

Myosin-I nomenclature

Peter G. Gillespie, Joseph P. Albanesi, Martin Bähler, William M. Bement, Jonathan S. Berg, David R. Burgess, Beth Burnside, Richard E. Cheney, David P. Corey, Evelyne Coudrier, Primal de Lanerolle, John A. Hammer, Tama Hasson, Lighten R. Holt, A.J. Hudspeth, Mitsuo Ikebe, John Kendrick-Jones, Edward D. Korn, Rong Li, Bohn A. Mercer, Ronald A. Milligan, Mark S. Mooseker, E. Michael Ostap, Christine Petit, Thomas D. Pollard, James R. Sellers, Hierry Soldati, Margaret A. Titus

We suggest that the vertebrate myosin-I field adopt a common nomenclature system based on the names adopted by the Human Genome Organization (HUGO). At present, the myosin-I nomenclature is very confusing; not only are several systems in use, but several different genes have been given the same name. Despite their faults, we believe that the names adopted by the HUGO nomenclature group for genome annotation are the best compromise, and we recommend universal adoption.

Address correspondence to Peter G. Gillespie, Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR 97201. Tel.: (503) 494-2936. Fax: (503) 494-2976. E-mail: gillespp@ohsu.edu

In the HUGO system (http://www.gene.ucl.ac.uk/nomenclature/), the *Homo sapiens* myosin-I gene names are *MYO1A*, *MYO1B*,..., *MYO1H*; the corresponding protein products are MYO1A, MYO1B,..., MYO1H. The *Mus musculus* gene names are *Myo1a*, *Myo1b*,..., *Myo1h*; the corresponding protein products are Myo1a, Myo1b,..., Myo1h. Although these names do not reflect the subclass relationships between genes (*MYO1A* and *MYO1B*; *MYO1C* and *MYO1H*; *MYO1D* and *MYO1G*; and *MYO1E* and *MYO1F* are most closely related; Fig. 1), this system names all myosin-I genes and their protein products and is presently being used to annotate the human and mouse genomes. The HUGO names are reconciled with other naming systems used for myosin-I gene products in Table I.

¹Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR 97201

²Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390

³Institut für Allgemeine Zoologie und Genetik, Westfälische Wilhelms-Universität Münster, Münster, Germany

⁴Department of Zoology, University of Wisconsin, Madison, WI 53706

⁵Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599

⁶Department of Biology, Boston College, Chestnut Hill, MA 02467

⁷Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720

⁸Harvard Medical School, Massachusetts General Hospital, and Howard Hughes Medical Institute, Boston, MA 02114

⁹Morphogenese et Signalisation Cellulaires, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, Institut Curie, 75248 Paris Cedex 05, France

¹⁰Department of Physiology, University of Illinois at Chicago, Chicago, IL 60612

¹¹Laboratory of Cell Biology, National Institutes of Health, Bethesda, MD 20892

¹²Division of Biology, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093

¹³Department of Neuroscience and Otolaryngology, University of Virginia Medical School, Charlottesville, VA 22908

¹⁴Laboratory of Sensory Neuroscience and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021

¹⁵Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655

¹⁶MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK

¹⁷Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892

¹⁸Department of Cell Biology, Harvard Medical School, Boston, MA 02115

¹⁹McLaughlin Research Institute, Great Falls, MT 59405

²⁰Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037

²¹Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520

²²Department of Physiology and The Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104

²³Unite de Genetique des Deficits Sensoriels, CNRS URA 1968, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris cedex 15, France ²⁴Laboratory of Molecular Cardiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD

²⁵Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK

²⁶Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455

Figure 1. **Tree for human myosin-l genes.** From Berg et al. (2001). Two recently predicted myosin-l genes are italicized, with the gene names suggested for them indicated in brackets.

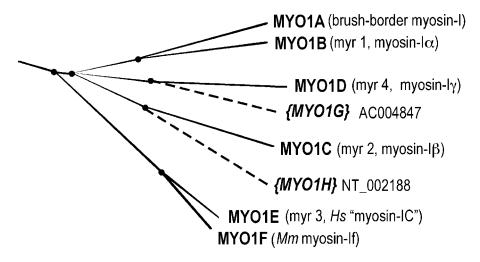


Table I. Reconciliation of myosin-I names in the literature

Human gene	Human synonyms	Mouse gene	Mouse synonyms	Rat synonyms
MYO1A	Brush-border myosin-I (AF009961); "myosin-IA" (L29137)	Муо1а		
MYO1B	"myosin-IB" (L29138)	Myo1b	myosin-lα (P46735); MIHC-L (X69987)	myr 1 (X68199); MI-130K
MYO1C	,	Myo1c	myosin-Iβ (X98507)	myr 2 (X74800); MI-110K
MYO1D		Myo1d	myosin-ly (C45438)	myr 4 (X71997)
MYO1E	"myosin-IC" (U14391)	Myo1e	,	myr 3 (X74815)
MYO1F	"myosin-ID" (U57053); "myosin-IE" (X98411)	Myo1f	myosin-lf (X97650)	,
MYO1G	, 65 12 (7.56 1. 1.)	Myo1g		
МҮО1Н		Myo1h		

Table adapted from Berg et al. (2001).

We recommend those working with other vertebrates adopt the mouse names (upper case for the first letter, lower case for the rest), if appropriate modifying the gene or protein name using an abbreviation for the Latin binomial (e.g., *Rc* for *Rana catesbeiana*, *Xl* for *Xenopus laevis*). For example, myr 1—a rat myosin—would now be named *Rn* Myo1b (or just Myo1b).

To provide continuity with the previous literature, we suggest that common names be mentioned the first time that the gene or protein is mentioned; after that point, however, only the systematic name should be used.

Finally, although we have focused on the myosin-I family, we recommend that those working on other myosin families follow a similar naming convention.

References

Berg, J.S., B.C. Powell, and R.E. Cheney. 2001. A millennial myosin census. Mol. Biol. Cell. 12:780–794.