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The diagnosis of thyroid nodules at an early stage is a challenging task. Manual diagnosis of thyroid nodules is labor-intensive and
time-consuming. Meanwhile, due to the difference of instruments and technical personnel, the original thyroid nodule ultrasound
images collected are very different. In order to make better use of ultrasound image information of thyroid nodules, some image
processing methods are indispensable. In this paper, we developed a method for automatic thyroid nodule classification based on
image enhancement and deep neural networks. The selected image enhancement method is histogram equalization, and the neural
networks have four-layer network nodes in our experiments. The dataset in this paper consists of thyroid nodule images of 508
patients. The data are divided into 80% training and 20% validation sets. A comparison result demonstrates that our method can
achieve a better performance than other normal machine learning methods. The experimental results show that our method has
achieved 0.901961 accuracy, 0.894737 precision, 1 recall, and 0.944444 Fl-score. At the same time, we also considered the
influence of network structure, activation function of network nodes, number of training iterations, and other factors on the
classification results. The experimental results show that the optimal network structure is 2500-40-2-1, the optimal activation

function is logistic function, and the best number of training iterations is 500.

1. Introduction

The incidence of thyroid cancer has been increasing the
fastest among all solid malignant tumors. The relatively high
incidence that continues to grow makes thyroid cancer one
of the most common endocrine malignancies worldwide,
currently listed as seventh most common cancer in women
and fifteenth most common cancer in men [1]. The research
of thyroid cancer has become a topic of widespread concern
in medical community and society [2]. The diagnosis of
thyroid cancer is a challenging task. Most of thyroid cancers
are shown as thyroid nodules, which are frequently detected
incidentally during the diagnostic imaging of the neck [3-5].
High-resolution ultrasound is the gold standard test for the
identification of thyroid nodules. Thyroid disease is gen-
erally diagnosed by visual inspection of ultrasound images.
Thyroid nodule imaging improves on diagnosis of thyroid

diseases by providing ultrasound images. Based on thyroid
nodules ultrasonographic characteristics such as internal
composition, echogenicity, calcification, margins, and size,
radiologists can report on the risk of thyroid nodules being
malignant using a standardized scoring system [6]. When
using high-resolution ultrasound, the prevalence of thyroid
nodules is as high as 19-68% in a randomly selected pop-
ulation. Since most of the nodules are benign and the
percentage of malignant nodules is relatively low (7-15%), it
is very important to distinguish benign and malignant
thyroid nodules [7].

Most of thyroid nodules are heterogeneous with various
internal components, which confuse many radiologists and
physicians with their various echo patterns in thyroid
nodules ultrasonography. In order to improve the diagnosis
rate and reduce the loss caused by misdiagnosis, computer-
aided diagnosis (CAD) has been developed to help doctors
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discriminate nodules from benign or malignancy. In 2007,
Savelonas et al. focused on the directional patterns of the
image they extracted using radon transformation and
proposed a computer-aided diagnosis system based on
support vector machine on the data of 66 patients, achieving
maximal classification accuracy of 0.89 [8]. In 2011, Ding
et al. studied the classification of thyroid nodules using the
support vector machine classifier and 125 thyroid nodules
consisting of 56 malignant and 69 benign patients [9]. Then,
in 2019, Prochazka et al. used 40 thyroid nodules (20 ma-
lignant and 20 benign) to extract several features, such as
histogram parameters, fractal dimension, and mean
brightness value. The authors used random forests and
support vector machine to differentiate nodules into ma-
lignant and benign classes based on these features [10]. In
2020, Harshini et al. used linear discriminant analysis and
support vector machine to distinguish thyroid nodules and
compared the results of two methods [11]. Sathyapriya and
Anitha selected the optimal features using Dynamic Mu-
tation based Glowworm Swarm Optimization (DMGSO)
algorithm and used the Long Short-Term Memory (LSTM)
scheme to classify the thyroid nodules in 2020 [12]. In 2020,
Ma et al. used five common machine learning methods to
distinguish thyroid nodule; meanwhile, they also considered
the impact of four different distance measures on the per-
formance of the related models [13]. In 2020, Miao et al. used
logistic regression to analyze the variables that significantly
affected malignant nodules on the data of 811 patients with a
total of 1290 pathologically confirmed nodules (506 benign
and 784 malignant). The sensitivity and specificity of ul-
trasound thyroid imaging reporting and data system clas-
sification results for benign and malignant tumors were
calculated [14]. In 2020, Ataide et al. aimed to reduce
subjectivity in the current diagnostic process by using
geometric and morphological (G-M) features that represent
the visual characteristics of thyroid nodules to provide
physicians with decision support [15].

Numerous CAD deep learning-based systems have been
studied for automated thyroid detection in recent years. In
2017, Chi et al. used deep convolutional neural network to
extract features from thyroid ultrasound images and sent the
extracted features of the thyroid ultrasound images to a cost-
sensitive random forest classifier to classify the images [16].
In 2019, Ouyang et al. compared the classification perfor-
mance of five nonlinear and three linear machine learning
algorithms for the evaluation of thyroid nodules. They
obtained that nonlinear machine learning algorithms
demonstrated similar AUCs compared with linear algo-
rithms [17]. In 2019, Zhang et al. developed a thyroid
nodules diagnostic model and performed better than radi-
ologist diagnosis based on conventional US only and based
on both conventional US and real-time elastography [18]. In
2020, Wang et al. compared the performance of radiomics
and deep learning based methods for the classification of
thyroid nodules from ultrasound images and found that the
deep learning based method can achieve a better perfor-
mance than using radiomics [19]. In 2020, Song et al.
proposed a hybrid multibranch convolutional neural net-
work based on feature cropping method for feature
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extraction and classification of thyroid nodule ultrasound
images [20]. In 2020, Liang et al. developed a multiorgan
CAD system based on convolutional neural networks for
classifying both thyroid and breast nodules and investigated
the impact of this system on the diagnostic efficiency of
different preprocessing approaches. The authors proposed
four models based on convolutional neural networks and
found that the convolutional neural networks model using
segmented images for classification achieved the best result
[21]. In 2020, Zhang et al. proposed a novel method using
two combined classification modules to separate and classify
thyroid nodules images and experimental results show that
the method leads to excellent performance [22]. In 2020, Xie
et al. designed a deep neural network to classify whether a
thyroid nodule is benign or malignant and proposed a
structure which combines local binary pattern with deep
learning [23]. In 2020, Yuan illustrated a method which
involves the combination of the deep features with the
conventional features together to form a hybrid feature
space. They compared the ResNetl8, a residual convolu-
tional neural network with 18 layers, with the Res-GAN, a
residual generative adversarial network [24]. In 2021, Liu
et al. developed an information fusion-based joint con-
volutional neural network for the differential diagnosis of
malignant and benign thyroid nodules. The information
fusion-based joint convolutional neural network contains
two branched convolutional neural networks for deep fea-
ture extraction [25]. In 2021, Vadhiraj et al. compared the
support vector machine and artificial neural network clas-
sification algorithms based on their accuracy score, sensi-
tivity, and specificity in the data of 99 thyroid nodule cases
(33 benign and 66 malignant) [26]. In 2021, Li et al. designed
an end-to-end thyroid nodule automatic recognition and
classification system based on convolutional neural net-
works for CT images. The classification output accuracy
reaches 0.8592 in the test set [27]. In 2022, Luong et al. used
the linear, nonlinear, and nonlinear-ensemble machine
learning methods to predict malignancy of indeterminate
thyroid nodules and produced an accuracy of 0.791 [28].
Nair and Pande gave the analysis of different machine
learning techniques used in the detection and prediction of
thyroid disease in 2022 [29]. More information on ultrasonic
image classification of thyroid nodules using deep learning
method can be found in literature [30]. These results based
on ultrasound images have good inspiration for our
research.

The medical diagnosis system based on deep learning
heavily depends on the amount of medical images. Sufficient
data can ensure the performance of deep learning algorithm.
However, thyroid nodule images data is very rare and ex-
pensive in the field of medical image processing. The lack of
data has become a challenging problem in the classification
of thyroid nodules using deep learning. In order to solve this
problem, a deep neural networks classification model based
on image enhancement technology is proposed in this paper.
The introduction of image enhancement technology enables
us to make full use of the limited image data information.
The accuracy, precision, recall, and Fl-score of the model
would be important determinants of the clinical utility of the
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computer-aided diagnosis system. This paper uses the above
four metrics as indicators to measure the performance of the
classification models. The experimental results show that our
proposed method achieves better performance compared
with the existing thyroid nodule diagnosis systems in terms
of accuracy, precision, recall, and F1-score.

2. Materials and Methods

Based on the previous literature and the opinions of doctors
and experts, an accurate thyroid nodule detection and
classification model is proposed based on deep neural
networks and image enhancement.

2.1. Dataset. A digital database of thyroid ultrasound images
is established. These thyroid ultrasound images were col-
lected at the third hospital of Hebei Medical University in
China. The dataset images were divided into two categories:
benign and malignant. The classification of thyroid nodules
is the result of diagnosis according to the shape, nodule
composition, shape, margin, calcifications, and TI-RADS
score of thyroid nodules. A total of 508 patient ultrasound
examinations were present in the dataset. Among these
ultrasound images, there were 415 with nodules classified as
benign and 93 with nodules classified as malignant. The
specific original ultrasonic images data are shown in
Figure 1.

2.2. Image Analysis and Preprocessing. Ultrasound images
are collected from different doctors and equipment; image
preprocessing is very necessary. These pieces of equipment
include Philips IU22, Philips HD15, and Siemens Acuson
SEQUOIA 512; the size of the images also ranges from
600 x 450 pixels to 768 x 576 pixels. All images had to be
resized and changed to the same distance scale. In order to
make better use of the images for the diagnosis of thyroid
nodules, we preprocessed the ultrasound images in three
steps.

The first step of our image preprocessing is image seg-
mentation, which is a process of segregating an image into
numerous segments. Segmentation is required to change the
representation of an image for easy analysis without altering
meaningful information. Image segmentation is also an
important step to extract redundant information from ul-
trasonic images. Figure 2 exhibits the segmentation of an
image.

The second step is to resize the images. It is resized to
have the same distance scale which is the physical space
represented by each pixel in the image. This step is used to
improve the quality of the image by removing the undesired
distortion from the image. The resizing of the image is also
an important guarantee for the unity of the image data. In
this study, the size of the image is uniformly adjusted to
200 x 200 pixels.

Image standardization is the third step, also the final step
of preprocessing. Image standardization is the process of
centralizing the data by removing the mean value. According
to the convex optimization theory and the data probability

distribution, data centralization conforms to the law of data
distribution, which makes it easier to obtain the general-
ization effect after training. Data standardization is one of
the common methods of data preprocessing. Figure 3 shows
the changes of the image before and after image
standardization.

2.3. Image Enhancement. Image enhancement algorithms
are often used to adjust the brightness, contrast, saturation,
and hue of the image, improve the definition of the image,
and reduce the image noise. The purpose of image en-
hancement is to obtain the useful information of the image.
Image contrast enhancement is the most important in
image enhancement. There are two methods of image
contrast enhancement: direct contrast enhancement
method and indirect contrast enhancement method. His-
togram equalization is a common indirect contrast en-
hancement method.

The histogram of an image represents the probability
density function (PDF) value of the pixel values in the image
over the entire grayscale range. If most of the pixels are
concentrated in the low gray area, the image will appear
dark, but if they are concentrated in the high gray area, it will
appear bright. Histogram equalization is to adjust the
grayscale distribution of the image to make the distribution
on the grayscale of 0~255 more balanced. Histogram
equalization uses the cumulative function to adjust the gray
value to elevate the contrast of the image, thus improving the
visual effect of the image. Figure 4 shows the changes of the
image and the histogram before and after histogram
equalization.

2.4. Deep Neural Networks (DNNs). Neural network is an
extension based on the perceptron, and a DNN is a feed-
forward, artificial neural network that has more than one
layer of hidden units between its inputs and outputs.
According to the location of different layers, the neural
network layers of DNN can be divided into three categories:
input layer, hidden layer, and output layer, as shown in
Figure 5. The first layer is the input layer, the last layer is the
output layer, and the middle layer is the hidden layer. Layers
are fully connected; that is, any neural unit in layer n must be
connected with any neural unit in layer n + I. Each hidden
unit j typically uses the logistic function to map its total input
from the layer below, x;, to the scalar state, y i that it sends to
the layer above. The logistic function is given by

L (1)

1+e ™

Yi

where x; = b; + ) y;w;;, b; is the bias of unit j, i is an index
over units in the layer below, and w;; is the weight on a
connection to unit j from unit i in the layer in the following.
Of course, there are other activation functions here. The
logistic function is the most commonly used as the activation
function.

DNN can be trained by back-propagating derivatives of
the cost function that measures the discrepancy between the

target outputs and the actual outputs produced for each
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F1GURE 1: Examples of the original ultrasound image with thyroid nodules. (a) The thyroid nodules of the upper four images are benign. (b)

The thyroid nodules of the lower four images are malignant.

training sample. For the large training sets, it is more effi-
cient to use the strategy of “minibatch” for training deep
neural networks model. That is to say, we compute the
derivatives on a small, random “minibatch” rather than the
whole training set, before updating the weights in propor-
tion to the gradient.

2.5. Classification of Thyroid Nodules. Image classification
task of thyroid nodules includes two parts: training and
testing. After preprocessing the image data, we get the data
that can be used directly. In order to make better use of
image information, we carry out the image enhancement.
Then, 80% of the data is used as training data and the other
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FIGURE 2: Image segmentation. (a) Original image. (b) Segmented and extracted image.
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FIGURE 3: Image standardization.

20% as test data. DNN is chosen for classification. The
classification accuracy, precision, recall, and Fl-score are
used as the standard to evaluate the classification model. At
the same time, we also compare the classification results with
the general machine learning classification algorithm, for
example, K-nearest neighbors, decision tree, naive Bayesian
model, support vector machine, logistic regression, and
reinforcement learning. The process of thyroid nodule

processing and classification based on deep neural networks
is shown in Figure 6.

2.6. Performance Metric. In machine learning, it is very
important to evaluate the model through performance
measurement. In order to evaluate our proposed classifi-
cation model based on deep neural networks, we compare
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the performance with those of the general machine learning
classification algorithms. At the same time, we also consider
the effects of different network structures, the number of
iterations, and network activation functions on classification
performance. In this paper, our focus is the accuracy of the
model in building computer-aided diagnostics that could
classify thyroid nodules as benign or malignant. However, it
is also essential to check the performance and efficiency of
the model. In order to evaluate the performance of the model
more comprehensively, we consider the four following
metrics: accuracy, precision, recall, and F1-score.

(1) Accuracy:

TP + TN -
accuracy = .
Y= TP+ FP+ TN +EN
(2) Precision:
TP
ion = 1P ,
precision = s (3)
(3) Recall:
TP
N=—"_ 4
recall = == @
(4) Fl-score:
F1 — score = 2 % (precision * recall) -

precision + recall ’

where TP is True Positive, FP is False Positive, TN is True
negative, and FN is False Negative.

Accuracy is one of the most important indexes in the
performance metrics. Accuracy refers to how well the model can
classify thyroid nodules correctly. Accuracy is the proportion of

correctly predicted cases in the total cases. Precision is the
proportion of positive cases determined by the classifier. Recall
is the proportion of predicted positive cases in the total positive
cases. F1-score is the harmonic average of precision and recall.
Precision and recall have the same weight in F1-score.

3. Experimental Results and Discussion

3.1. Accuracy-Based Deep Neural Networks. In this study, we
construct a thyroid nodule classification model based on
deep neural networks. Classification of thyroid nodules
using deep neural networks at the best setting reaches ac-
curacy of 0.901961. Precision and Fl-score also reach
0.894737 and 0.944444; in particular, recall reaches 1. The
best network has four layers in our experiment, the first layer
is the input layer, the last layer is the output layer, and the
two middle layers are the hidden layers; that is, there are two
hidden layers. We scale the image with 200 x 200 pixels to an
image with 50 x50 pixels and transform an image with
50 x 50 pixels into a 2500-dimensional vector for deep neural
networks. Therefore, the number of nodes of the input layer
is 2500. The node numbers of the two hidden layers are 40
and 2. Because it is a binary classification problem, the
output layer has only one node. The activation function of
the network node is the logistic function. The maximum
number of iterations during model training is set to 500. Due
to the difference between image acquisition channels and
doctors, the image quality is relatively low. In particular, the
recognition of some images is very difficult, and even manual
recognition is difficult. In this case, the accuracy of deep
neural networks classification model is satisfactory.

3.2. Influence of Different Neural Networks. In this section,
we consider the influence of different neural networks. We
first consider the influence of network structure on



classification performance. For convenience, 2500-200-100-
1 network denotes a four-layer network. 2500 is the number
of network nodes in the first layer, that is, the number of
network nodes in the input layer. 200 and 100 are the
numbers of nodes in the second layer and the third layer;
these two layers are hidden layers. 1 is the number of the
output layers (the last layer). Table 1 gives the performance
comparison of DNN with different network structures. The
network has more layers and network nodes, which means
that the network will need more training time. From our
experimental results, it is not true that the more complex the
network structure, the better the performance of the model.
It requires us to make more attempts to find the optimal
network structure. We mainly consider three-layer, four-
layer, and five-layer network structures. Six network
structures are studied for each type of networks. We can find
that the optimal network structure is four layers, 2500-40-2-
1. Although the accuracy of a three-layer network (2500-
100-1) also reaches 0.901961, the recall rate and F1-score are
lower than those of the 2500-40-2-1 network. The recall and
Fl1-score of the 2500-40-2-1 network are the highest in our
experimental network structures; in particular, the recall
reaches 1.

Next we discuss the influence of different activation
functions. In order to consider only the influence of acti-
vation function, we set the same network structure, the
number of iterations, and the learning rate. The network is
the four-layer network (2500-40-2-1). The number of iter-
ations and learning rate are set to 500 and 0.001, respectively.
Logistic, tanh, and identity functions are considered. Lo-
gistic function is also sigmoid function. The formula of
logistic function is seen in (1). The formulas of tanh and
identity functions are as follows:

-2x X —Xx
1-e e —e

tanh = =
) X —X>
l+e ™ € +e (6)

identity (x) = x.

The performance comparison of DNN with different
activation functions is shown in Table 2. It is obvious that
logistic activation function has the best performance. The
four performance metrics of logistic function are all higher
than tanh and identity activation functions. The perfor-
mance of tanh activation function is slightly higher than that
of identity function.

Finally, we consider the influence of the number of it-
erations during training. In the process of neural network
model training, we need to iterate many times in order to
achieve better training effect. The selection of iteration times
is very important for model training. Too many iterations
easily leads to a large amount of redundant training time and
overfitting; on the contrary, too few iterations leads to poor
training effect. The performance comparison of DNN with
different maximum number of iterations is given in Table 3.
It is easy to find that the overall classification performance of
the model improves with the increase of the number of
iterations. Although in the process of improvement one or
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two indicators will decline, when the number of iterations
reaches 500, the performance of the model is the best. The
classification accuracy reaches 0.901961, and the precision,
recall, and Fl-score reach 0.894737, 1, and 0.944444, re-
spectively. After 500 iterations, even if the number of it-
erations increases, the classification performance remains
unchanged. On the contrary, it will cause a violent increase
in training time.

3.3. Comparison with Other Methods. In this section, we
compare the performance of deep neural networks with
those of other common machine learning classification
methods. Table 4 lists the comparison of deep neural net-
works and other six methods: K-nearest neighbors, decision
tree, naive Bayesian model, support vector machine, logistic
regression, and reinforcement learning. In the six methods,
we choose the best results of each method for comparison. In
K-nearest neighbors, we choose K =3, which is also the best
classification performance of K-nearest neighbors. In naive
Bayesian method, we consider the Gaussian model, which is
the most popular naive Bayesian model. Linear kernel
function is used in support vector machine. We consider two
reinforcement learning methods: hard voting and soft
voting.

The performance of DNN is obviously the best among all
methods. The accuracy of DNN reaches 0.901961. The
precision, recall, and Fl-score reach 0.894737, 1, and
0.944444, respectively. All four performance metrics of deep
neural networks are the highest in our experimental
methods. In other six methods, reinforcement learning (soft
voting), K-nearest neighbors, and support vector machine
have better classification performance. The recall of soft
voting reaches 1; however, the accuracy, precision, and F1-
score performance metrics are significantly lower than those
of deep neural networks. The accuracy of K-nearest
neighbors is closest to that of deep neural networks; the
accuracy is 0.852941. The naive Bayesian model has the
worst classification performance.

3.4. Influence of Image Enhancement. The image enhance-
ment method used in this paper is histogram equalization.
Histogram equalization is to adjust the grayscale distribution
of the image to make the distribution on the gray more
balanced. Equalization helps to extend the image histogram.
After equalization, the gray level range of the image is wider
and the contrast of the image is effectively enhanced. Table 5
shows the performance comparison of deep neural networks
with and without image enhancement. We can easily find the
influence of image enhancement on classification perfor-
mance. After image enhancement, all four performance
metrics of deep neural networks have been improved greatly.
The accuracy increases from 0.715686 to 0.901961. Other
classification algorithms have similar results. The classifi-
cation performance of the model is improved with different
degree after image enhancement.
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TaBLE 1: Performance comparison of DNN with different network structures.
Number of network layers Network structure Accuracy Precision Recall Fl-score
2500-50-1 0.843137 0.863158 0.964706 0911111
2500-60-1 0.882353 0.892473 0.976471 0.932584
Three lavers 2500-80-1 0.892157 0.893617 0.988235 0.938547
Y 2500-100-1 0.901961 0.912088 0.976471 0.943182
2500-200-1 0.892157 0.893617 0.988235 0.938547
2500-300-1 0.882353 0.901099 0.964706 0.931818
2500-10-2-1 0.823529 0.874045 0.917647 0.896552
2500-20-2-1 0.833334 0.869565 0.941176 0.903955
2500-30-2-1 0.862745 0.881720 0.964706 0.921348
Four layers 2500-40-2-1 0.901961 0.894737 1 0.944444
2500-60-2-1 0.823529 0.876404 0.917647 0.896552
2500-40-10-1 0.872549 0.8912304 0.964706 0.926554
2500-40-20-1 0.852941 0.880435 0.952941 0.915254
2500-40-5-2-1 0.843137 0.8555670 0.976471 0.912088
2500-100-5-2-1 0.882353 0.901099 0.964706 0.931818
Five lavers 2500-200-10-2-1 0.872549 0.882979 0.976471 0.927374
Y 2500-200-20-2-1 0.803921 0.857143 0.917647 0.886364
2500-200-50-2-1 0.843137 0.896552 0.917647 0.906976
2500-500-50-2-1 0.852941 0.880435 0.952941 0.915254
TaBLE 2: Performance comparison of DNN with different activation functions.
Activation function Accuracy Precision Recall F1-score
Logistic 0.901961 0.894737 1 0.944444
Tanh 0.882353 0.884211 0.988235 0.933333
Identity 0.858586 0.861702 0.987805 0.920455
TaBLE 3: Performance comparison of DNN with different number of iterations.
Maximum number of iterations Accuracy Precision Recall F1-score
80 0.862745 0.89010 0.952941 0.920455
100 0.882353 0.892473 0.976471 0.932584
150 0.843137 0.879121 0.941176 0.909091
200 0.892156 0.893617 0.988235 0.938547
500 0.901961 0.894737 1 0.944444
1000 0.901961 0.894737 1 0.944444
2000 0.901961 0.894737 1 0.944444
TaBLE 4: Performance comparison of different classification methods.
Reinforcement
K-nearest Decision Naive Bayesian Support vector Logistic learning Deep
Method . . .
neighbors tree model machine regression Hard Soft neural networks
voting voting
Accuracy 0.852941 0.794118 0.411765 0.823529 0.823529 0.823529 0.843137 0.901961
Precision 0.857143 0.847826 0.329412 0.868132 0.860215 0.860215 0.841584 0.894737
Recall 0.988235 0.917647 0.903226 0.929412 0.941176 0.941176 1 1
F1-score 0.918033 0.881356 0.482759 0.897727 0.898876 0.898876  0.913978 0.944444
TaBLE 5: Performance comparison of deep neural networks with and without image enhancement.
Image enhancement Accuracy Precision Recall Fl-score
Without 0.715686 0.878378 0.764706 0.817610
With 0.901961 0.894737 1 0.944444
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4. Conclusions

In this paper, we proposed a thyroid nodule diagnosis
method based on deep neural networks and image en-
hancement. Experimental results show that our method has
superior performance as compared to other common
classification algorithms. Because the experimental data are
collected by different doctors from the hospital, some images
are very blurred. In order to maintain the integrity of the
data, we did not abandon the blurred images. Therefore, the
classification performance of the classification model is
relatively low in our experimental data. The classification
accuracy still reaches 0.901961; in particular, the recall
reaches 1. At the same time, we considered the influence of
network structure on the classification results. We found
that it is very difficult to find the optimal network structure.
The determination of the optimal network structure is re-
lated not only to the network itself but also to the data to be
processed. At present, we can only determine the optimal
network structure through the experimental results. The
experimental results show that the optimal network struc-
ture is 2500-40-2-1 in this paper. To determine the optimal
network structure from the perspective of theoretical
analysis is our next work.

We also considered the influence of activation function
and the number of training iterations. The optimal activation
function is logistic function and the best number of itera-
tions is 500. In the last part of this paper, we considered the
influence of image enhancement on classification perfor-
mance. The accuracy before image enhancement is 0.715686
and the accuracy after image enhancement reaches 0.901961.
The precision, recall, and F1-score have been improved after
image enhancement.
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