment result. Variant-level metrics are collected after the align-
ment result becomes available and are reported as pile-up bases,
estimation of contamination level, and genetic ancestry.

Bias-corrected estimation of insert size distribution

The insert size distribution is typically estimated from distances
between the aligned pairs of reads from the fully aligned reads.
When using a reduced reference, a large proportion of paired
reads may not be fully mapped, and the read pairs that have
shorter insert sizes are more likely to be mapped on both ends.
As a result, estimating insert size distribution based only on the
reads where both ends are mapped will result in biased esti-
mates of insert sizes, as empirically demonstrated using the 38×
genome (Supplementary Figs S1 and S2).

We first attempted to resolve this challenge by extending
10% of the variant-centric contigs to be sufficiently long (2,000
bp) and by estimating insert size only from the reads mapped
to longer contigs. This way, we prevent the reduced reference
genome from becoming too large to achieve computational effi-
ciency and reduce insert size estimation at the same time. But
due to the limited number of long-flanking variants, bias and
fluctuations still exist in the estimated insert size distribution
(Supplementary Fig. S3).

To infer insert size distribution more accurately, FASTQuick
further corrects for the bias nonparametrically using the
Kaplan-Meier estimator. Owing to the limited length of flank-
ing sequences in the reduced reference, the observed distribu-
tion of insert sizes obtained from the reads that have both ends
mapped will be biased towards smaller values. To recover the
full distribution of insert sizes adjusting for the “censored” reads
(i.e., reads with only 1 of the paired ends aligned) enriched for
large insert sizes, we adopted the Kaplan-Meier estimator as
an inverse-probability-of-censoring weighted average [10] as de-
scribed below.

Specifically, we define a tuple (to, tl , tr ) (Supplementary Fig.
S1) for each mapped DNA segment (or read pair), where to is the
observed insert size, tl is the maximal insert size of read 1, and
tr is the maximal insert size of read 2. The maximal insert size
is defined as the distance between the leftmost/rightmost base
of read 1/read 2 and the rightmost/leftmost base of the flanking
region sequence, respectively. This tuple is fully specified only
when a read pair is properly aligned; otherwise, for a single-end
mapped read pair (including partially mapped pairs) only 1 of the
2 maximal insert sizes (tl or tr ) is available and the unobserved
value is set to missing; the rest of the read pairs, such as those
that are mapped to different contigs, with low mapping quality,
or in abnormal orientation, are discarded in the estimation of in-
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sert size distribution. Empirically, given N properly aligned read
pairs (i.e., tuples without missing values), we can estimate insert
size by counting the frequency of different observed insert sizes,
to, and the cumulative distribution of insert size hence becomes:

F (t) = 1
N

∑N

i = 1
I [to,i ≤ t] .

However, as mentioned above, this direct estimation will be
severely biased because reads mapped only on a single end are
more likely to have larger insert sizes. To correct for this bias, we
use an approach analogous to the estimation of survival func-
tion as S (t) = 1 − F (t). We can view the leftmost/rightmost base
on each flanking region as the start time point, the exact insert
size to as the time when it fails to observe the data point, and
the maximal insert size, tl and tr , as the time when the data
point is censored. Let the ordered observed time points to and
censored time points tl (or tr ) be τ . Denote ot as the number of
observed failure cases, i.e., the number of read pairs that have
observed insert size ≤t, and also denote ct as the number of cen-
sored cases at time t, i.e., the number of single-end mapped read
pairs have maximal insert size ≤t, and then let I [τ j ≥ t] be the in-
dicator function if the jth time point is larger than a certain time
t (jth insert size ≥t). Then the risk set is:

Y (t) =
∑ J

j=1
(o j + c j ) I [τ j ≥ t] .

Then the Kaplan-Meier estimator Ŝkm of S(t):

Ŝkm (t) =
∏

{ j|τ j ≤t}
[
1 − nj

Y (τ j )

]
.

Satten et al. [10] proposed a simplified algorithm to iteratively
estimate survival functions for failure times and survival func-
tions for censoring times, by which we conveniently estimate
F (t).

Estimation of contamination rates and genetic ancestry

We also implemented likelihood-based methods to estimate
the genetic ancestry and contamination rate in FASTQuick us-
ing sequencing data that are mapped onto a random sub-
set of SNPs from the 1000 Genomes Project [14]. The details
of these methods have been fully described in VerifyBamID2
[15]. In FASTQuick, to seamlessly integrate these methods into
our ultra-fast QC procedure, we designed compatible variant-
centric data structures and input/output interfaces that can
directly deliver sequence information and estimated statistics
from FASTQuick to modules that estimate contamination and
genetic ancestry.

Support for target sequencing dataset

FASTQuick also has provided options to incorporate target re-
gions. We can conveniently use the exome region list for exome
sequencing (and it potentially can be extended to an abundantly
expressed gene list for RNA sequencing with additional effort
to adjust for data type–specific artifacts and biases) as input in-
formation to only select markers within the list. We prepared
the result generated by FASTQuick for exome-sequencing data
of HG00553 from the 1000 Genomes Project as a demonstration
(Supplementary Item S2).

Discussion

We describe FASTQuick, which addresses computational chal-
lenges in QC of ultra-high-throughput sequence data, by focus-
ing on sequence reads mappable to an informative subset of
the reference genome. Our results demonstrate that FASTQuick
achieves on average a 30–100-fold faster turnaround time than
methods based on full sequence alignment while producing
comprehensive and accurate QC metrics. Compared with pre-
vious quality assessment methods that do not align sequence
reads at all, FASTQuick provides more comprehensive QC met-
rics such as depth distribution, insert size distribution, contam-
ination, and genetic ancestry.

FASTQuick leverages several methods, such as spaced k-mer
hash table and Kaplan-Meier estimator, to enable rapid and ac-
curate estimation of QC metrics. Interestingly, the computa-
tional time is much faster than the time required to convert and
compress Illumina’s BCL formatted files into FASTQ files. There-
fore, FASTQuick can work as a UNIX pipe during the conversion
procedures to increase efficiency in the sequencing pipeline.

There are potential drawbacks of only using the reduced
(subset of) reference genome, but FASTQuick applies heuris-
tics to avoid such drawbacks. For example, reads that originate
from multiple homologous regions on the genome may be mis-
aligned to the same contig on the reduced genome, which may
affect variant-level quality metrics. FASTQuick addresses this
issue by strictly selecting regions that are unique and easy to
align (callable regions), and we demonstrated the effectiveness
by showing that contamination and genetic ancestry estimates
are almost identical to the estimation from the full genome
alignment result. Another issue could be the excessive single-
end alignment. For example, it will skew the estimation of the
insert size distribution toward a smaller value. We applied a
Kaplan-Meier estimator to correct the estimation as described
above. There are still limitations associated with the reduced
reference genome. For example, a precise estimation of percent-
age of mapped reads is challenging, especially for targeted se-
quencing reads, owing to the lack of repetitive sequences. Anal-
ysis involving structural variation or comprehensive screening
of genome-wide association study variants may not be feasible
under FASTQuick’s settings.

Currently, FASTQuick is only suitable for short sequence
reads. To enable an analysis of long sequence reads, addi-
tional alignment algorithms such as Minimap2 [16] could be
incorporated. Extending FASTQuick to other types of sequence
data, such as RNA sequencing, chromatin immunoprecipitation
followed by sequencing, and assay for transposase-accessible
chromatin using sequencing should also be possible if the
technology-specific characteristics are properly considered and
accounted for. In addition, FASTQuick can serve as a general
down-sampling step prior to analysis like sample-swap detec-
tion or kinship estimation with the help of alignment results
on common variants. More broadly, although we demonstrated
FASTQuick’s capability by using human genome analysis as an
example, the whole pipeline is easily adaptable to other organ-
isms for which corresponding genomic databases are available.

Unlike hardware-accelerated solutions that achieve fast
speed by introducing specialized hardware, such as DRAGEN
[17] and Parabricks [18], FASTQuick gains its speed from opti-
mized algorithms that are specially designed for the reduced
genome setting. Compared to omni-purpose proprietary tools
like DRAGEN and Parabricks, FASTQuick is an open-source tool
that does not require specific hardware such as GPU or field-
programmable gate array devices and is specifically designed
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for quality assessment, which can be critical to attain rapid
turnaround time in sequence analysis workflows and add great
value to the existing sequence analysis ecosystem.

Availability and Requirements

Project name: FASTQuick
Project home page: https://github.com/Griffan/FASTQuick
Operating system(s): Linux, MacOS
Programming language: C++, Shell, R
Other requirements: CMAKE, libhts, ggplot2, knitr
License: MIT
RRID:SCR 019269

Data Availability

Datasets are publicly available at the Trans-Omics Precision
Medicine (TOPMed) project [19] and the 1000 Genomes Project
[14, 20]. Snapshots of the code, reports, and other supporting
data are available from the GigaScience GigaDB repository [21].

Additional Files

Figure S1. Definition of insert size tuple. The blue portion rep-
resents a reference genome backbone. The orange portion rep-
resents the extracted flanking region. The yellow portion repre-
sents a variant. The gray bars represent a pair of reads aligning
to this flanking region.
Figure S2. Marginal distribution of maximum insert size and ob-
served insert size in the reduced genome under 250 bp (short)
and 1,000 bp (long) flanking length configuration. (Top) Marginal
distribution of maximum insert size. (Right) Marginal distribu-
tion of observed insert size (green), along with true insert size
distribution (blue) and adjusted insert size distribution (red).
(Bottom) Scatter plot of read pairs with maximum insert size and
observed insert size being coordinates. Blue dots represent read
pairs mapped to the long flanking region; purple dots represent
read pairs mapped to the short flanking region. The band be-
tween the line “y = x” and line “y = x + 150” shows read pairs
that are partially mapped. The line “y = 2x − 500” and line “y =
2x − 2,000” are the effective boundaries where read pairs have
both ObservedInsertSize and MaxInsertSize for 250- and 1,000-
bp flanking region, respectively.
Figure S3. Biased insert size distribution in reduced genome un-
der 250 bp (short) or 1000 bp (long) flanking length configura-
tion. Each color represents 1 scenario of insert size estimation
without correction. “Observed.LongRegion” (green) is when in-
sert size distribution is estimated only using reads mapped to
the long flanking region; “Observed.ShortRegion” (blue) is when
only using reads mapped to the short flanking region; “True”
(purple) is insert size distribution estimated under full genome
alignment; “Adjusted” (red) is insert size distribution estimated
by FASTQuick.
Item S1. Detailed quality assessment final report of HG00553
whole-genome dataset
Item S2. Detailed quality assessment final report of HG00553 ex-
ome dataset
Item S3. Detailed quality assessment final report of NA12878
whole-genome dataset
Table S1. Impact of mismatch threshold on k-mer-hash–based
read filtering
Table S2. Summary statistics and visualization items produced
by FASTQuick

Table S3. Estimation of PCR duplication rate on randomly se-
lected 1000 Genomes Project samples
Table S4. Genotype comparison summary of sample HG00553
between FASTQuick and 1000 Genomes Project
Table S5. Comparison of genetic ancestry estimation between
FASTQuick and VerifyBamID2

Abbreviations

bp: base pairs; BWA: Burrows-Wheeler Aligner; BWT: Burrows–
Wheeler transform; CPU: central processing unit; GC: guanine-
cytosine; GPU: graphics processing unit; KS: Kolmogorov-
Smirnov; QC: quality control; SNP: single-nucleotide polymor-
phism.
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