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ABSTRACT

Haploinsufficiency drives Darwinian evolution. Sib-
lings, while alike in many aspects, differ due to
monoallelic differences inherited from each parent.
In cancer, solid tumors exhibit aneuploid genetics
resulting in hundreds to thousands of monoallelic
gene-level copy-number alterations (CNAs) in each
tumor. Aneuploidy patterns are heterogeneous, pos-
ing a challenge to identify drivers in this high-noise
genetic environment. Here, we developed Shifted
Weighted Annotation Network (SWAN) analysis to
assess biology impacted by cumulative monoal-
lelic changes. SWAN enables an integrated pathway-
network analysis of CNAs, RNA expression, and mu-
tations via a simple web platform. SWAN is opti-
mized to best prioritize known and novel tumor sup-
pressors and oncogenes, thereby identifying drivers
and potential druggable vulnerabilities within cancer
CNAs. Protein homeostasis, phospholipid dephos-
phorylation, and ion transport pathways are com-
monly suppressed. An atlas of CNA pathways altered
in each cancer type is released. These CNA network
shifts highlight new, attractive targets to exploit in
solid tumors.

GRAPHICAL ABSTRACT

INTRODUCTION

Efforts to establish personalized medicine in cancer thera-
pies have led to curative success in specific cancer types (1).
However, progress in most lethal cancer types has been lim-
ited by the paucity of eligible patients available for testing
in clinical trials. The National Cancer Institute - Molecu-
lar Analysis for Therapy Choice (NCI-MATCH) group es-
timated ∼9% of all cancer patients may be administered
therapy based on mutation or amplification targeted data,
although this already low inclusion rate does not estimate
patient benefit (2). We previously demonstrated autophagy-
loss copy-number alterations (CNAs) are druggable in high-
grade serous ovarian cancer (OV). While 85–99% of OV pri-
mary tumors have a mutation in p53, there are few other
canonical tumor suppressor or oncogene mutations, and
none reached >10% of patients (3). It remains possible that
extremely rare mutations may drive tumors like OV (4). The
treatment feasibility issue with such exceedingly rare driver
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mutations is well-known: with so few patients worldwide,
how can drugs be reasonably developed and approved for
patient care?

CNAs are another driving factor. One seminal study in
the early –omics era for cancer research showed that tu-
mor suppressor mutations were enriched on deletion CNAs
while oncogene mutations were enriched on gain or am-
plification CNAs (5). We similarly found that networks
built from molecular pathways and scored by CNA data
were suppressed, with known tumor suppressors as net-
work hubs, or elevated, with established oncogenes as net-
work hubs (6). Within the most suppressed OV pathway
network, the autophagy pathway, we identified BECN1
and LC3B as the most influential gene hubs. Suppres-
sion of either autophagy gene sensitized cells to autophagy
inhibitors chloroquine phosphate or nelfinavir mesylate.
In a platinum-resistant patient-derived xenograft (PDX)
model, we found autophagy targeted drugs could com-
pletely abolish observable tumor burden, even when dual
platinum-taxane combination therapy had no effect on the
PDX model. These results demonstrate tumor CNAs, even
monoallelic CNAs, are pharmacologically targetable. Phar-
macologic treatment of CNAs may be amenable to removal
of early pre-cancerous cells for some tumor types. For exam-
ple, clear cell renal cell cancers often lose chromosome 3p
years prior to development of disease (7). CNA losses per-
sist during disease progression, suggesting that they remain
as biological drivers or at least persistent vulnerabilities (8–
10).

CNAs rarely encompass a single gene. Entire chromo-
somes are often altered within solid tumors, creating CNAs
across hundreds of genes with a single genetic alteration.
Few studies have adequately addressed this background
noise problem of thousands of gene-level CNAs in each
tumor, many of which are passengers, for both logisti-
cal and conceptual reasons. It is arduous or infeasible
to model aneuploid events in cellular and mouse mod-
els, precluding causal genetic studies. However, a hand-
ful of well-controlled studies have been completed. TP53-
adjacent genes, EIF5A and ALOX15B, contribute to tumor
formation and progression. In a lymphoma E�-Myc pre-
B cell mouse model, suppression of these genes by shRNA
independently increased lethality (11). Chromosome 8p is
often lost in cancers while chromosome 8q is often gained.
Here, we adopt the definition of aneuploidy in our dis-
cussion as changes encompassing entire chromosome arms
(12); 8p loss or 8q gain are both independent aneuploid
events. These aneuploid changes often give rise to the ob-
served gene-level CNAs assessed in the current study, due to
RNA changes of affected genes. To model 8p loss in breast
cancer, 8p loss was engineered in non-malignant MCF10A
cells (13). While 8p deletion did not induce transformation,
cells exhibited increased invasiveness and elevated meval-
onate metabolism. In most cases, a single aneuploid chro-
mosome causes a cell cycle delay. Accordingly, the 8p dele-
tion exhibited this phenotype. Furthermore, a 3p deletion
commonly found in lung cancers decreased proliferation in
an immortalized lung epithelium AALE cell line, although
cells eventually adapted (14). Aneuploidy itself leads to in-
creased usage of the proteasome and autophagosome ma-
chinery (15), indicating metabolic inefficiency. Transcrip-

tomic compensation for aneuploidy is rare (16) and protein
levels correlate well with CNAs (17). Aneuploidy can lead
to slowed tumor growth in RAS mutant xenografts (18) and
immune surveillance (19). However, under specific nutrient
or signaling conditions, select aneuploid events increase cel-
lular fitness. In serum starved cells, trisomy 13 cells exhibit
greater fitness than control cells (20). These examples di-
rectly demonstrate CNAs drive cancer in specific selective
conditions.

Here, we developed a new pathway network algorithm,
Shifted Weighted Annotation Network (SWAN), designed
to handle high-noise biological data, such as monoallelic
CNAs spread across the genome. We report SWAN anal-
ysis of 10,395 tumors studied by The Cancer Genome At-
las (TCGA) from 31 cancer types and 4,925 pathways. We
demonstrate SWAN prioritizes known tumor suppressors
and oncogenes within CNAs. SWAN further characterized
24 high-confidence novel multi-cancer oncogenes. Molecu-
lar pathway suppression caused by loss of tumor suppressor
genes were prevalent across tumor types, representing po-
tentially targetable vulnerabilities. We show biological val-
idation of a tumor-specific elevated pathway, peroxisome
biogenesis, and a multi-cancer suppressed pathway, cad-
mium response. We release an online CNAlysis Atlas and
easily accessible web-based SWAN pathway analysis tools.

MATERIALS AND METHODS

Key resources table

See supplement.

Experimental model and subject details

Cell lines. Established cell lines were purchased from the
American Type Culture Collection (ATCC) and validated
by short tandem repeat (STR) profiling (Duke University
and ATCC).

Human high-grade serous ovarian cancer samples. Flash
frozen samples were requested from biorepositories. All
samples were stage 2C or higher high-grade serous fallop-
ian or ovarian cancer, with the exception of a single con-
trol Caucasian sample with paired uterus normal control
used for bioinformatic quality control. Cancer stage, self-
reported race and ethnicity (either non-Hispanic black or
non-Hispanic white), and age at diagnosis is reported in
Supplementary Table S5.

Method details

SWAN. SWAN is pathway analysis software used to ex-
plore the cumulative impact of gene changes within com-
plex sets of data. SWAN is encoded in R, but available on
the web as a browser-based fully-functional analysis appli-
cation. As inputs, SWAN can use data from paired or un-
paired controls along with experimental data, or strictly ex-
perimental sample data when control samples cannot be ac-
quired. SWAN is capable of utilizing up to three types of
data in a single analysis: CNA data, RNA data, and/or mu-
tation data. However, SWAN runs with one type of data
(e.g. CNA data), and does not require layering of different
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data types. All data must be numeric. SWAN first assigns
genes into pathways and then builds a network based on
established protein-protein interactions between the gene
products within the pathway. SWAN then scores the path-
way’s network using the input data and haploinsufficiency
data. If the input data within a particular pathway are neg-
ative, for example, this pathway’s network will have a neg-
ative score. By default, SWAN uses curated haploinsuffi-
ciency data to improve prioritization of genes, but includ-
ing this phenotype is optional. SWAN builds an estimate of
noise for each sample, using all genes containing data for
each sample, to compare network scores, creating ‘network
shift’ scores for all samples. Then, SWAN generates a P-
value for each pathway using these network shift scores. As
outputs, SWAN yields magnitudes, statistical factors such
as nominal P-values and false-discovery-rate (FDR) cor-
rected values, and the genes which most impacted a negative
or positive shift within each pathway. The web application
of SWAN produces rich, customizable plots for data inter-
pretation.

The precise form of SWAN calculations can be found in
Supplemental Methods.

For the pan-cancer analysis presented in all figures un-
less otherwise noted, CNA data utilized was gene-level
copy number alterations normalized to -2 (homozygous
deletion), -1 (heterozygous deletion), 0 (no change), 1
(gain of one copy) and 2 (gain of two or more copies).
TCGA data were downloaded from cBioPortal using ‘Pro-
visional’ datasets (21). For layering of mutation data in
specific figure panels, as denoted in the results section,
mutation data included TCGA mutation data with a ‘1’
marking a non-synonymous mutation or a ‘0’ for no non-
synonymous somatic mutation. For layering of RNA data
in specific figure panels, RNA data were log2 per-gene
normalized TCGA microarray data from the pan-cancer
TCGA set, ‘EBPlusPlusAdjustPANCAN IlluminaHiSeq
RNASeqV2.geneExp.tsv’ (22). Pathway sets used were the
Hallmark, KEGG, Reactome, and GO.

Quality control of SWAN. The cancer types used in the
tumor suppressor gene (TSG) and oncogene (OG) quality
control (QC) analysis were ACC, BLCA, BRCA, CESC,
COAD, ESGA, GBM, HNSC, KICH, KIRC, LGG, LIHC,
LUAD, LUSC, MESO, OV, PAAD, PRAD, READ, SARC,
SKCM, STAD, TGCT, THCA, UCEC and UVM.

To test whether SWAN was able to enrich for known
oncogenes and tumor suppressor genes in its list of pri-
oritized genes, tabular results from SWAN were queried.
COSMIC Cancer Gene Census Tier 1 was used as the list
of tested OGs and TSGs. As a possible alternative, STOP
and GO genes were also tested. Each STOP and GO gene
used was from two of three sources from the Elledge lab
(5,23,24). For ‘gene prioritization enrichment,’ genes from
pathways called as ‘haploinsufficient’ or ‘triploproficient’
(FDR ≤ 0.0001) marked by SWAN as in the top five neg-
atively or positively scoring genes, respectively, were tabu-
lated. The enrichment ratio is calculated as the ratio of the
sum of TSGs in the top five prioritized genes within a hap-
loinsufficient pathway divided by the sum of those which
are not known TSGs, over a similar ratio within neutral-
called (‘no selection’) pathways from SWAN. An equiva-

lent calculation was performed for OGs. A fisher’s exact test
was performed on these counts for each cancer type sepa-
rately for TSGs and OGs (Figure 2B and Supplementary
Figure S3). To determine the loss of enrichment, pan-cancer
SWAN analysis was performed with 1,000 iterations across
these 26 QC cancer types while adjusting single parameters.
QC analysis was then performed again, and the percent dif-
ference in enrichment from the null 1 ratio value was calcu-
lated.

To determine an appropriate default cutoff FDR value
for SWAN, a tuning range of ‘0.2, 0.1, 0.05, 0.04, 0.03, 0.02,
0.01’ and then 10-fold less, down to ‘10−50’ was used. All 26
QC cancer types were again tested for a TSG and OG en-
richment ratio. In this case, the fisher’s exact test summed
TSGs and OGs together and non-TSGs with non-OGs to-
gether, comparing pathways called as significant to path-
ways called as non-significant. This allowed for a single met-
ric which balanced sensitivity and specificity; the statistical
test would yield a larger P-value for lower N of significant
pathways as well as when the neutral-called pathways be-
gan to have similar rates of OGs and TSGs as significantly-
called pathways. Scrolling across this metric, an optimal
FDR ≤ 0.0001 was determined for a default value (Supple-
mentary Figure S1E).

Gene set enrichment analysis. Twenty-six cancer types
were analyzed using Gene Set Enrichment Analysis
(GSEA) version 4.0.3. Integer normalized TCGA data was
used identically as in SWAN and diploid data was set as
control. KEGG Pathway gene set was used with 1,000 per-
mutations to the phenotype as the ‘on-the-fly’ setting. Since
bench scientists are interested in follow-up molecular bi-
ology studies of altered pathways, for each pathway, the
top five elevated genes and the bottom five downregulated
genes were compared to the top five altered genes by SWAN
analysis. The number and enrichment of tumor suppressor
genes and oncogenes (defined by Tier 1 Cancer Gene Cen-
sus COSMIC annotations) within these top five genes were
calculated identically as defined in SWAN Quality Control.
Note that not all genes with literature support of a tumor
suppressor or oncogenic phenotype are in the Tier 1 COS-
MIC Cancer Gene Census.

BET inhibitor study analysis. Data sets used in each anal-
ysis were attained from Gene Expression Omnibus (GEO).
Raw data files were formatted using SWAN Data Groomer
and transformed to log base 2. Each resulting experimental
and control data files were input into either pan-pathway
or single pathway SWAN. Pan-pathway analysis calculated
200 control permutations and had a significance threshold
of 0.05. Pathways including <10 or >200 genes were omit-
ted. Single pathway analysis calculated 100 control permu-
tations and had a significance threshold of 0.001

Identification of novel oncogenes and tumor suppressors.
SWAN interactome summary data from GO pathway anal-
ysis was used as a starting point to classify genes as gen-
eral CNA-influenced OGs or TSGs. Z-scores of each gene
within the interactome dataset were averaged for OGs in
cancers in which the Z-score was positive and a similar cal-
culation was performed on negative values for TSGs. The
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number of times a gene was displayed on a cancer inter-
actome priority plot was summed for each candidate OG
and TSG. Alpha transparency values represent how much
CNA influence originates from the gene itself (i.e. the gene
is deleted or amplified) or from the interacting genes (i.e. its
interactors are deleted or amplified) and were tabulated for
each gene in each tumor type. Only OGs and TSGs which
were detected through this method in ≥5 tumor types are
reported in the figures and supplemental tables. COSMIC
Tier 1 genes were marked as ‘known’ OGs and TSGs as long
as they were not characterized as fusion-only TSGs or OGs.
All genes outside these criteria were considered ‘novel’, al-
though we caution this does not capture the entirety of the
cancer literature. Essential gene data were downloaded from
a CRISPR-Cas9 screen of 324 cell lines (25). OGs which
were not hits within this screen were included in the Sup-
plementary Figure S6A. TSGs as identified by SWAN inter-
actome analysis not considered ‘known’ TSGs were plotted
in Figure 4D and summarized within Supplementary Table
S3.

Mutation association analysis. Genes mutated in >3% of
all TCGA tumors were analyzed for differential SWAN
shift distributions. Subsets were taken from each tumor type
by splitting mutant versus non-mutant tumors by each pu-
tative driver gene. A Wilcoxon rank-sum test was performed
on SWAN shifts in mutant tumors and compared to non-
mutant tumors. If the mean SWAN shift of the mutant
group was lower than the mean SWAN shift of the non-
mutant group, the association was considered negative and
conversely for positive. The final Supplemental Table 6 lists
pathways reaching an FDR (by Benjamini–Hochberg cor-
rection of P-values) <0.05. It may be noted that most genes
only yielded significant associations in limited cancer types
due to the inadequate number of mutations in other tumor
types.

Machine-learning prognostic analysis. Patients with both
overall survival data and SWAN shift data were analyzed
for prognostic SWAN pathways. Patient data were first sep-
arated by SWAN pathway shifts, with the ‘low’ and ‘high’
groups separated by 1 standard-deviation (SD) centered
at the median shift. To consider the possibility of a false
positive, 101 training and test sets were created for Cox-
proportional hazard (CoxPH) models which utilize SWAN
shift data. Each training set consists of a random selection
of 67% of the tumors, and the test set is the remaining 33%
of tumors. The training set is used to build a CoxPH model
based on overall survival and SWAN shift scores and pro-
duce a hazard ratio (HR). This model is then applied to the
test set to predict risk scores using SWAN shifts. The upper
quartile risk is compared to the lower quartile risk group
by log-rank test (survdiff of Surv function in the R pack-
age ‘survival’) to yield a P-value for the test group. Poten-
tial false positive prognostic pathways were removed by (i)
determining significance in the applied CoxPH model risk
for each test set and (ii) determining CoxPH HR direction
in each training set. The most prognostic pathways are la-
beled as those with >80% of randomizations as significant
and in same HR direction and provided as Supplementary
Table S7. Kaplan–Meier curves and survival analysis on the

entire cohort without machine-learned filtering is available
using the Shiny SWAN Single-Pathway app online.

Cell culture and biologic quality control. Cells were cul-
tured at 37◦C with 5% CO2. Established cell lines (OV-
CAR3, SKOV3, CAOV3 and 293T) were purchased from
the American Type Culture Collection (ATCC) and val-
idated by short tandem repeat (STR) profiling. Routine
microscopic morphology tests were performed prior to
each experiment. All cells were grown in RPMI-1640
media supplemented with antibiotics (penicillin, strepto-
mycin), sodium pyruvate, and 10% FBS (Gibco). Lentivi-
ral constructs for PEX5 and PEX19 were purchased
from Genecopoeia. PEX19 cDNA (NM 002857.3) was
cloned into EX-G0621-LV242 with a C-Avi-FLAG tag and
puromycin resistance. PEX5 (NM 001131023.1) was syn-
thesized and cloned into the EX-Z6463-LV157 vector with
C-3xHA Neomycin resistance. Lentivirus was produced in
293T cells and filtered through a 33 �m filter prior to
transduction. Confirmation of cDNA insert was performed
by Sanger sequencing using forward primer 5′ AGGCAC
TGGGCAGGTAAG 3′ and reverse primer 5′ CTGGAA
TAGCTCAGAGGC 3′ for LV242 and forward primer 5′
GCGGTAGGCGTGTACGGT 3′ and reverse primer 5′
ATTGTGGATGAATACTGCC 3′ for LV157. SKOV3 and
OVCAR3 cells were selected for LV242 lentiviral integra-
tion by addition of 4�g/ml puromycin (Thermo Fisher) to
the media or for LV157 integration by addition of 200�g/ml
Geneticin (Fisher Scientific).

For determination of mRNA expression of metalloth-
ionein isoforms, 1 × 106 CAOV3 or 2 × 106 OVCAR3 cells
per well were plated in a six-well dish. After 20 h, cells
were rinsed once with PBS (phosphate-buffered saline), and
RNA was isolated using the miRNeasy Mini Kit (Qiagen)
according to the protocol of the manufacturer. One �g of
total RNA was used to transcribe cDNA using the iScript
cDNA Synthesis Kit (Biorad). For quantitative real-time
reverse-transcriptase polymerase chain reaction (qPCR)
20 ng of cDNA per reaction and the iTaq Universal SYBR
Green Supermix (Biorad) was employed. Primer sequences
are available in Supplemental Table 8. Triplicate samples
were normalized to TBP and relative gene expression was
determined by the ��Ct method. To knock down metal-
lothionein 2A (MT2A) mRNA expression, shRNA lentivi-
ral vectors targeting MT2A and scrambled control were
used to generate lentivirus in 293T cells and filtered through
a 33 �m filter prior to transduction. CAOV3 and OVCAR3
cells were selected for lentiviral integration by addition of
4 �g/ml puromycin (Thermo Fisher). For �H2AX stain-
ing 2.5 × 103 CAOV3 or OVCAR3 cells were seeded onto
black, optical bottom, 96-well plates (VWR). After allow-
ing the cells to adhere for 16h, cells were treated with 50 �M
(CAOV3) or 100 �M (OVCAR3) CdCl2 (Sigma-Aldrich)
for 24 h. Then cells were fixed in 4% paraformaldehyde for
10min, permeabilized with 0.1% Triton X-100 for 2 min,
and nonspecific binding was blocked with PBS containing
5% bovine serum albumin and 5% goat serum for 45min.
Then cells were incubated with purified anti-�H2AX anti-
body (phospho-Ser139; BioLegend) overnight, primary an-
tibody was removed with three PBS washes of 10 min, in-
cubated in Hoechst 33342 (Fisher Scientific) and secondary
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goat anti-mouse Alexa Fluor 594 nm antibody (LifeTech-
nologies) for 1.5 h, and secondary was removed followed
by three PBS washes of 10 min each. Finally, a Lionheart
FX automated microscope (BioTek) was used to image the
cells and ImageJ was employed to quantify �H2AX puncta
number and intensity.

Metabolomics. Metabolomics were performed as previ-
ously described (26). Specific changes for the data presented
here include: five replicates were used per genetic condition,
cell line used was SKOV3. Otherwise, the methods are re-
peated and provided in Supplemental Methods.

Metabolomic data associated with the figures is provided
in Supplementary Table S4.

Flow cytometry. SKOV3 and OVCAR3 cells transduced
with LV157 or LV242 with or without PEX5 and PEX19
respectively were seeded at 25,000 cells per well in a 24-
well TC plate in 1 ml media containing antibiotics. A day
after seeding, cisplatin (10 �M in DMSO) or N-acetyl-
cysteine (2 mM in ddH2O) were added to the media and
the cells grown for 48 h prior to staining for flow cytome-
try. Staining was performed with 10 �M H2DCFDA (2′,7′-
dichlorodihydrofluorescein diacetate, VWR #89138-260)
for 1 h. Cells were then rinsed with PBS and 500 �l Trypsin
0.05% EDTA (Thermo Fisher Scientific #25300120) was
added for 5 min. Trypsinized cells were added to 500 �l
iced RPMI in 1.5 ml microcentrifuge tubes. Cells were cen-
trifuged at 3,000 g for 1 min and media aspirated. 1 ml iced
PBS was then added to cells and cells were briefly resus-
pended. Cells were centrifuged at 3,000 g for 1 min. PBS
was aspirated, 300 �l fresh iced PBS was added to cells and
cells were transferred to an iced 5 ml polypropylene flow
cytometry tube (VWR #352063). Cells were analyzed for
fluorescence in the 488 nm channel on a BD FACSCanto II
cytometer and analyzed using BD FACSDiva software.

Cell death and proliferation assays. SKOV3 and OVCAR3
cells transduced with LV157 or LV242 with or without
PEX5 and PEX19 respectively were seeded at 10,000 cells
per well in a 96-well TC plate in 50 �l media contain-
ing antibiotics. Cells were allowed to adhere for 3 h prior
to addition of 50 �l media containing 2× treatment solu-
tion (20 �M cisplatin, 4 mM NAC, and/or 0.2% DMSO
control). Cells were then grown for 48 h prior to fixa-
tion. For fixation, cells were first rinsed in 125 �l PBS and
then stained with crystal violet staining and fixation solu-
tion (0.11% crystal violet, 0.17 M NaCl and 22% methanol
in ddH2O) for 15 min. Crystal violet stain was aspirated,
125 �l PBS wash performed twice, and then cells were dried
for 30 min at 37◦C in a dry incubator. 85 �l methanol
was added to each well and absorbance was read in an ab-
sorbance spectrophotometer at 600 nm. Background con-
sisting of cells killed to 100% penetrance using 1 mM H2O2
was subtracted from all reads. Growth inhibition was calcu-
lated as the fractional difference in absorbance of a treated
well compared to the average control-treated well for an iso-
genic cell line on the same 96-well plate.

Whole-exome sequencing and data processing. Samples
were processed using a Promega Maxwell RSC Instrument

(AS4500) and Maxwell RSC Tissue DNA kit (AS1610) to
obtain purified DNA. DNA was sent to GENEWIZ for
whole-exome processing using an Agilent SureSelect Hu-
man All Exon V6 kit and next-generation sequencing on an
Illumina HiSeq-4000.

SNVs and indels in TP53 were called using one of two
methods. The first method was a default DRAGEN pro-
tocol used by GENEWIZ. The second, used to call mu-
tations in the remaining half of samples, utilized a triple-
tool calling method. FASTQ reads were aligned to hg38
to create BAM files. BAM files were removed of PCR du-
plicated using RmDup. The three variant callers used on
the BAM files were: LoFreq, FreeBayes, and samtools fol-
lowed by VarScan (27,28). Variant callers were run using the
Galaxy platform (29). TP53 mutations called by all three
tools were then filtered by those present in gnomAD v3
(30) at an allele frequency >0.0001 in any ethnicity group.
Annovar was used to annotate variants (31). To query eth-
nicity at genome-scale, EthSEQ (32) was used on genome-
wide called variants fitting the three-tool intersect threshold
without a gnomAD cutoff (N = 7,695 variants assessed in
the new cohort).

Control-FREEC (33) was used to call CNAs without us-
ing paired normal controls. To aid in estimation of stromal
cell contamination, the TP53 mutation allele frequency was
used as the estimated tumor cell fraction. Settings included:
breakPointThreshold (1.2), readCountThreshold (50), win-
dow (500,000 bp), telocentromeric (100,000 bp), contam-
inationAdjustment (TRUE), sex (XX), contamination (us-
ing normal TP53 allele fraction), and a single control uterus
was used as a control target capture region. To best match
TCGA CNA data, all BAMs used were aligned to hg19. To
create a –2 to 2 normalized file, negative CNAs were given
a value of –1, positive CNAs a value of +1, and any posi-
tive CNAs exceeding 2 standard deviations above the me-
dian a value of +2. Gene-level CNAs were determined us-
ing the SWAN Data Groomer functions built for *.seg files.
Genome conversion of CNAs or mutation variants between
hg19 and hg38 used liftOver with UCSC chain files (34).

Quantification and statistical analysis. In all cell biology
figures, P-values are calculated using a two-tailed Student’s
t-test, unless otherwise indicated. The description of SWAN
describes SWAN statistical considerations in detail. Sur-
vival outcomes were assessed using Kaplan–Meier curves
with log-rank tests.

RESULTS

Oncogenic CNAs drive cancer

Copy-number alterations function as drivers for oncogene-
sis. Previous studies of normal tissue found normal epithe-
lium contains oncogenic driver single-nucleotide variants
(SNVs) and insertion-deletion (indel) mutations, but few
CNAs (35–39). Further drivers are necessary to escape local
arrest and expand. Oncogenic mutations or CNAs allow for
the slow development of clonal CNAs or other mutations
over many cell division generations (Figure 1A). Our anal-
ysis of TCGA tumors reveals 5–50% of solid tumors (on
average, 18%) contain only oncogenic mutations found in
normal tissue clones, out of 251 previously identified driver
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Figure 1. Copy-number alteration drivers are present in tumors with insufficient SNV drivers. (A) Model for oncogene accumulation by CNAs to drive
cancer initiation and progression. (B) TCGA tumors were analyzed for the number of tumors with insufficient SNV drivers. Tumors were queried for 251
Tier 1 COSMIC oncogenes and tumor suppressor gene mutations. Tumors with only p53, or with p53 and mutations commonly found in normal human
epithelium (includes NOTCH1-3, FGFR3 and FAT1) and no other COSMIC OG or TSG mutation are plotted as a percent of all tumors queried. (C)
Frequency of CNAs in the same cancer types. Stacked bars represent cumulative CNAs of any type. (D) COSMIC Tier1 cancer genes overlapping deletion
CNAs (for TSGs) or amplification CNAs (for OGs).

SNVs (Figure 1B). Solid tumors have 15–70% of each tumor
genome altered by CNAs, with a median alteration of 39%
of the genome (Figure 1C). The scale of established onco-
genes (OGs) and tumor suppressor genes (TSGs) on gain
or loss CNAs, respectively, range from 20 to 30 of each in
solid tumors (Figure 1D). CNAs of known driver genes are
a hallmark of solid tumor genetics.

Design of Shifted Weighted Annotation Network (SWAN)
analysis

CNA analyses have previously focused on segments of
DNA that are significantly altered in tumors. Exceptional
amplifications of genes like MYC or EGFR and homozy-
gous deletions of CDKN2A are highlighted in previous
studies due to a consistent amplification pattern (40–42).
These analyses often ignored the biological changes caused
by the 90% of tumor CNAs: removal or duplication of a
single allele. Cumulatively within the same molecular path-
way, this can have dramatic effects on cell biology. Pathways
contain multiple genes that are typically located on multi-
ple chromosome arms. Thus, tumors with different chromo-
some content may nonetheless upregulate the same pathway
if genes within the same pathway are altered in the same
direction (either losses or gains). These individual genes

may differ between patients, yet the pathway is nonetheless
similarly altered in flux. Previous location-centric analyses
miss these consistent biological changes occurring on more
than one chromosome. To quantify and prioritize multi-
chromosomal pathway changes in CNA data, we developed
SWAN analysis.

SWAN analysis is broadly applicable to any gene-level
data set and is similar conceptually to Gene Set Enrichment
Analysis (GSEA), but SWAN includes the addition of phe-
notypic data to improve the testing of suppression or activa-
tion pathway hypotheses by forming weighted pathway net-
works. In SWAN, pathway-specific elevation and suppres-
sion hypotheses are independently tested and compared to
a randomized null hypothesis. Permutations of gene-level
data were done for each tumor (1,000 random pairs in this
study) to generate null distributions specifically relevant to
each sample and pathway (Figure 2A). The precise details
of SWAN calculations can be found in Supplemental Meth-
ods, Supplementary Figure S1, the supplied code, Supple-
mental Videos 1–3, and the Supplemental Manual provided
here.

After much fine tuning of the SWAN algorithm (see qual-
ity control section and supplemental methods), we per-
formed a pan-cancer CNA analysis of 10,395 tumors stud-
ied by The Cancer Genome Atlas (TCGA) from 31 can-



Nucleic Acids Research, 2022, Vol. 50, No. 7 3679

Figure 2. Design of Shifted Weighted Annotation Network (SWAN) pathway analysis tool and pan-cancer results. (A) A conceptual diagram of SWAN
calculations. Raw data in this pan-cancer analysis is CNAs. Pathway networks are then built utilizing protein-protein interaction data and haploinsufficiency
data. Sample network scores are compared to paired-shuffled control data. Details are found in SWAN documentation and Methods. (B) Plot of the number
of pathways which are identified among 31 cancer types as elevated or suppressed relative to the sum of SWAN shifts. (C) Plot of the statistical enrichment
of known OGs and TSGs on elevated or suppressed pathways in each of the 26 QC-compatible tumor types studied.

cer types and 4,925 pathways. Pathways included Hallmark,
Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG), and Reactome. There was a wide dis-
tribution of highly to moderately suppressed or highly to
moderately elevated pathways across all cancer types, which
is the focus of the analytics presented in this publication
(Figure 2B, Supplementary Table S1). Before exploring our
pan-cancer analysis, we first describe features and quality
control of this newly released SWAN software.

Similarities and differences with other pathway analysis soft-
ware

SWAN was built to appropriately handle widely different
input data and network structures to output pathway infor-
mation at both the cohort-level and individual-sample level.
It can combine CNA data with RNA and/or mutation data
in a single analysis, a feature absent in any graphical user in-
terface tool to our knowledge. Previous tools built and used
for RNA data were incompatible with somatic CNA data.
Normal tissue, on average, does not contain CNAs, result-

ing in the control dataset as strictly zero for all genes and
samples. Pathifier is a widely used individual-sample path-
way scoring software designed for RNA that relies on an es-
timate of noise from control samples (43). With CNAs, this
noise is zero in normal bulk tissue, resulting in an unavoid-
able error to run an analysis. PARADIGM is another well-
cited patient-specific pathway analysis tool, but at the time
of this writing could not be tested or compared to SWAN
as it is no longer available for public use (44). The zero-
comparison problem is circumvented by SWAN using its
randomized control methods, enabling an analyses of so-
matic CNAs.

Cohort-level pathway analysis tools can utilize CNA
data, even with substantial zeroes in normal controls. One
exceptionally well-cited tool, Gene Set Enrichment Anal-
ysis (GSEA), enabled a direct comparison of pathway al-
teration results with SWAN (45). Using GSEA, OV had
only a single significantly elevated Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway, ‘complement and
coagulation cascades’. Further applied to 26 cancer types,
very few, if any, pathway alterations were found by GSEA
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across all KEGG pathways (Supplementary Table S2, Sup-
plementary Figure S2A). This is unlikely to be the real bio-
logical situation for tumors containing clear patterns across
chromosome arms. SWAN was designed to circumvent this
false-negative issue using phenotype-layered networks, and
produces dozens of significant KEGG pathway changes per
cancer type. GO term analysis is another popular method
of cohort-level pathway analysis. GO term tools use a hy-
pergeometric test to determine differences in an altered set
of genes (for example, those with positive CNAs) compared
to a background set of all genes analyzed. Hypergeomet-
ric tests do not allow for prioritization of which genes may
be most relevant within the cohort, in contrast to the shifts
SWAN calculates per gene.

There are limitations to SWAN. Its utilization of pheno-
type data, haploinsufficiency and protein-protein interac-
tions, may be more informative in a context-specific man-
ner. However, such data for each tissue, organism, or cancer
type, are not currently available. In some cases, genetic inter-
action data may be more informative than protein-protein
interaction data. To mitigate this limitation, there is an op-
tion in SWAN for the user to upload their own phenotype
information, thereby replacing haploinsufficiency, protein–
protein interactions, or both. Another limitation includes
the scoring of haploinsufficiency in a non-linear scale. For
CNAs, this makes sense, as haploinsufficiency is defined as
a loss of an allele (an integer copy difference). However, it
may not be as appropriate as other tools for RNA data,
which most other pathway analysis tools specialize in. To
reduce this limitation, the user has the option to omit hap-
loinsufficiency scoring.

SWAN may provide more false positive pathway changes
than GSEA but less false positives than iPath or Pathi-
fier. While SWAN identified more pathways as significant
in most cancer types than GSEA, it identified less as sig-
nificant than iPath or Pathifier. Previously published anal-
ysis of BRCA RNA data using iPath yielded 168 of 186
KEGG pathways as nominally significantly dysregulated
(P < 0.05) and 153 of 186 passing a q < 0.05 threshold.
Pathifier yielded 180 of 186 KEGG pathways as nominally
significantly dysregulated (P < 0.05) and also 180 of 186
passing a q < 0.05 threshold (46). In contrast, SWAN anal-
ysis of the same RNA data yielded 33 of 186 pathways as
P < 0.05 and 6 of 186 pathways with FDR < 0.05.

Ease-of-use was prioritized with SWAN. GSEA, Pathi-
fier, and others require users to download the software
and dependencies to run locally, but have been widely used
due to their intuitive graphical interface. SWAN is hosted
online and dependencies are updated on the server, mini-
mizing user hassle for first-time utilization. Other excellent
pathway analysis tools, such as PathTracer (47), require R-
programming or python-programming knowledge. SWAN
is encoded in R, but is available online as a Shiny App, shel-
tering the complex code behind a convenient graphical in-
terface.

Quality control of SWAN for cancer data

SWAN uses two major phenotypes to improve perfor-
mance: known haploinsufficiency and protein-protein inter-
actions. To quantitatively assess phenotype importance in

appropriately defining tumor CNA genetics, we performed
multiple pan-cancer SWAN calculations across 26 quality
control (QC) compatible cancer types studied by TCGA
with 4,925 pathways (KEGG, Gene Ontology [GO], Hall-
mark, and Reactome). As a positive control, we used TSGs
and OGs from COSMIC’s Tier 1 Cancer Gene Census
(48). SWAN identifies the most influential suppressed genes
within suppressed pathways and the most influential en-
hanced genes within elevated pathways. If working appro-
priately in a cancer context, suppressed pathways should
have TSGs prioritized and elevated pathways should have
OGs prioritized. There was a significant (P ≤ 0.05) enrich-
ment of TSG prioritization within suppressed pathways in
23 of 26 tumor types and a significant enrichment of OG
prioritization amongst elevated pathways in 22 of 26 tumor
types (Figure 2B, Supplementary Figure S2B). Cancer types
without significant enrichment had unusually low CNAs,
consistent with the hypothesis that CNAs are not strong
drivers amongst all tumors in these cancer types. Applying
identical quality control to GSEA and SWAN KEGG path-
way analysis, SWAN outperformed GSEA in prioritizing
driver genes in 25 of 26 tumor types (Supplementary Fig-
ure S2B). Amongst all 31 cancers studied, SWAN found no
pathway was altered in one direction in every tumor type
and there was a wide distribution of pan-cancer pathway
shifts to single-cancer shifts (Figure 2C).

To test if creation of phenotype networks aided in the pri-
oritization of TSGs and OGs, three additional pan-cancer
SWAN analyses were performed. First, removal of haploin-
sufficiency and triploproficiency scoring yielded a moder-
ate and consistent decrease in SWAN’s ability to priori-
tize TSGs and OGs across tumors (Supplementary Figures
S2C, S3). Second, the protein-protein interactions (PPIs)
used to build pathway networks were removed. Removal
of PPIs substantially reduced the ability of SWAN to cor-
rectly prioritize TSGs and OGs. Third, removal of both
phenotypes from SWAN completely abrogated prioritiza-
tion of TSGs and reduced prioritization of OGs by 87%.
These data support the use of phenotype information, par-
ticularly haploinsufficiency and PPIs, to aid in the anal-
ysis of CNAs in cancer. Noting that COSMIC-annotated
OGs were better prioritized in SWAN than TSGs, we pos-
tulate that true TSGs on CNA regions may be ‘moderate or
low impact’ TSGs in that multiple TSG deletions are nec-
essary for a stronger pro-proliferative effect (5,11). To test
this, QC was also performed using STOP and GO genes as
annotated from at least two sources (see materials). Unex-
pectedly, STOP genes were not more enriched than known
TSGs, potentially due to a lack of tissue-specific informa-
tion ((24), reference Supplementary Figure S2C). Taken to-
gether, these QC tests show SWAN appropriately prioritizes
genes most likely to act as true TSGs or OGs within CNA
data across cancers.

Integrative analysis

While the current pan-cancer study is primarily intended
to provide new light into tumor genetics using solely CNA
data, there is community interest in allowing for integrative
analyses. SWAN enables the routine integration of RNA
and mutation data with CNA data (Supplementary Figure
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S2D). By comparing SWAN shifts using CNA data alone
to those shifts produced by RNA layered onto CNA data,
outlier pathways with exceptional RNA modulation can
be identified. In bladder cancer, we found an upregulation
of xenobiotics and drug metabolism RNAs and fatty acid
degradation relative to DNA copy number (Supplementary
Figure S2E, red), whereas the spliceosome pathway had a
reduction in RNA relative to DNA copy number (Supple-
mentary Figure S2E, blue). Mutation shifts were less strik-
ing due to the infrequently consistent mutation events for
driver genes in most cancer types. TP53 is a rare exception
in that it is commonly mutated in entire cohorts, shifting
the p53 signaling pathway away from the null in an other-
wise well-correlated pan-pathway analysis (Supplementary
Figure S2F). Overall transcription shift correlations across
4,912 pathways were high when RNA was scored only if in
the same direction as CNAs, while specific cancer types had
widely different RNA shifts when scored additively with
CNA data (Supplementary Figure S4).

Development of point-and-click integrated network analysis
web platform

SWAN was designed to be useful to statisticians, bioin-
formaticians, and molecular biologists alike. Specifically,
SWAN is available in two forms: as an R package with
standalone code (for statisticians and bioinformaticians, at
https://github.com/jrdelaney/SWAN) and as a hosted web-
site (for everyone, https://www.delaneyapps.com/#SWAN).
R standalone code is streamlined for minimal memory use
with fast computation time. The point-and-click applica-
tions are optimized for minimal user input with logical de-
faults and downloadable example input files. To enable use
from non-programmers, all input data are designed to be
simple tab or comma delimited spreadsheets readily ma-
nipulated in Excel or Google Sheets. CNA segment to gene
mapping, mm9 to mm10 or hg19 to hg38 conversion, and
basic –2 to 2 scaling and normalization capabilities were
built into the SWAN Data Groomer. Online Shiny App
versions of the statistical SWAN software were developed
to enable molecular biologists with no programming expe-
rience to readily perform these advanced SWAN network
analyses, including integrated RNA and mutation analyses.
As such, a priority on graphical and intuitive outputs was
made.

To demonstrate broad utility of the web SWAN App for
bench scientists, we provide an example of SWAN use in a
generic molecular biology context. We first used SWAN to
analyze RNA-seq data from control or JQ1-treated human
primary myofibroblasts (49). JQ1 inhibits the DNA local-
ization of the BET family of proteins, traditionally identi-
fied as major epigenetic regulators. BET inhibition has be-
come a strategy for tumor treatment; however, the funda-
mental biology of BET proteins (BRD2/3/4/T) is still be-
ing unraveled. By querying Reactome pathways in SWAN,
we identified similar conclusions as the original authors:
both collagen formation and extracellular matrix organi-
zation pathways were significantly down regulated in JQ1-
treated cells (Supplementary Figure S5A). We also noted
several other suppressed pathways that are related to each
other, including DNA replication, activation of the pre-

replicative complex, and DNA unwinding. To further inves-
tigate these results, we next analyzed RNA-seq data from
three other publications using multiple forms of BET inhi-
bition across several cell lines (50–52). In all of these inde-
pendent datasets, we found that BET inhibition suppressed
expression networks of genes involved in the activation of
the pre-replicative complex (Supplementary Figure S5B).
These results were recapitulated in a genetic knockdown
of BRD4 (Supplementary Figure S5C). BET inhibition has
been suggested to affect genes involved in DNA replica-
tion (53), however, there is little literature detailing these
findings. Interestingly, several proteins involved in the pre-
replication complex, including CDC6, MCM5 and MCM7,
have been implicated as BRD4-interating partners (54). In-
deed, BET inhibition has resulted in DNA replication stress
(55) and replication re-initiation (54). BET proteins are also
implicated in the regulation of proliferating cell nuclear
antigen unloading (56). The SWAN analysis presented here
underscores the importance of BET proteins in the biology
of DNA replication and serves as an example of SWAN
usage outside of cancer genetics. This molecular biology
example complements the pan-cancer analysis by showing
SWAN can be used in a variety of contexts and provides
useful, accurate, and interpretable information.

Identification of known and novel oncogenic pathways

In our SWAN pan-cancer CNA analysis, the hyperos-
motic response was the most commonly elevated path-
way (25 of 31 cancers elevated) (Figure 3A, Supplemen-
tary Table S1). The most common SWAN impactful genes
within the hyperosmotic response included ARHGEF2,
AQP1, and RAC1. RAC1 is a tier 1 COSMIC oncogene
and ARHGEF2 is required for RAS-mediated oncogene-
sis. AQP1 is best known for its role in enabling water trans-
port along an osmotic gradient in kidney proximal tubules,
but is also implicated in endothelial cell migration (57). The
second most commonly elevated pathway was epidermal
growth factor receptor signaling (24 of 31 tumor types), led
by canonical oncogenes EGFR and SRC. Negative regula-
tion of anoikis (23 cancers elevated), led by amplifications
in caveolin (CAV1), SRC, PIK3CA, and FAK/PTK2 (Fig-
ure 3B), was the third highest. Among the most commonly
altered was keratinization, which drives cell cycle progres-
sion in breast epithelial cells (24). Other frequently ele-
vated pathways include amoebiasis, cAMP signaling, DNA
methylation and female meiotic division.

Modern cancer therapies are often developed to target
genes that are overexpressed or constitutively active in can-
cer. To evaluate novel CNA targets, we compared SWAN
interactome prioritization data with sgRNA screens of 324
cancer cell lines (25). Figure 3C depicts putative (defined
here as not Tier 1 COSMIC) OGs which were identified
as a dependency gene in at least 25% of cancer cell lines
(Supplementary Table S3). Sixty-five additional prioritized
OG nodes were found which were not analyzed in the 324-
cell line screen (Supplementary Figure S6A, Supplemen-
tary Table S3). Included within these putative novel OG
CNAs are emergent targets for cancer therapy. Of note,
ADORA2A encodes adenosine receptor A2a, which neg-
atively regulates inflammatory immune response (58), and

https://github.com/jrdelaney/SWAN
https://www.delaneyapps.com/#SWAN
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Figure 3. Pan-cancer elevated CNA pathways. (A) Unusually pervasive elevated CNA pathways. Violin histograms of SWAN scores with red fill indicating
significant (FDR < 0.0001) pathway elevation and blue fill indicating significant pathway suppression. (B) SWAN Circos plot. Red and blue outer rings
are frequency plots of gains or deletions and the inner ribbons represent genes within the selected pathway. Labeled gene symbols are enriched for CNA
gains. (C) Impact summary of novel pan-cancer SWAN elevation-prioritized genes. Green color indicates COSMIC OGs. Size is proportional to the mean
Z-score SWAN contribution across cancers with OG-containing pathway elevation. Higher transparency indicates interacting protein genes influenced
each gene’s identification by SWAN, rather than CNAs of the gene itself. (D) SWAN network generated, with edges represent protein-protein interactions.
Blue nodes are enriched for loss CNAs and red nodes (such as PEX5 and PEX19) are enriched for gain CNAs. (E) Mean ± standard error of crystal
violet viability assays comparing 48h cisplatin to control 0.1% DMSO treatment. N = 4 experiments with data combined from all experiments. (F) Flow
cytometry of ROS indicator H2DCFDA following 48h cisplatin or control 0.1% DMSO treatment in PEX19 overexpressing or PEX5 overexpressing
cells. Significance determined from N = 3 independent experiments. Dotted line marks peak control stain. (G) Mean ± standard error of crystal violet
viability assays comparing 48h cisplatin to control 0.1% DMSO treatment with or without 2mM NAC. N = 2 experiments. (H) Summary of metabolite
concentrations within a metabolomic study comparing N = 5 PEX19 overexpressing SKOV3 cells relative to control vector cells. Acetyl-CoA is highlighted
as an outlier. *P < 0.05, **P < 0.01, ns P > 0.05.
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its blockade enhances pre-clinical syngeneic models of PD-
1, TIM-3 or CTLA-4 therapies (59). Another, PTK2, en-
codes focal adhesion kinase (FAK), which enables cells to
survive a loss of adhesion (60). Two Phase II oncology tri-
als target FAK with a small molecule inhibitor defactinib
(NCT02465060 and NCT03727880). Future studies may
consider the SWAN prioritized CNA-altered OGs as ther-
apeutic targets.

To investigate the oncogenic potential of a novel hit,
we next analyzed pathway disruptions which were unique
to a single or a handful of cancers. Such pathways may
represent unusually selective pathways for targeted treat-
ment or early diagnosis. One largely unexplored but se-
lectively elevated pathway involved peroxisome biogenesis.
Second to testicular cancer, OV was most affected by path-
way CNA elevation (Supplementary Figure S6B), but not
by mutation (Supplementary Figure S6C). SWAN networks
highlighted PEX5 and PEX19 as the most relevant am-
plified genes in serous ovarian cancer (Figure 3D, Supple-
mentary Figure S6D). PEX5 is within an elevated CNA
in 53.6% of OV tumors and PEX19 in 57.8% of OV tu-
mors (Supplementary Figure S6E–G). PEX5 and PEX19
function to properly import peroxisome membrane pro-
teins to the organelle (61). Overexpression (-OE) of either
PEX5 or PEX19 modestly reduced cisplatin lethality within
SKOV3 and OVCAR3 ovarian cancer cells (Figure 3E), nei-
ther of which contain amplifications of either gene (Supple-
mentary Figure S6H). To investigate if this phenotype was
due to a reduction of intracellular reactive oxygen species
(ROS), which peroxisome metabolism contributes to (62),
we stained cells for cisplatin-stimulated ROS. PEX5-OE
or PEX19-OE reduced the amount of cisplatin-stimulated
ROS (Figure 3F). Scavenging ROS with N-acetyl cysteine
(NAC) similarly abrogated cisplatin toxicity in the control
cell lines (Figure 3G). These results were not initially ex-
pected since peroxisomes can be a source of ROS, primar-
ily through catabolic Acyl-CoA oxidase function for lipid
�-oxidation (63). To test directly if lipid metabolism was
disrupted, we performed unbiased ultra-performance liquid
chromatography mass-spectrometry metabolomics. An out-
lier metabolite in PEX19-OE SKOV3 cells was a 92% reduc-
tion in Acetyl-CoA, a product of �-oxidation (Figure 3H,
P < 0.051). Overall lipid content of the cells was unchanged
(Supplementary Figure S6I and Supplementary Table S4),
suggesting that PEX19-OE cells may need to replace Acetyl-
CoA via exogenous sources of lipids, a known phenotype of
ovarian cancer (64). PEX5 expression correlated with poor
prognosis, whereas PEX19 did not (Supplementary Figures
S6J and S6K). In summary, SWAN identified two potential
OGs within the peroxisome KEGG pathway, and overex-
pression of each was sufficient to reduce ROS generation in
chemotherapy-stressed ovarian cancer cells.

Identification of known and novel tumor suppressor pathways

Focal deletion regions of PPP2R2A, CDKN2A, ATM,
NOTCH1, TP53, PTEN and the BRCA1/2 genes have been
previously highlighted in CNA studies (41). In our pan-
cancer SWAN analysis, these tumor suppressors were of-
ten highly influential in determining suppression of path-
ways; PTEN, TP53 and BRCA1/2 are highlighted in the

top 1% of suppressed pathways (Supplementary Table
S1). Phospholipid dephosphorylation was the most com-
monly suppressed pathway, found as significantly sup-
pressed in 22 of the 31 tumor types studied (Figure 4A).
Along with PTEN, losses in phosphatidylinositol 4,5-
bisphosphate 5-phosphatases (INPP5E/J/K), lipid phos-
phate phosphohydrolase (PPAP2A/C), lipid phosphate
phosphatase-related protein (LPPR1/3/4), and synaptic
inositol 1,4,5-trisphosphate 5-phosphatase (SYNJ2) were
commonly dysregulated by deletions. Replicative senes-
cence (Figure 4B) and apoptotic regulators (Figure 4C) are
suppressed as expected. Phospho-STAT signaling was sup-
pressed in 17 tumor types, led by deletions in Type I in-
terferon genes. Attachment of spindle microtubules to the
kinetochore was suppressed in 20 tumor types, led by dele-
tions connected to Aurora kinases (AURKB/C), kineto-
chore microtubule motor CENPE, and anaphase promot-
ing complex regulator BUB3. OV, a highly aneuploid tumor
type, was amongst the most suppressed for protein localiza-
tion to the kinetochore, due to distributed gene losses on
Chr1p, Chr15q, and Chr17. Chromatin organization was
suppressed in 21 cancer types, with deletions in p53, ATM,
�-catenin, sterol regulatory element-binding transcription
factor 1 (SREBF1), lysine (K)-specific demethylase 1A
(KDM1A), and histone acetyltransferase p300 (Supplemen-
tary Table S1). The most commonly identified TSGs were
amongst the best-established tumor suppressors. SWAN in-
teractome analysis predicts p53 as the most significant and
common TSG (Figure 4D). Altogether, 170 novel TSGs
were identified (Supplementary Table S3).

Protein quality control and cellular homeostasis was
commonly disrupted across cancers. Protein deglycosyla-
tion was suppressed (19 of 31 tumor types) most commonly
through deletions related to EDEM1 and DERL2, proteins
involved in extracting misfolded glycoproteins as part of en-
doplasmic reticulum associated degradation. Protein pro-
cessing in the endoplasmic reticulum was a commonly sup-
pressed KEGG pathway (14 of 31 tumor types). We previ-
ously found autophagy, by MAP1LC3B and BECN1 gene
loss, to be suppressed and therapeutically targetable in OV
(6). BECN1 is a bona-fide tumor suppressor in ovarian can-
cer and contributes to genome instability (26,65). In this
pan-cancer analysis, autophagy was suppressed in many
other tumor types as well (14 of 31 tumor types), as was
protein ubiquitination and degradation (9–14 tumor types).
Ion homeostasis was commonly disrupted; negative regula-
tion of potassium transport (9 tumor types), manganese ion
transport (8 tumor types), copper ion homeostasis (7 tumor
types), and zinc or cadmium ion response (10 or 15 tumor
types, respectively) were pervasively suppressed by CNAs.

To confirm if SWAN identified novel tumor suppres-
sor pathways which are biologically relevant, we selected
the zinc and cadmium response pathways. These are dom-
inated by concomitant loss of metallothionein genes in a
cluster on Chr16q. Ovarian tumors lose this gene cluster
in 60% of high-grade serous tumors. Metallothioneins are
cysteine-rich proteins which chelate divalent cations within
the cell: particularly Zn2+ and toxic heavy metals such as
Cd2+ (66). Cadmium is an environmental toxin thought
to increase lung, pancreatic, and endometrial cancer risk
(67). Using ovarian cancer cell lines, metallothionein-2A
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Figure 4. Pan-cancer suppressed CNA pathways. (A) Unusually pervasive suppressed CNA pathways. Violin histograms of SWAN scores with blue fill
indicating significant (FDR < 0.0001) pathway suppression and red fill indicating significant pathway elevation. (B) SWAN Circos plot. Red and blue
outer rings are frequency plots of gains or deletions and the inner ribbons represent genes within the selected pathway. Labeled gene symbols are enriched
for CNA losses. (C) SWAN network generated, with edges represent protein-protein interactions. Blue nodes are enriched for loss CNAs and red nodes
are enriched for gain CNAs. (D) Known and novel TSGs discovered by interactome analysis of all 31 cancer types analyzed, with those present in at
least five tumor types displayed against z-score values. Green color indicates previously known COSMIC TSGs. Size is proportional to the mean z-score
SWAN contribution across cancers with TSG-containing pathway suppression. Higher transparency indicates interacting protein genes influenced each
gene’s identification by SWAN, rather than CNAs of the gene itself. (E) RT-qPCR data of metallothioneins within 16q gene cluster. (F) Validation of
shRNA-mediated knockdown of MT2A by RT-qPCR. (G) Genotoxic damage as measured by �H2AX immunofluorescence in the presence of 100 �M
cadmium is shown for OVCAR3 cells and (H) in the presence of 50 �M cadmium for CAOV3 cells. (E–H) N = 3 experiments, with mean ± s.e.m. shown.
(G, H) Scale bar is 10 �m.

(MT2A) mRNA was most highly expressed amongst all iso-
forms (Figure 4E). Therefore, MT2A was knocked down
in ovarian cancer cells (Figure 4F). Loss of the metalloth-
ionein gene cluster may contribute to cadmium-mediated
oncogenesis by allowing for genomic instability. To test this
hypothesis, knockdown cells were evaluated for �H2AX
foci following cadmium exposure. MT2A knockdown cells
contained more �H2AX foci than control cells (Figure 4G
and H), consistent with the hypothesis that these metalloth-

ionein genes protect cells against cadmium-mediated geno-
toxic damage.

Cancer-specific pathway alterations

Dysregulated pathways in distinct cancer types may be
particularly informative. Glioblastoma multiforme (GBM)
is the only tumor type elevated in ‘positive regulation of
neuron death,’ while 19 tumor types are haploinsufficient
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(Figure 5A). This was due to SRPK2 elevation, which has
recently been implicated in RNA dysregulation in GBM
(68) via phosphorylation of SRSF3 (69), and elevation of
PTPRZ1, which macrophages stimulate for GBM stem cell
growth (70), CDK5, which is involved in neuronal migra-
tion, and canonical oncogenes MAP2K7 and ABL1 (Figure
5B). GBM cells may alter this pathway in a single chromo-
some gain event, as SRPK2, CDK5 and PTPRZ1 are all en-
coded on Chr7q (Figure 5C). By CAIRN analysis of CNAs
(26), these genes are co-incidentally gained in 45% of GBM
tumors.

In Low-Grade Glioma (LGG), Hallmark Myc Targets
V1 was marked as ‘suppressed’ whereas 19 cancer types
were marked as ‘elevated’. Interestingly, the subset of tu-
mors with CNA losses within MYC targets both had greater
overall survival (Figure 5D) and progression free survival
(Figure 5E) in LGG. These genes are enriched on Chr1p
and Chr19q, which was identified in the TCGA publication
as prognostic of IDH1 mutant tumors (71). LGG is often
driven by MYC or IDH1/2 mutations, suggesting that the
tumors which have spontaneously lost an array of MYC tar-
gets have attenuated their oncogenic potential.

Uveal melanoma (UVM) exhibits an unusual mode
of initial extravasation which first involves intercalation
with endothelial cells (72). While 11 cancers are elevated
in the KEGG pathway melanogenesis, which usually in-
volves gains in Wnt-�-catenin regulating factors FZD1,
GNAI1 and WNT3A, UVM was the sole cancer suppressed
in this pathway due to Chr1 and Chr3 losses overlapping
MITF, GSK3B and DVL1 (Figure 5F). Patients with these
losses are in the poor prognosis group, particularly for pro-
gression free survival (Figure 5G). Poor prognosis is associ-
ated with increased immunosuppressive profiles (73).

To address tissue specificity in an unbiased fashion,
the top 1% variable pathways were K-means clustered.
There were clearly different cancer subsets with regard to
phospho-STAT signaling, keratinization, epigenetic regula-
tion of rDNA, protein carboxylation, and serine peptidase
(Supplementary Figure S7). Cancer types did not strongly
cluster together. The remaining cancer-specific altered path-
ways can be found in Supplementary Table S1.

Tissue-specific gene weighting reveals a suppression of cy-
tosolic DNA response

Whole-genome CRISPR-Cas9 screens of non-transformed
normal tissue have identified tissue-specific drivers of pro-
liferation (24). In lieu of haploinsufficiency data, we in-
stead applied scoring weights on pancreatic cancer (PAAD)
CNAs in SWAN using genes enriched for proliferation
changes from a CRISPR-Cas9 screen in primary im-
mortalized pancreatic HPNE cells. In a KEGG path-
way analysis, the cytosolic DNA-sensing pathway was the
most suppressed pathway in PAAD (-9.4 SWAN shift,
FDR ≤ 8.1 × 10−8, Figure 5H). This was led by the IFNA
genes, which produce type I interferons and act as positive
feedback inducers of a central dsDNA sensor cGAS (74)
(Figure 5I). Another suppressed gene was DDX58, a pri-
marily dsRNA sensor which can also detect some types of
dsDNA (75). Chromosome instability often results in mi-
cronuclei, which normally activate cGAS-STING signaling.

However, in some cancer cells this pathway was found to
be attenuated by an unknown mechanism (76), allowing for
cell survival and increased metastasis. CNAs may be one
mechanism cancer cells use to reduce cGAS-STING path-
way signaling, particularly in pancreatic cancer. Weighting
by tissue-specific sgRNA screens thus yielded further in-
sights into CNA patterns and tumor biology.

SWAN case study on race-specific CNA patterns

African American data represents only 6% of the tumors
present in TCGA OV data. Expansion of data and anal-
ysis in this group is warranted. We obtained 12 tumors
from African American high-grade serous ovarian cancer
patients and 8 non-Hispanic white patient controls and
performed whole-exome sequencing (Supplementary Ta-
ble S5). Since normal tissue was not available for these
unique samples, confident somatic SNV analysis was com-
plicated by rare but normal variants. CNAs, conversely,
are uncommon in bulk normal tissue and ascertainment of
CNAs was possible using Control-FREEC software (33).
This method was remarkably similar in overall cohort CNA
calls to TCGA analyzed tumors (Figure 5J), demonstrat-
ing technical consistency. To investigate the possible race-
specific CNAs in African American patients, SWAN was
used to compare African American patients to white pa-
tients from this study as well as combined with the TCGA
study. The cytokine production pathway was found to be
significantly elevated in African American patient tumors
relative to white patient tumors (Figure 5J gene labels). Self-
reported race matched race-defining variants found by Eth-
SEQ analysis on these tumors, with expected higher ad-
mixture present in African American patients (Figure 5K).
Black OV patients respond poorly to therapy relative to
white patients, even when taking into account socioeco-
nomic factors and comorbidities (77). This trend, albeit not
significant, was seen in TCGA survival data (Figure 5L).
SWAN shifts mapping to elevation of cytokine production
were associated with poor prognosis in OV overall (Fig-
ure 5M). Existing socioeconomic factors which lead to per-
sistent inflammation in black patients may allow for de-
repressed cytokine production in black patient tumor cells,
which would otherwise allow T-cell responses to clear tu-
mors. Low-dose rapamycin treatment may re-enable T-cell
clearance within these patients (78,79).

Pathways associated with SNV mutant drivers

Each SNV/indel driver mutation may be predicted to re-
quire its own set of CNAs to assist in cancer development.
To test this hypothesis, we analyzed which tumor types had
CNA-altered pathways within the subset of specific mu-
tant tumors, relative to non-mutant tumors of the same his-
totype. We tested commonly mutated TSGs/OGs: TP53,
CDKN2A, KRAS or NRAS or HRAS, BRAF, BRCA1
or BRCA2, EGFR, PTEN, HIF1A or VHL, RB1, ATM,
APC and MSHs (MSH2,3,4,5, or 6). Of all of these possible
driver mutations, TP53 had the most pathways commonly
affected in multiple cancers (Supplementary Table S6). This
is consistent with the observation that TP53 mutation is
the most significantly associated with aneuploidy by mul-
tiple orders of magnitude (14). A suppression of KEGG:
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Figure 5. Cancer-specific CNA patterns. (A) Rare pathways had opposite SWAN shifts relative to the majority of cancer types. Shown is the example of
‘GO: Positive regulation of neuron death’ which was uniquely upregulated in the brain cancer GBM, as illustrated in a (B) SWAN feather plot and (C) Circos
plot. (D) Overall survival (OS), P is from Kaplan–Meier analysis. (E) Progression-free survival (PFS) plot. (F) SWAN Circos plot. (G) Progression-free
survival (PFS) plot. (H) SWAN analysis scored by HPNE CRISPR-proliferation screen hits in place of haploinsufficiency. The most suppressed pathway
by magnitude is highlighted. (I) The most frequently deleted genes from (H) pathway. (J) Integrative Genomics Viewer cohort summary plots for the new
African-American enriched OV cohort (SCTR) compared to The Cancer Genome Atlas (TCGA) OV cohort. Noted genes indicate SWAN prioritized
genes within indicated pathway. (K) EthSEQ analysis and principal component clustering of variants in the SCTR cohort. Self-identified race is labeled for
black and white patients. (L) Kaplan–Meier analysis of TCGA tumors separated by self-identified race and plotted for overall survival. (M) Kaplan–Meier
plot of TCGA data separated by SWAN shifts.

autophagy in p53 mutant subsets of tumors was observed
in 8 cancer types (Figure 6A). Uterine/endometrial cancer
is known to have worse prognosis with p53 mutation, and
these tumors were severely reduced in autophagy gene con-
tent (Figure 6B). OV, the cancer type we have thoroughly in-
vestigated for its loss of autophagy (6,26,65), was not found
in this set due to the ubiquity of p53 mutations, precluding
a non-mutant control comparison. Mutation in p53 is also

commonly associated with elevation of GO: Regulation of
Cell Adhesion Mediated by Integrin (14 tumor types ele-
vated, led by FAK/PTK2 and LYN).

The next most consistently altered pathway sets occurred
in RAS mutant cancers. In these cases, the commonly dys-
regulated pathways may further enhance the activation of
the RAS pathway. RAS mutation was associated with an
increase in inositol phosphate mediated signaling (Figure
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Figure 6. Mutation associated SWAN shifts. (A) All cancers with a signif-
icantly different SWAN shift spectrum for p53 mutant tumors compared
to p53 wild-type tumors are shown for the KEGG: Autophagy pathway.
(B) SWAN feather plot of suppressed autophagy genes. UCEC samples
with p53 mutation are plotted as circles, samples with no p53 mutation as
crosses. Filled diamonds represent mean SWAN shifts per gene. Inset panel
shows overall survival of p53 mutant UCEC compared to non-mutant
UCEC. (C) All cancers with a significantly different SWAN shift spectrum
for RAS (NRAS, HRAS or KRAS) mutant tumors compared to RAS wild-
type tumors are shown for the GO: Inositol phosphate mediated signal-
ing pathway. (D) Breast was the only cancer with a significantly different
SWAN shift spectrum for BRCA1 or BRCA2 mutant tumors compared
to BRCA wild-type tumors for the GO: meiotic chromosome separation
pathway, with (E) pathway genes highlighted for regions of gene deletion
by Circos plot (left) or Oncoprint (right).

6C), likely increasing activation of PI3K (80). The remain-
der of known, common driver mutations were distinct to
individual cancer types. For example, the BRCA1/2 driven
cancers were associated with a decrease in meiotic chro-
mosome condensation specifically in breast cancer (Fig-
ure 6D). This pathway was suppressed via allelic loss in

FANCM, TOP2A/B and HFM1 (Figure 6E). Since CNAs
are far more common than individual driver SNV mu-
tations, more samples are needed to provide the statisti-
cal threshold for CNA pathway differences associated with
other individually rare SNV drivers. Overall, these data sup-
port the model that SNV/indel mutations alter biology in a
manner which is further exacerbated by CNAs.

Prognostic alterations

If SWAN-identified CNA pathways drive the biology of tu-
mors, then it would be expected that some pathways influ-
ence patient prognosis. Both cBioPortal and ProteinAtlas
offer survival curves comparing ‘low’ and ‘high’ expression
of individual genes for this purpose. To highlight the util-
ity of SWAN-based pathway analysis for prognosis compar-
isons, we provide one use-case study of the OV dataset as an
example.

An active area of investigation in OV is how homology
directed repair (HDR) processes affect chemotherapy re-
sponse. Clinical data associated with genomics from the
past two decades have assessed platinum-based survival,
and current trials continue to assess the interaction with
PARP inhibitors. Haploinsufficiency of the HDR genes
BRCA1 and BRCA2 is well established (81–83). Yet, in
the platinum-based therapy TCGA cohort, single allele
loss of either gene is not prognostic (P < 0.52 for either,
P < 0.98 for BRCA1 or P < 0.081 for BRCA2, Supplemen-
tary Figure S8A). Analyzing CNAs within the HDR path-
way with SWAN and comparing with prognosis yields nom-
inal significance with chemotherapy response (P < 0.051,
Supplementary Figure S8B). Finally, layering RNA data
consistent with CNA data captures the best separation
(P < 0.010), with losses of HDR genes conferring bet-
ter response. This effect was not found with RNA alone
(P < 0.25). Suppression of HDR conferring chemother-
apy sensitivity is consistent with clinical practices with OV
(84,85).

There is an important limitation to pathway-based prog-
nostic approaches. Sometimes a single gene does indeed
drive biology in a dominant fashion. We note two publi-
cations both implicate SMAD2 loss as negatively prognos-
tic in colorectal cancers (86,87). SMAD2 is a regulator of
the TGF-beta pathway, which is comprised of both pos-
itive and negative regulators (88). When two significantly
suppressed pathways including SMAD2 are analyzed for
prognosis by SWAN analysis of CNAs, ‘GO Organ Growth’
and ‘GO Regulation of Cellular Response to TGF-beta Sig-
naling’, neither are positively or negatively prognostic in
COAD. These findings, taken together, indicate a pathway
approach may be useful in those situations wherein multi-
ple genes contribute in the same direction to pathway effi-
ciency, whereas single-gene approaches remain useful when
pathways contain both positive and negative regulators or
a gene produces sufficient effects on its own.

We next explored whether pathway scores can separate
prognostic groups. In a log-rank test analysis using whole-
cohort data, 12,781 pathways from 18 cancers were found
to be significantly prognostic by comparing upper and lower
tertiles of SWAN shifts. Survival estimates can be mislead-
ing (89), and we accordingly found an ability to erroneously
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call a single pathway as positively or negatively prognos-
tic, depending on which patients were randomly selected
(Figure 7A, Supplementary Figure S8C). Desiring to pri-
oritize the 12,781 pathway hits into those most likely to be
medically informative, we developed a machine learning ap-
proach. A random subset of two-thirds of tumors was used
to build Cox-proportional hazard (Cox-PH) models from
SWAN network shift data. The remaining one-third of tu-
mors per random selection was used to generate hazard ra-
tios using the Cox-PH model. 101 random patient selections
were used to determine which pathways scored as similarly
prognostic in the test set. While Cox-PH is traditionally
used for multiple covariates, its predictive capacity for single
variables was herein used. The machine-learning approach
here required an identical hazard ratio direction and subse-
quent test group log-rank significance in >80% of patient
selections to call a pathway as prognostic (Figure 7B). This
strategy was amenable to 18 cancer types with sufficient sur-
vival data and reduced the prognostic pathways from 12,781
pathways within the pan-cancer cohort to 1,696 pathways
(Supplementary Figure S8D-F). 1,079 were from the highly
predictable LGG data, leaving 617 machine-learned prog-
nostic pathways from 17 other cancer types. While an ideal
machine-learning approach would include an independent
dataset, data of sufficient size and comparable form across
cancer types were unavailable. Our approach nonetheless
sharply narrowed the scope of likely prognostic CNA path-
ways. Kaplan–Meier curves of the entire cohort confirm
that machine learned pathways were negatively prognostic
(Figure 7B) and positively prognostic (Figure 7C), suggest-
ing that SWAN data may be used to categorize patients by
prognosis. Machine-learned prognostic pathways for each
cancer type are supplied as Supplementary Table S7.

Online atlas

We uploaded our SWAN analysis of 31 cancer types studied
by TCGA into an online portal. The accessible data include
SWAN CNA network-level scores and per-patient scores for
all cancer types for four pathway sets: GO, KEGG, Hall-
mark and Reactome. This database is provided online at
https://delaney.shinyapps.io/cnalysis tcga atlas/. Summary
data for all analyses discussed here are also provided as Sup-
plementary Tables S1–S7.

DISCUSSION

Copy-number alterations represent a wealth of unexplored
oncogene and tumor suppressor gene data within the can-
cer genome landscape. Expanse and heterogeneity of these
data have previously hindered identification of biologically
relevant CNAs. SWAN demonstrably improves the identi-
fication of TSGs and OGs on CNAs within a pan-cancer
dataset. In addition to this computational validation, wet-
lab validation was performed. SWAN identified PEX5 and
PEX19 as elevated genes within the peroxisome biogene-
sis pathway. These genes each conferred platinum resistance
by oxidative control. SWAN marked cadmium response as
suppressed in 15 tumor types, and knockdown of metal-
lothionein 2A conferred increased �H2AX foci formation
in response to cadmium. Newly sequenced tumors analyzed

by SWAN determined that elevation of cytokine production
genes occurs within tumors from an underrepresented racial
group. SWAN was developed with an emphasis on ease-of-
use and widespread applicability so that SWAN may be uti-
lized in future experiments with complex genetics. While op-
timized for oncology, SWAN may be considered for use as
generally applicable pathway analysis software.

A limitation with modern genetically-targeted cancer
treatments is the small percentage of patients who may
benefit from a specific genetic alteration. Some estimates
are that only 8.3% of patients are eligible for genetically-
targeted therapy (2018), compared to 5.1% over a decade
prior (2006) (90). In OV, which lacks canonically targetable
mutant drivers, alternative tests have been developed to
test for functional deficiency in homology directed repair,
thereby enabling PARP inhibitor targeted therapy even in
the absence of BRCA1/2 mutations (91). This HDR defi-
ciency is influenced by the ubiquitous CNAs described here.
Our analysis of CNAs represents a wealth of potentially tar-
getable pathways that are altered in double-digit percent-
ages of patients. Moreover, therapeutic windows as a result
of tumor CNAs are of high likelihood since functional nor-
mal cells do not contain clonal somatic CNAs. Targeting
pathways, rather than individual genes, may reduce the like-
lihood of resistance mutation development and resurgent
cancer, especially if multiple drugs are used (92).

While previous CNA studies have thoroughly studied fo-
cal homozygous deletions and arm-level aneuploidy in can-
cer, these studies do not provide a comprehensive statisti-
cal assessment of what patterns of changes can alter bio-
logical pathways. This is critical because a pathway may
be suppressed via multiple chromosome arms or monoal-
lelic changes which may differ tumor-to-tumor. An exam-
ple of this is the keratinization pathway. While it was previ-
ously shown that single gene overexpression of keratiniza-
tion factors can promote cell cycle progression, these ef-
fects were cell type specific (24). However, those cell-type
specificity results must be a consequence of other fac-
tors within the cell which ameliorate or exacerbate the ef-
fects of single gene overexpression. Networks, conversely,
take into account these disparate interacting factors that
differ between individual tumor samples. An analysis of
focal-amplification regions consistently altered across tu-
mors identified regulators of Nf-�B, Wnt/�-catenin, MYC,
AKT, ERBB2, Cyclin-D1 and -E1, and TERC (41). Path-
way alterations within these commonly amplified segments
centered on chromatin modifiers such as BRD4, KDM2A,
and KDM5A (41). These genes are well-known oncogenes
and were often identified as impactful by SWAN. However,
SWAN was able to additionally identify cancer addictions
depleted in sgRNA screens and further prioritized 65 novel
oncogenes. Pan-cancer and cancer-specific CNA pathways
were identified and their relevance to primary chemother-
apy can be referenced to the machine-learned prognostic
pathways released here.

A caveat of the pan-cancer analysis presented here is the
deliberate absence of RNA data. This choice was made be-
cause many previous RNA pathway analyses have been per-
formed and CNA patterns are more exclusive to tumor tis-
sue than normal tissue. For example, a tSNE plot of a pan-
cancer RNA analysis by Fang et al. shows a clear delin-

https://delaney.shinyapps.io/cnalysis_tcga_atlas/


Nucleic Acids Research, 2022, Vol. 50, No. 7 3689

Figure 7. Machine-learning approach for improved prognostic estimates of CNA influenced pathways. (A) An example of a nominally-significant prognos-
tic pathway, corrected by a machine learning approach. Patient data are first separated by SWAN pathway shifts, with the ‘low’ and ‘high’ groups separated
by 1 SD centered at the median shift. With the entire patient cohort considered, a Kaplan–Meier analysis yields P < 0.047. 101 training sets of SWAN
shift data build risk scores, then the upper quartile risk is compared to the lower quartile risk group by Kaplan–Meier analysis to yield a P-value for the
test group. Colored circles indicate HR at least 1 SD from the null 1 value. Potential false positive prognostic pathways were removed by (1) determining
significance in the applied CoxPH model risk for each test set, and (2) determining CoxPH HR direction in each training set. The most prognostic pathways
are labeled as those with >80% of randomizations as both significant and in same HR direction, such as in example (B). A Kaplan–Meier overall survival
curve with 95% confidence interval is shown for the whole patient cohort (right panel). (C) A negatively prognostic Kaplan–Meier overall survival curve
with 95% confidence interval is shown. In this case, 98% of patient picks were significant.

eation of tumor site clustering (93), while our clustering of
CNA pathway data results in clusters containing a handful
of tumor sites (Supplementary Figure S7). Prognostic in-
terpretations also differ but are likely complementary; the
Fang et al. study highlights an elevated DAP12/TYROBP-
containing pathway as negatively prognostic in BRCA due
to IGFBP and Akt signaling. Here, we found elevated
carbohydrate transport was most negatively prognostic in
BRCA, which may be related. The Frost lab, like our cur-
rent study, has found gene-centric estimates of prognosis are
conceptually limited by strong co-regulation of other genes
within the same pathway (for example, E2F targets) (94).
Like the Frost CNA study (95), the LGG cancer type was
most predictable in our study due to high concordance of
CNA data. Pathway-level views of noisy, low gene-gene ex-
pression correlations, in contrast, enable a more reliable pre-
dictive performance. Nonetheless, gene-level expression re-
mains valuable to analyze prognosis, as evidenced by the de-
velopment and use of iPath (46), SurvExpress (96), and Km-
Plot (97). Future studies are needed to ascertain if CNA-
inferred prognosis and other biological estimates of path-
way changes improve through integration with RNA data.
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