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Cell signaling is an essential requirement for mammalian cell invasion by Trypanosoma
cruzi. Depending on the parasite strain and the parasite developmental form, distinct
signaling pathways may be induced. In this short review, we focus on the data coming
from studies with metacyclic trypomastigotes (MT) generated in vitro and tissue culture-
derived trypomastigotes (TCT), used as counterparts of insect-borne and bloodstream
parasites, respectively. During invasion of host cells by MT orTCT, intracellular Ca2+ mobi-
lization and host cell lysosomal exocytosis are triggered. Invasion mediated by MT surface
molecule gp82 requires the activation of mammalian target of rapamycin (mTOR), phos-
phatidylinositol 3-kinase (PI3K), and protein kinase C (PKC) in the host cell, associated with
Ca2+-dependent disruption of the actin cytoskeleton. In MT, protein tyrosine kinase, PI3K,
phospholipase C, and PKC appear to be activated.TCT invasion, on the other hand, does not
rely on mTOR activation, rather on target cell PI3K, and may involve the host cell autophagy
for parasite internalization. Enzymes, such as oligopeptidase B and the major T. cruzi cys-
teine proteinase cruzipain, have been shown to generate molecules that induce target cell
Ca2+ signal. In addition, TCT may trigger host cell responses mediated by transforming
growth factor β receptor or integrin family member. Further investigations are needed for
a more complete and detailed picture of T. cruzi invasion.
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INTRODUCTION
The hallmark of host cell invasion by Trypanosoma cruzi, a pro-
cess that involves diverse parasite and host cell components, is
the activation of signal transduction pathways leading to ele-
vation in cytosolic Ca2+ concentration in both cells (Docampo
and Moreno, 1996; Burleigh and Andrews, 1998; Yoshida, 2006).
Ca2+-dependent disruption of host cell actin cytoskeleton that
follows interaction with T. cruzi facilitates the mobilization of lyso-
somes to the cell periphery, where the fusion with the plasma
membrane contributes for the biogenesis of parasitophorous
vacuole, inhibition of this event resulting in impaired para-
site internalization (Tardieux et al., 1992; Rodriguez et al., 1995;
Martins et al., 2011).

Studies with metacyclic trypomastigotes (MT) generated
in vitro and tissue culture-derived trypomastigotes (TCT), used as
counterparts of insect-borne and bloodstream parasites, respec-
tively, have disclosed that these developmental forms engage
distinct sets of molecules and diverse strategies to induce host
cell Ca2+ signaling and lysosomal exocytosis required for their
internalization. Here we summarize the data from experiments
performed mostly with non-phagocytic mammalian cells, aim-
ing at understanding the signaling events that lead to T. cruzi
invasion.

MT SURFACE MOLECULES THAT TRIGGER HOST CELL
SIGNALING DURING INVASION
Adhesion to host cells is the first step for T. cruzi invasion. Sur-
face glycoproteins with cell adhesion properties expressed in MT,
such as gp90, gp82, gp30, and gp35/50, which are differentially

expressed in different strains, bind to target cells in a receptor-
mediated manner and trigger signaling pathways that may result
or not in efficient parasite internalization (Yoshida, 2006).

Gp82, identified by the monoclonal antibody (mAb) 3F6, is a
MT-specific surface molecule (Teixeira and Yoshida, 1986). It is
a member of a multigene family that belongs to the gp85/trans-
sialidase superfamily (Araya et al., 1994). Several pieces of evidence
indicate that gp82 is engaged by highly infective T. cruzi strains to
enter host cells (Ramirez et al., 1993; Cortez et al., 2012a). Gp82 is
conserved among T. cruzi strains from divergent genetic groups,
displaying >90% peptide sequence identity (Maeda et al., 2011).
MT invasion mediated by gp82 triggers the target cell signal-
ing cascades that result in cytosolic Ca2+ mobilization, an event
detectable in mammalian cells susceptible to T. cruzi infection,
such as HeLa and Vero cells, but not in T. cruzi-resistant K562 cells
(Ruiz et al., 1998). Following gp82 recognition by its still unde-
fined receptor, the available data indicate that Ca2+ is released
from thapsigargin-sensitive stores, independent of inositol 1,4,5-
triphosphate (IP3), or upon activation of phospholipase C (PLC),
generating diacylglycerol (DAG) and IP3, the former activates pro-
tein kinase C (PKC) and the latter promotes Ca2+ release from
IP3-sensitive compartments such as endoplasmic reticulum (ER;
Ferreira et al., 2006; Maeda et al., 2012; Figure 1A). In addition to
PKC, two other kinases participate in gp82-mediated MT inva-
sion, namely the mammalian target of rapamycin (mTOR), a
conserved Ser/Thr kinase that regulates diverse cell processes, and
the lipid kinase phosphatidylinositol 3-kinase (PI3K), as suggests
the diminished parasite invasion of cells pretreated with specific
inhibitors of these enzymes (Martins et al., 2011; Figure 1A). What
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FIGURE 1 | Schematic representation of signaling molecules and

pathways that may be activated duringT. cruzi entry into non-

phagocytic mammalian cells. (A) In metacyclic forms that enter host
cells in gp82-mediated manner, activation of PLC generates DAG and IP3.
DAG stimulates PKC and IP3 promotes Ca2+ release from IP3-sensitive
compartments. PI3K and PTK are also activated, the latter mediates
phosphorylation of p175. In the host cell, the recognition of gp82 by its
receptor triggers the activation of PI3K, mTOR, and PLC, the latter

generating DAG and IP3. DAG stimulates PKC and IP3 promotes Ca2+
release from endoplasmic reticulum (ER). (B) During TCT interaction with host
cells, a Ca2+ agonist generated by parasite OPB binds to its receptor and
triggers PLC activation. Then IP3-mediated Ca2+ release from ER ensues.
Bradykinin, produced from kininogen by the action of TCT cruzipain, binds to
bradykinin receptor and triggers PLC activation. Red arrows indicate
activation, possibly not directly, but through as one or more as yet undefined
elements.

are the connections between these kinases can only be inferred at
this point from data available in other systems. PI3K may act
on mTOR signaling, provided that the phosphorylation of down-
stream effectors of mTOR, such as S6K1 and 4E-BP1, is sensitive to
rapamycin and also to PI3K inhibitor wortmannin (Chung et al.,

1994; Mèndez et al., 1996; Hay and Sonenberg, 2004). Another
possible functional association is between PKC and mTOR. A
pathway linking epidermal growth factor receptor to mTOR that
was critically dependent on PKC has been described in glioma (Fan
et al., 2009) and the association of a mTOR homolog with PKC
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has been demonstrated in Saccharomyces cerevisiae (Kumar et al.,
2000). Under some circumstances, PI3K is activated upstream of
PKC (Tong et al., 2000). Phosphatidylinositol-3,4,5-P3, a prod-
uct of PI3K, appears to directly initiate cellular motility via PKC
activation (Derman et al., 1997).

The elevation of cytosolic Ca2+ concentration induced by gp82
promotes two associated events that facilitate MT invasion, namely
the Ca2+-dependent actin cytoskeleton disruption and lysosome
mobilization that culminates in exocytosis (Cortez et al., 2006;
Martins et al., 2011; Figure 2). During gp82-mediated MT inva-
sion, recently internalized parasites are seen within vacuoles that
incorporated lysosome markers (Figure 2).

Gp30, a MT-specific surface molecule recognized by mAb 3F6
and expressed in gp82-deficient T. cruzi strains, is also implicated
in cell invasion (Cortez et al., 2003, 2012a). Like gp82, binding of
gp30 to target cells induces Ca2+ response and lysosome exocyto-
sis, presumably through activation of signaling pathways involving
PI3K, mTOR, and PKC (Cortez et al., 2003, 2012a). Gp30 and

FIGURE 2 | Lysosome mobilization induced by MT gp82. Shown are
HeLa cells incubated for 1 h in absence or in the presence of the
recombinant protein (r-gp82) containing the complete gp82 sequence.
Spread of lysosomes (green) from the perinuclear region to the cell
periphery is induced by r-gp82. In the inset, recently internalized MT (arrow)
inside the parasitophorous vacuole with lysosome marker is shown.

gp82 are possibly recognized by the same receptor, as suggests the
inhibition of host cell entry of both gp30- and gp82-expressing
MT by mAb 3F6, as well as by recombinant proteins based on
gp30 or gp82 (Cortez et al., 2003, 2012a).

In addition to gp82 or gp30, MT of different T. cruzi strains
express variable levels of distinct isoforms of a stage-specific sur-
face molecule gp90, which functions as a negative regulator of
parasite infectivity (Málaga and Yoshida, 2001). Expression of
gp90 at high levels is invariably associated with reduced capac-
ity to enter target cells (Yoshida, 2006). As opposed to gp82 or
gp30, and consistent with its role as down modulator of MT inva-
sion, gp90 does not trigger Ca2+ signal upon binding to host cells
(Ruiz et al., 1998).

Metacyclic trypomastigotes surface molecules gp35/50 rec-
ognized by mAb 10D8, expressed in poorly infective T. cruzi
strains, are highly glycosylated mucin-like glycoproteins enriched
in sialic acid and galactose residues that interact with target cells
through their carbohydrate portion (Yoshida et al., 1989; Mor-
tara et al., 1992; Schenkman et al., 1993b). Binding of gp35/50
to target cells triggers intracellular Ca2+ elevation, but to a
lower degree than gp82 (Ruiz et al., 1998). Removal of sialic acid
from gp35/50 increases the capacity to trigger target cell Ca2+
response and potentiates MT invasion (Yoshida et al., 1997). It
appears therefore that sialyl residues impair parasite–host cell
interaction and this is in contrast with the findings with TCT
(Schenkman et al., 1991). Gp35/50-mediated invasion apparently
requires F-actin recruitment, an event that may be associated
with activation of adenylyl cyclase that generates cAMP (Ferreira
et al., 2006).

The role played by MT secreted components in parasite inter-
nalization remains to be investigated. One such component, SAP
(serine-, alanine-, and proline-rich protein), which binds to
target cells in a receptor-dependent manner and induces Ca2+
signal, participates in the gp82-mediated internalization of MT
but plays no role in gp35/50-mediated invasion (Baida et al.,
2006). It is possible that SAP acts synergistically with gp82, by
triggering Ca2+ signal that adds to the response induced by
gp82.

SIGNALING PATHWAYS ACTIVATED IN MT DURING
INVASION
Gp82-mediated invasion of host cells by MT triggers Ca2+ mobi-
lization in the parasite, through signaling cascades involving PLC
activation, generation of DAG and IP3, leading to Ca2+ release
from IP3-sensitive reservoirs and PKC stimulation (Yoshida et al.,
2000; Figure 1A). In addition to involvement of PI3K (Maeda
et al., 2012), a protein tyrosine kinase (PTK) activation results in
phosphorylation of p175, a protein undetectable in non-infective
epimastigotes (Favoreto et al., 1998; Figure 1A). PTK activa-
tion and Ca2+ response are possibly associated events, provided
that they are both affected by genistein (Yoshida et al., 2000), a
PTK inhibitor that reduces MT infectivity (Neira et al., 2002).
MT that invade host cells in a gp35/50-mediated manner may
require cAMP and acidocalcisomes, the vacuoles containing a
Ca2+/H+ exchange system (Docampo et al., 1995), appear to be
the main source of Ca2+ required for parasite internalization
(Neira et al., 2002).

www.frontiersin.org November 2012 | Volume 3 | Article 361 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Microbial_Immunology/archive


“fimmu-03-00361” — 2012/11/26 — 21:59 — page 4 — #4

Maeda et al. Signaling during Trypanosoma cruzi invasion

TCT-INDUCED SIGNALING EVENTS IN TARGET CELLS
Diverse T. cruzi molecules, either secreted and/or expressed on the
cell surface, have been implicated in TCT internalization. Among
those known to have cell signal-inducing properties are cruzipain,
trans-sialidase, trypomastigote small surface antigen (TSSA), and
a soluble factor of undefined structure.

Cruzipain, the major T. cruzi cysteine proteinase expressed in
all developmental forms of different strains (Murta et al., 1990;
Paiva et al., 1998), participates in TCT internalization and in
intracellular parasite development (Meirelles et al., 1992). From
experiments using human umbilical vein endothelial cells or CHO
cells overexpressing B2 type of bradykinin receptor (B2R), it
was postulated that cruzipain acts on cell-bound kininogen and
generates bradykinin that, upon recognition by B2R triggers IP3-
mediated Ca2+ influx (Scharfstein et al., 2000; Figure 1B), thus
promoting parasite invasion, a mechanism that is not ubiquitous,
its activation depending on the cell type and the parasite isolate
used. Higher expression of functional cruzipain does not correlate
with parasite infectivity (Paiva et al., 1998).

Trypanosoma cruzi trans-sialidase (TS), an enzyme that specif-
ically transfers alpha (2-3)-linked sialic acid from host-derived
macromolecules to parasite surface molecules, facilitates TCT
invasion by sialylating a TCT-specific epitope Ssp-3, which is rec-
ognized by target cells through its sialic acid residues and whose
signaling properties are unknown (Schenkman et al., 1991). TS
may function as a TCT ligand to host cell alpha 2,3-sialyl receptors
as a prelude to invasion (Ming et al., 1993). Signaling activities of
TS toward mammalian cells include activation of PI3K/Akt path-
way that contributes for survival of Schwann cells (Chuenkova
et al., 2001), of mitogen-activated protein kinase (MAPK) or
extracellular regulated kinase (ERK) pathways that induce neu-
rite outgrowth in PC12 cells (Chuenkova and Pereira, 2001).
TCT binds to TrkA, a receptor tyrosine kinase activated primarily
by nerve growth factor, in a manner mediated by TS, induc-
ing TrkA autophosphorylation and PI3K/Akt kinase signaling
through TrkA-dependent mechanisms (Chuenkova and PereiraP-
errin, 2004). Whether these TS-induced signaling mechanisms are
associated with TCT invasion is not known. The participation of
host cell sialic acid in TCT invasion has been inferred using Chi-
nese hamster ovary cell mutant that is much less susceptible to
infection than the parental cell line (Ciavaglia et al., 1993; Ming
et al., 1993; Schenkman et al., 1993a). In macrophages, removal
of sialic acid with neuraminidase or its blockage with cationized
ferritin increased TCT uptake (Araújo Jorge and de Souza, 1984;
Meirelles et al., 1984).

Recently, Cánepa et al. (2012) reported that peptides based
on TSSA, a mucin-like molecule rich in serine and threonine
predicted to be O-glycosylated (Di Noia et al., 2002), bind to mam-
malian cells and induce Ca2+ signaling. The question whether
the native glycosylated TSSA and synthetic TSSA peptides share
the same cell adhesion and signaling properties has not been
addressed.

A secreted TCT factor of unknown structure has been claimed
to trigger host cell Ca2+ mobilization in IP3-mediated man-
ner (Rodriguez et al., 1995). According to Burleigh et al. (1997),
the soluble TCT factor is produced by the action of cytosolic
oligopeptidase B (OPB), an enzyme closely related to members

of the prolyl oligopeptidase family of serine endopeptidases. The
Ca2+ agonist, generated from a precursor molecule in TCT cyto-
plasm, would be exported and its recognition by a target cell
receptor, followed by PLC activation and IP3 production, would
release Ca2+ from ER (Caler et al., 1998; Figure 1B). OPB null
TCT had a diminished cell invasion capacity, a Ca2+ signal-
inducing activity of low intensity and recruited lysosome in a
significantly delayed fashion, but preserved the property to induce
cAMP elevation in host cells (Caler et al., 2000), which is associated
with the ability to potentiate Ca2+-regulated lysosomal exocytosis
(Rodriguez et al., 1999). While the ability of Ca2+ agonist pro-
duced by OPB in disrupting F-actin filaments is associated with
increased TCT invasion (Rodriguez et al., 1995), there are reports
indicating that actin cytoskeleton disruption results in diminished
TCT entry into different cell types, including heart muscle cells
(Meirelles et al., 1999; Rosestolato et al., 2002).

Several TCT surface molecules with affinity for extracel-
lular matrix have been implicated in host cell invasion, but
little is known about their signal-inducing properties. Among
such molecules is a laminin-binding glycoprotein encoded by
a multigene Tc85 family belonging to the gp85/trans-sialidase
superfamily (Giordano et al., 1999). Conserved in all members
of gp85/trans-sialidase glycoprotein family is the FLY domain
(VTVXNVFLYNR). Peptide based on FLY binds to cytokeratin
18 (CK18) on the surface of LLC-MK(2) epithelial cells and pro-
motes dephosphorylation and CK18 reorganization, activating
ERK1/2 signaling pathway that leads to increased TCT internal-
ization (Magdesian et al., 2001). This finding with peptide FLY is
unlikely to bear any association with TCT entry into host cells
because FLY domain is almost completely buried (Cortez et al.,
2012b), therefore unavailable for interaction with CK18. In sup-
port of this view, transient silencing of CK18 gene in RNAi-treated
HeLa cells did not affect binding and invasion of TCT (Claser et al.,
2008). Furthermore, a recombinant protein based on amastig-
ote surface protein-2 containing FLY domain failed to bind CK18
(Claser et al., 2008), consistent with the fact that FLY domain is
not exposed on the surface.

Cell signaling events during TCT internalization, without asso-
ciation with specific T. cruzi molecules, have been reported by
many authors. In different cell types, activation of PI3K emerges
as a common feature for TCT invasion process. PI3K activated
by TCT facilitates lysosome-dependent parasite entry into non-
pahgocytic cells (Woolsey et al., 2003). In target cells invaded by
a significant fraction of TCT through an lysosome-independent
pathway, there is the formation of a host cell plasma membrane-
derived vacuole enriched in the lipid products of class I PI3 kinases,
initially devoid of lysosomal markers and gradually acquiring
lysosome associated membrane protein 1 (Woolsey et al., 2003).
This lysosome-independent early event is compatible with the
finding that the newly forming TCT compartments first inter-
act with an early endosome and subsequently with other late
endosomes, before interaction with lysosomes (Wilkowsky et al.,
2002). Using blood trypomastigotes and macrophages, Todorov
et al. (2000) found that class I and class III PI3-kinase activities
are involved in parasite internalization. PI3K recruitment and
assembly of actin filaments were detected at the site of TCT inter-
action with macrophages (Vieira et al., 2002). In non-phagocytic
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Vero, L6E9 and NIH 3T3 cells, as well as in human and J774 murine
macrophages, PI3K inactivation was ascertained using specific
PI3K inhibitors (Wilkowsky et al., 2001). Concomitant with PI3K
activation, a strong activation of protein kinase B (PKB/Akt)
occurs and, accordingly, transiently transfected cells containing
an inactive mutant PKB are more resistant to infection by TCT
as compared to the active mutant-transfected cells (Wilkowsky
et al., 2001).

Tissue culture-derived trypomastigotes invasion of
macrophages also requires PTKs (Vieira et al., 1994). Tyrosine-
phosphorylated residues accumulate at the site of TCT association
with the cell surface, co-localizing with macrophage F-actin-rich
domains (Vieira et al., 2002). Activation of macrophage PKC
induced by recombinant gp83, a TCT surface ligand, was also
reported (Villalta et al., 1999). Protein phosphatases may also play
a role in TCT internalization. Tyrosine dephosphorylation of sev-
eral proteins is induced by TCT in L6E9 myoblasts and the cells,
either treated with protein tyrosine phosphatase inhibitors or in
the presence of excess phosphotyrosine, become more resistant to
invasion by TCT (Zhong et al., 1998). The involvement of alkaline
phosphatase has been deduced from experiments with human
HEp2 tumor cells that, upon inhibition of the enzyme activity,
exhibited a different pattern of actin organization and reduced
susceptibility to TCT invasion (Sartori et al., 2003).

Several other host cell components have been implicated in
TCT invasion. Ming et al. (1995) found that TCT induce a trans-
forming growth factor β (TGF-β)-responsive reporter gene in
TGF-β-sensitive cell lines, and epithelial cells lacking TGF-β recep-
tor I or II, or with dysfunction of the intracellular signaling cascade
due to constitutive expression of the cyclin-dependent kinase cdk4
or of the oncogene H-Ras, were more refractory to penetration by
TCT. In experiments with human coronary artery smooth muscle
cells expressing galectin-3, which increases K-Ras activation and
triggers a Ras signal (Elad-Sfadia et al., 2004), there was a decreased
TCT adhesion to cells with reduced expression of galectin-3,
which was restored by exogenous galectin-3 (Kleshchenko et al.,
2004). The β1 subunit of VLA integrin family that links the
extracellular matrix to the cortical cytoskeleton was reported to
be involved in TCT entry into human macrophages (Fernan-
dez et al., 1993). Recently, acid sphingomyelinase (ASM) was
claimed to be required for TCT invasion. Inhibition or depletion

of lysosomal ASM markedly reduced the target cell susceptibility
to TCT invasion, whereas extracellular addition of ASM stimu-
lated endocytosis, enhanced parasite entry, and restored normal
invasion levels in ASM-depleted cells, and ceramide, the product
of sphingomyelin hydrolysis, was detected in newly formed par-
asitophorous vacuoles containing TCT (Fernandes et al., 2011).
Triggering of autophagy was also associated with TCT inter-
nalization. Romano et al. (2009) have shown that treatment of
host cells with mTOR inhibitor rapamycin increased lysosomal-
dependent TCT invasion by inducing autophagy. This finding
is in sharp contrast with gp82-mediated MT invasion that is
inhibited by rapamycin (Martins et al., 2011). Also contrast-
ing with gp82-mediated MT internalization that is impaired in
cells prestarved for a short time (Martins et al., 2011), condi-
tion that triggers the autophagic pathway, TCT invasion increased
upon prestarvation of target cells (Romano et al., 2009). In addi-
tion, the absence of Atg5 or the reduced expression of Beclin
1, proteins required at the initial steps of autophagosome for-
mation, reduced the association of parasitophorous vacuole
with the lysosomal marker Lamp-1 and diminished TCT entry
(Romano et al., 2009).

CONCLUDING REMARKS
What emerges from the data on signaling events during host cell
invasion by T. cruzi is a still fragmentary picture. Although many
parasite as well as host cell components have been identified as
playing roles in MT or TCT invasion, these may represent only
a small part of the repertoire available for the accomplishment
of the critical step for infection. The whole process is begin-
ning to be understood at the molecular level. Furthermore, how
the diverse elements are connected and what are the sequences
of reactions that culminate in intracellular rearrangements that
facilitate parasite internalization have as yet to be clarified. There-
fore, a formidable task is still ahead before we can more fully
understand the intricate functioning of molecular and cellular
machinery involved in T. cruzi invasion.

ACKNOWLEDGMENTS
Work supported by Fudação de Amparo à Pesquisa do Estado de
São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento
Cientifico e Tecnológico (CNPq).

REFERENCES
Araújo Jorge, T., and de Souza, W.

(1984). Effect of carbohydrates, peri-
odate and enzymes in the process of
endocytosis of Trypanosoma cruzi by
macrophages. Acta Trop. 41, 17–28.

Araya, J. E., Cano, M. I., Yoshida, N.,
and da Silveira, J. F. (1994). Cloning
and characterization of a gene for the
stage-specific 82-kDa surface anti-
gen of metacyclic trypomastigotes of
Trypanosoma cruzi. Mol. Biochem.
Parasitol. 65, 161–169.

Baida, R. C., Santos, M. R., Carmo, M.
S., Yoshida, N., Ferreira, D., Ferreira,
A. T., et al. (2006). Molecular char-
acterization of serine-, alanine-, and
proline-rich proteins of Trypanosoma

cruzi and their possible role in host
cell infection. Infect. Immun. 74,
1537–1546.

Burleigh, B. A., and Andrews, N. W.
(1998). Signaling and host cell inva-
sion by Trypanosoma cruzi. Curr.
Opin. Microbiol. 1, 451–465.

Burleigh, B. A., Caler, E. V., Webster,
P., and Andrews, N. W. (1997). A
cytosolic serine endopeptidase from
Trypanosoma cruzi is required for
the generation of Ca2+ signaling in
mammalian cells. J. Cell Biol. 136,
609–620.

Caler, E. V., Morty, R. E., Burleigh,
B. A., and Andrews, N. W. (2000).
Dual role of signaling pathways lead-
ing to Ca2+ and cyclic AMP elevation

in host cell invasion by Trypanosoma
cruzi. Infect. Immun. 68, 6602–6610.

Caler, E. V., Vaena de Avalos, S.,
Haynes, P. A., Andrews, N. W., and
Burleigh, B. A. (1998). Oligopepti-
dase B-dependent signaling mediates
host cell invasion by Trypanosoma
cruzi. EMBO J. 17, 4975–4986.

Cánepa, G. E., Degese, M. S., Budu,
A., Garcia, C. R. S., and Buscaglia,
C. A. (2012). Involvement of TSSA
(trypomastigote small surface anti-
gen) in Trypanosoma cruzi invasion
of mammalian cells. Biochem. J. 444,
211–218.

Chuenkova, M. V., Furnari, F. B., Cave-
nee, W. K., and Pereira, M. A. (2001).
Trypanosoma cruzi trans-sialidase: a

potent and specific survival factor
for human Schwann cells by means
of phosphatidylinositol 3-kinase/Akt
signaling. Proc. Natl. Acad. Sci. U.S.A.
98, 9936–9941.

Chuenkova, M. V., and Pereira, M. A.
(2001). The T. cruzi trans-sialidase
induces PC12 cell differentiation via
MAPK/ERK pathway. Neuroreport 4,
3715–3718.

Chuenkova, M. V., and PereiraPerrin,
M. (2004). Chagas’ disease parasite
promotes neuron survival and differ-
entiation through TrkA nerve growth
factor receptor. J. Neurochem. 91,
385–394.

Chung, J., Grammer, T. C., Lemon,
K. P., Kazlauskas, A., and Blenis,

www.frontiersin.org November 2012 | Volume 3 | Article 361 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Microbial_Immunology/archive


“fimmu-03-00361” — 2012/11/26 — 21:59 — page 6 — #6

Maeda et al. Signaling during Trypanosoma cruzi invasion

J. (1994). PDGF- and insulin-
dependent pp70S6k activation medi-
ated by phosphatidylinositol-3-OH
kinase. Nature 370, 71–75.

Ciavaglia, M. C., Carvalho, T. U., and De
Souza, W. (1993). Interaction of Try-
panosoma cruzi with cells with altered
glycosylation patterns. Biochem. Bio-
phys. Res. Commun. 193, 718–721.

Claser, C., Curcio, M., de Mello, S. M.,
Silveira, E. V., Monteiro, H. P., and
Rodrigues, M. M. (2008). Silencing
cyotkeratin 18 gene inhibits intra-
cellular replication of Trypanosoma
cruzi in HeLa cells but not binding
and invasion of Trypanosomes. BMC
Cell Biol. 9, 68. doi: 10.1186/1471-
2121-9-68

Cortez, C., Martins, R. M., Alves, R. M.,
Silva, R. C., Bilches, L. C., Macedo,
S., et al. (2012a). Differential infectiv-
ity by the oral route of Trypanosoma
cruzi lineages derived from Y strain.
PLoS Negl. Trop. Dis. 6, e1804. doi:
10.1371/journal.pntd.0001804

Cortez, C., Yoshida, N., Bahia, D.,
and Sobreira, T. J. P. (2012b). Struc-
tural basis of the interaction of a
Trypanosoma cruzi surface molecule
implicated in oral infection with
host cells and gastric mucin. PLoS
ONE 7, e42153. doi: 10.1371/jour-
nal.pone.0042153

Cortez, M., Atayde, V., and Yoshida,
N. (2006). Host cell invasion medi-
ated by Trypanosoma cruzi surface
molecule gp82 is associated with
F-actin disassembly and is inhib-
ited by enteroinvasive Escherichia coli.
Microbes Infect. 8, 1502–1512.

Cortez, M., Neira, I., Ferreira, D.,
Luquetti, A. O., Rassi, A., Atayde,
V. D., et al. (2003). Infection by
Trypanosoma cruzi metacyclic forms
deficient in gp82 but expressing a
related surface molecule gp30. Infect.
Immun. 71, 6184–6191.

Derman, M. P., Toker, A., Hartwig, J. H.,
Spokes, K., Falck, J. R., Chen, C. S.,
et al. (1997). The lipid products of
phosphoinositide 3-kinase increase
cell motility through protein kinase
C. J. Biol. Chem. 272, 6465–6470.

Di Noia, J. M., Buscaglia, C. A., De
Marchi, C. R., Almeida, I. C., and
Frasch, A. C. (2002). A Trypanosoma
cruzi small surface molecule provides
the first immunological evidence that
Chagas’ disease is due to a single
parasite lineage. J. Exp. Med. 195,
401–413.

Docampo, R., and Moreno, S. N. (1996).
The role of Ca2+ in the process of cell
invasion by intracellular parasites.
Parasitol. Today 12, 61–65.

Docampo, R., Scott, D. A., Vercesi, A. E.,
and Moreno, S. N. (1995). Intracellu-
lar Ca2+ storage in acidocalcisomes

of Trypanosoma cruzi. Biochem. J.
310, 1005–1012.

Elad-Sfadia, G., Haklai, R., Balan, E.,
and Kloog, Y. (2004). Galectin-3 aug-
ments K-Ras activation and triggers
a Ras signal that attenuates ERK but
not phosphoinositide 3-kinase activ-
ity. J. Biol. Chem. 279, 34922–34930.

Fan, Q. W., Cheng, C., Knight, Z. A.,
Haas-Kogan, D., Stokoe, D., James,
C. D., et al. (2009). EGFR signals to
mTOR through PKC and indepen-
dently of Akt in glioma. Sci. Signal.
2, ra4.

Favoreto, S. Jr., Dorta, M. L., and
Yoshida, N. (1998). Trypanosoma
cruzi 175-kDa protein tyrosine phos-
phorylation is associated with host
cell invasion. Exp. Parasitol. 89,
188–194.

Fernandes, M. C., Cortez, M., Flannery,
A. R., Tam, C., Mortara, R. A., and
Andrews, N. W. (2011). Trypanosoma
cruzi subverts the sphingomyelinase-
mediated plasma membrane repair
pathway for cell invasion. J. Exp. Med.
208, 909–921.

Fernandez, M. A., Munoz-Fernandez,
M. A., and Fresno, M. (1993).
Involvement of beta 1 integrins in the
binding and entry of Trypanosoma
cruzi into human macrophages. Eur.
J. Immunol. 23, 552–557.

Ferreira, D., Cortez, M., Atayde,
V. D., and Yoshida, N. (2006).
Actin cytoskeleton-dependent and -
independent host cell invasion by
Trypanosoma cruzi is mediated by
distinct parasite surface molecules.
Infect. Immun. 74, 5522–5528.

Giordano, R., Fouts, D. L., Tewari, D.,
Colli, W., Manning, J. E., and Alves,
M. J. M. (1999). Cloning of a sur-
face membrane glycoprotein specific
for the infective form of Trypanosoma
cruzi having adhesive properties to
laminin. J. Biol. Chem. 274, 3461–
3468.

Hay, N., and Sonenberg, N. (2004).
Upstream and downstream of
mTOR. Genes Dev. 18, 1926–1945.

Kleshchenko,Y. Y., Moody, T. N., Furtak,
V. A., Ochieng, J., Lima, M. F., and
Villalta, F. (2004). Human galectin-3
promotes Trypanosoma cruzi adhe-
sion to human artery smooth muscle
cells. Infect. Immun. 72, 6717–6721.

Kumar, V., Panadey, P., Sabatini, D.,
Kumar, M., Majumder, P. K., Bharti,
A., et al. (2000). Functional inter-
action between RAFT1/FRAP/mTOR
and protein kinase Cδ in the regu-
lation of cap-dependent initiation of
translation. EMBO J. 19, 1087–1097.

Maeda, F. Y., Alves, R. M., Cortez,
C., Lima, F. M., and Yoshida, N.
(2011). Characterization of the infec-
tive properties of a new genetic group

of Trypanosoma cruzi associated with
bats. Acta Trop. 120, 231–237.

Maeda, F. Y., Cortez, C., Alves,
R. M., and Yoshida, N. (2012).
Mammalian cell invasion by closely
related Trypanosoma species T. dion-
isii and T. cruzi. Acta Trop. 121,
141–147.

Magdesian, M. H., Giordano, R., Ulrich,
H., Juliano, M. A., Juliano, L., Schu-
macher, R. I., et al. (2001). Infection
by Trypanosoma cruzi: identification
of a parasite ligand and its host-
cell receptor. J. Biol. Chem. 276,
19382–19389.

Málaga, S., and Yoshida, N. (2001).
Targeted reduction in expression of
Trypanosoma cruzi surface glycopro-
tein gp90 increases parasite infectiv-
ity. Infect. Immun. 69, 353–359.

Martins, R. M., Alves, R. M., Macedo,
S., and Yoshida, N. (2011). Star-
vation and rapamycin differentially
regulate host cell lysosome exocyto-
sis and invasion by Trypanosoma cruzi
metacyclic forms. Cell. Microbiol. 13,
943–954.

Meirelles, M. N., Juliano, L., Car-
mona, E., Silva, S. G., Costa, E.
M., Murta, A. C., et al. (1992).
Inhibitors of the major cysteinyl pro-
teinase (gp57/51) impair host cell
invasion and arrest the intracellular
development of Trypanosoma cruzi in
vitro. Mol. Biochem. Parasitol. 52,
175–184.

Meirelles, M. N., Pereira, M. C., Singer,
R. H., Soeiro, M. N., Garzoni,
L. R., Silva, D. T., et al. (1999).
Trypanosoma cruzi-cardiomyocytes:
new contributions regarding a bet-
ter understanding of this interaction.
Mem. Inst. Oswaldo Cruz 94(Suppl.
1), 149–152.

Meirelles, M. N., Souto-Padrón, T.,
and de Souza, W. (1984). Participa-
tion of cell surface anionic sites in
the interaction between Trypanosoma
cruzi and macrophages. J. Submicrosc.
Cytol. 16, 533–545.

Mèndez, R., Myers, M. G. Jr., White, M.
F., and Rhoads, R. E. (1996). Stimu-
lation of protein synthesis, eukaryotic
translation initiation factor 4E phos-
phorylation, and PHAS-I phospho-
rylation by insulin requires insulin
receptor substrate and phosphatidyli-
nositol 3-kinase. Mol. Cell. Biol. 16,
2857–2864.

Ming, M., Chuenkova, M., Ortega-
Barria, E., and Pereira, M. E.
(1993). Mediation of Trypanosoma
cruzi invasion by sialic acid on the
host cell and trans-sialidase on the
Trypanosome. Mol. Biochem. Para-
sitol. 59, 243–252.

Ming, M., Ewen, M. E., and Pereira, M.
E. A. (1995). Trypanosome invasion

of mammalian cells requires activa-
tion of the TGF-β signaling pathway.
Cell 82, 287–296.

Mortara, R. A., da Silva, S., Araguth,
M. F., Blanco, S. A., and Yoshida,
N. (1992). Polymorphism of the
35- and 50-kilodalton surface gly-
coconjugates of Trypanosoma cruzi
metacyclic trypomastigotes. Infect.
Immun. 60, 4673–4678.

Murta, A. C., Persechini, P. M., Padron,
S., de Souza, W., Guimarães, J. A., and
Scharfstein, J. (1990). Structural and
functional identification of gp57/51
antigen of Trypanosoma cruzi as a
cysteine proteinase. Mol. Biochem.
Parasitol. 43, 27–38.

Neira, I., Ferreira, A. T., and Yoshida,
N. (2002). Activation of distinct
signal transduction pathways in Try-
panosoma cruzi isolates with differen-
tial capacity to invade host cells. Int.
J. Parasitol. 32, 405–414.

Paiva, C. N., Padron, T. S., Costa,
D. A., and Gattass, C. R. (1998).
High expression of a functional cruzi-
pain by a non-infective and non-
pathogenic Trypanosoma cruzi clone.
Parasitology 117, 483–490.

Ramirez, M. I., Ruiz, R. C., Araya, J.
E., da Silveira, J. F., and Yoshida,
N. (1993). Involvement of the
stage-specific 82-kilodalton adhesion
molecule of Trypanosoma cruzi meta-
cyclic trypomastigotes in host cell
invasion. Infect. Immun. 61, 3636–
3641.

Rodriguez, A., Martinez, I., Chung,
A., Berlot, C. H., and Andrews, N.
W. (1999). cAMP regulates Ca2+-
dependent exocytosis of lysosomes
and lysosome-mediated cell invasion
by trypanosomes. J. Biol. Chem. 274,
6754–16759.

Rodriguez, A., Rioult, M. G., Ora,
A., and Andrews, N. W. (1995). A
trypanosome-soluble factor induces
IP3 formation, intracellular Ca2+
mobilization and microfilament rear-
rangement in host cells. J. Cell Biol.
129, 1263–1273.

Romano, P. S., Arboit, M. A., Vásquez,
C. L., and Colombo, M. I. (2009).
The autophagic pathway is a key com-
ponent in the lysosomal dependent
entry of Trypanosoma cruzi into the
host cell. Autophagy 5, 6–18.

Rosestolato, C. T. F., Dutra, J. M. F., De
Souza, W., and Carvalho, T. M. U.
(2002). Participation of host cell actin
filaments during interaction of try-
pomastigote forms of Trypanosoma
cruzi with host cells. Cell Struct.
Funct. 27, 91–98.

Ruiz, R. C., Favoreto, S. Jr., Dorta, M.
L., Oshiro, M. E. M., Ferreira, A. T.,
Manque, P. M., et al. (1998). Infec-
tivity of Trypanosoma cruzi strains

Frontiers in Immunology | Microbial Immunology November 2012 | Volume 3 | Article 361 | 6

http://www.frontiersin.org/Microbial_Immunology/
http://www.frontiersin.org/Microbial_Immunology/archive


“fimmu-03-00361” — 2012/11/26 — 21:59 — page 7 — #7

Maeda et al. Signaling during Trypanosoma cruzi invasion

is associated with differential expres-
sion of surface glycoproteins with
differential Ca2+ signaling activity.
Biochem. J. 330, 505–511.

Sartori, M. J., Mezzano, L., Lin,
S., Munoz, S., and Fabro, S. P.
(2003). Role of placental alkaline
phosphatase in the internalization
of trypomastigotes of Trypanosoma
cruzi into HEp2 cells. Trop. Med. Int.
Health 8, 832–839.

Scharfstein, J., Schmitz, V., Morandi,
V., Capella, M. M. A., Lima, A.
P. C. A., Morrot, A., et al. (2000).
Host cell invasion by Trypanosoma
cruzi is potentiated by activation of
bradykinin B2 receptors. J. Exp. Med.
192, 1289–1299.

Schenkman, R. P., Vandekerckhove, F.,
and Schenkman, S. (1993a). Mam-
malian cell sialic acid enhances inva-
sion by Trypanosoma cruzi. Infect.
Immun. 61, 898–902.

Schenkman, S., Ferguson, M. A., Heise,
N., Cardoso de Almeida, M. L.,
Mortara, R. A., and Yoshida, N.
(1993b). Mucin-like glycoproteins
linked to the membrane by gly-
cosylphosphatidylinositol anchor are
the major acceptors of sialic acid in
a reaction catalyzed by trans-sialidase
in metacyclic forms of Trypanosoma
cruzi. Mol. Biochem. Parasitol. 59,
293–304.

Schenkman, S., Jiang, M. Hart., G.
W., and Nussenzweig, V. (1991). A
novel cell surface trans-sialidase of
Trypanosoma cruzi generates a stage-
specific epitope required for invasion
of mammalian cells. Cell 65, 1117–
1125.

Tardieux, I., Webster, P., Ravesloot, J.,
Boron, W., Lunn, J. A., Heuser, J.

E., et al. (1992). Lysosome recruit-
ment and fusion are early events
required for Trypanosoma invasion
of mammalian cells. Cell 71, 1117–
1130.

Teixeira, M. M. G., and Yoshida,
N. (1986). Stage-specific surface
antigens of metacyclic trypomastig-
otes of Trypanosoma cruzi identi-
fied by monoclonal antibodies. Mol.
Biochem. Parasitol. 18, 271–282.

Todorov, A. G., Einicker-Lamas, M.,
Castro, S. L., Oliveira, M. M.,
and Guilherme, A. (2000). Activa-
tion of host cell phosphatidylinositol
3-kinases by Trypanosoma cruzi
infection. J. Biol. Chem. 275, 32182–
32186.

Tong, H., Chen, W., Steenber-
gen, C., and Murphy, E. (2000).
Ischemic reconditioning acti-
vates phosphatidylinositol-3-kinase
upstream of protein kinase C. Circ.
Res. 87, 309–315.

Vieira, M., Dutra, J. M., Carvalho, T. M.,
Cunha-e-Silva, N. L., Souto-Padrón,
T., and de Souza, W. (2002). Cellu-
lar signaling during the macrophage
invasion by Trypanosoma cruzi. His-
tochem. Cell Biol. 118, 491–500.

Vieira, M. C. F., Carvalho, T. U., and
Souza, W. (1994). Effect of protein
kinase inhibition on the invasion pro-
cess of macrophages by Trypanosoma
cruzi. Biochem. Biophys. Res. Com-
mun. 203, 967–971.

Villalta, F., Zhang, Y., Bibb, K. E.,
Pratap, S., Burns, J. M. Jr., and
Lima, M. F. (1999). Signal transduc-
tion in human macrophages by gp83
ligand of Trypanosoma cruzi: trypo-
mastigote gp83 ligand up-regulated
trypanosome entry through protein

kinase C activation. Mol. Cell Biol.
Res. Commun. 2, 64–70.

Wilkowsky, S. E., Barbieri, M. A., Stahl,
P., and Isola, E. L. D. (2001). Try-
panosoma cruzi: phosphatidylinosi-
tol 3-kinase and protein kinase B
activation is associated with parasite
invasion. Exp. Cell Res. 264, 211–218.

Wilkowsky, S. E., Barbieri, M. A., Stahl,
P. D., and Isola, E. L. D. (2002). Regu-
lation of Trypanosoma cruzi invasion
of nonphagocytic cells by the endo-
cytically active GTPases dynamin,
Rab5, and Rab7. Biochem. Biophys.
Res. Commun. 291, 516–521.

Woolsey, A. M., Sunwoo, L., Petersen,
C. A., Brachmann, S. M., Cantley,
L. C., and Burleigh, B. A. (2003).
Novel PI 3-kinase-dependent mech-
anisms of trypanosome invasion and
vacuole maturation. J. Cell Sci. 116,
3611–3622.

Yoshida, N. (2006). Molecular basis
of mammalian cell invasion by Try-
panosoma cruzi. An. Acad. Bras.
Ciênc. 78, 87–111.

Yoshida, N., Dorta, M. L., Ferreira, A. T.,
Oshiro, M. E., Mortara, R. A., Acosta-
Serrano, A., et al. (1997). Removal
of sialic acid from mucin-like sur-
face molecules of Trypanosoma cruzi
metacyclic trypomastigotes enhances
parasite–host cell interaction. Mol.
Biochem. Parasitol. 84, 57–67.

Yoshida, N., Favoreto, S. Jr., Fer-
reira, A. T., and Manque, P. M.
(2000). Signal transduction induced
in Trypanosoma cruzi metacyclic try-
pomastigotes during the invasion of
mammalian cells. Braz. J. Med. Biol.
Res. 33, 269–278.

Yoshida, N., Mortara, R. A., Araguth,
M. F., Gonzalez, J. C., and Russo,

M. (1989). Metacyclic neutralizing
effect of monoclonal antibody 10D8
directed to the 35 and 50 kilodal-
ton surface glycoconjugates of Try-
panosoma cruzi. Infect. Immun. 57,
1663–1667.

Zhong, L., Lu, H. G., Moreno, S. N.,
and Docampo, R. (1998). Tyrosine
phosphate hydrolysis of host proteins
by Trypanosoma cruzi is linked to cell
invasion. FEMS Microbiol. Lett. 161,
15–20.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 29 August 2012; paper pending
published: 30 September 2012; accepted:
12 November 2012; published online: 28
November 2012.
Citation: Maeda FY, Cortez C and
Yoshida N (2012) Cell signaling dur-
ing Trypanosoma cruzi invasion. Front.
Immun. 3:361. doi: 10.3389/fimmu.
2012.00361
This article was submitted to Frontiers
in Microbial Immunology, a specialty of
Frontiers in Immunology.
Copyright © 2012 Maeda, Cortez and
Yoshida. This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License, which
permits use, distribution and reproduc-
tion in other forums, provided the origi-
nal authors and source are credited and
subject to any copyright notices concern-
ing any third-party graphics etc.

www.frontiersin.org November 2012 | Volume 3 | Article 361 | 7

http://dx.doi.org/10.3389/fimmu.2012.00361
http://dx.doi.org/10.3389/fimmu.2012.00361
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbial_Immunology/archive

	Cell signaling during Trypanosoma cruzi invasion
	Introduction
	MT surface molecules that trigger host cell signaling during invasion
	Signaling pathways activated in MT during invasion
	TCT-induced signaling events in target cells
	Concluding remarks
	Acknowledgments
	References


