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Abstract

Searching for similarities between biological sequences is the principal means by which bioinformatics
contributes to our understanding of biology. Of the various informatics tools developed to accomplish
this task, the most widely used is BLAST, the basic local alignment search tool. This article discusses
the principles, workings, applications and potential pitfalls of BLAST, focusing on the implementation
developed at the National Center for Biotechnology Information.
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Similarity searching, including sequence comparison, is one

of the principal techniques used by computational biologists

and has found widespread use among biologists in general.

The most popular tool for this purpose is BLAST (basic local

alignment search tool) [1], which performs comparisons

between pairs of sequences, searching for regions of local

similarity. In the 11 years since its publication, the original

paper describing BLAST [1] has been cited over 12,000

times, and use of BLAST has become a fundamental tool of

biology. It is therefore important to know how it works and

what it accomplishes, how to use it properly and how to

interpret someone else’s published results (see Box 1). Today

there are several implementations of the BLAST algorithm,

with two that share a common ancestry - NCBI BLAST and

WU-BLAST - enjoying the broadest use. NCBI BLAST is

available from the National Center for Biotechnology Infor-

mation (NCBI) [2], while WU-BLAST is available from

Washington University in St. Louis [3]. This article discusses

the principles, workings, applications and potential pitfalls

of BLAST, focusing on the NCBI version. Further details can

be found in several excellent resources [4-8], and additional

BLAST-based programs are listed in Table 1.

Table 1 

BLAST programs

Program Query sequence type Target sequence type

BLASTP Protein Protein Compares an amino acid query sequence against a protein sequence database

BLASTN Nucleotide Nucleotide Compares a nucleotide query sequence against a nucleotide sequence database

BLASTX Nucleotide (translated) Protein Compares a nucleotide query sequence translated in all reading frames against a 
protein sequence database

TBLASTN Protein Nucleotide (translated) Compares a protein query sequence against a nucleotide sequence database
dynamically translated in all reading frames

TBLASTX Nucleotide (translated) Nucleotide (translated) Compares the six-frame translations of a nucleotide query sequence against the 
six-frame translations of a nucleotide sequence database
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What does sequence comparison measure?
Similarity versus homology 
In describing sequence comparisons, several different terms

are commonly (mis)used: identity, similarity and homology.

Even though they are often used interchangeably, they have

quite different meanings. Sequence identity refers to the

occurrence of exactly the same nucleotide or amino acid in

the same position in aligned sequences. Sequence similarity

takes approximate matches into account, and is meaningful

only when such substitutions are scored according to some

measure of ‘difference’ or ‘sameness’ with conservative or

highly probably substitutions assigned more favorable

scores than non-conservative or unlikely ones. The term

‘sequence homology’ is the most important (and the most

abused) of the three. When we say that sequence A has high

homology to sequence B, then we are making two distinct

claims: not only are we saying that sequences A and B look

much the same, but also that all of their ancestors also

looked the same, going all the way back to a common ances-

tor. Although the first of these claims is easily verified, the

second is frequently in doubt. Although the comparison of

two sequences is often summarized as a percentage sequence

homology, that usage is generally incorrect as the value

really indicates identity and/or similarity, and does not nec-

essarily reflect an evolutionary relationship. 

The discussion is not merely about terminology, however,

but goes to the core of biology itself (see, for example, [9-

11]). This point is beautifully articulated by David Wake in a

1994 book review [9]: “Homology is the central concept for

all of biology. Whenever we say that a mammalian hormone

is the ‘same’ hormone as a fish hormone, that a human gene

sequence is the ‘same’ as a sequence in a chimp or a mouse,

that a HOX gene is the ‘same’ in a mouse, a fruit fly, a frog,

and a human - even when we argue that discoveries about a

worm, a fruit fly, a frog, a mouse, or a chimp have relevance

to the human condition - we have made a bold and direct

statement about homology. The aggressive confidence of

modern biomedical science implies that we know what we

are talking about. But a deeper reflection shows that this

confidence is based more on hope than on certainty.”

Sequence comparison algorithms such as BLAST and

FASTA [12] (which employ heuristic algorithms to search a

sequence database for the closest matches to a query

sequence), and SSEARCH [13,14] (which does a full local

alignment of each sequence pair by a dynamic program-

ming method) do not measure sequence homology: they

measure sequence similarity and identity. Inferences of

homology can only be supplied by the user, a point rein-

forced by a recent letter to the editor of the Journal of Mol-

ecular Evolution entitled “The closest BLAST hit is often

not the nearest neighbor.” [15]

Why do we want to know how similar two sequences are?

Because Nature has solved the same problem many times,

sometimes with significant similarity among the solutions.

This means that the identification of similarity between

sequences saves us countless biologist-years by enabling us

Box 1

The good, the bad and the ugly

The good
In 1995, Fleischman et al. [34] were the first to succeed in sequencing the entire genome of a free-living organism, the
bacterium Haemophilus influenzae Rd. The group identified 1,743 regions of the sequence that they felt were likely to
represent genes. They translated the coding regions into corresponding amino-acid sequences and searched for similar
sequences in a protein database, identifying 1,007 close matches. The database against which they searched contained
extensive annotation on the function of the entries, allowing the researchers to generate testable hypotheses about the
functions of most of the putative genes.

The bad
In 1997, the discovery of a new plant adenylyl cyclase gene was published [35]. This was a profound finding because
plants were not believed to have adenylyl cyclases. The authors went on to suggest a whole new type of biochemistry
for plants. The ‘homology’ (sequence similarity) they showed was not so weak: there was definitely some similarity, and
the homology had a high ‘score’ (which by itself is not very meaningful) - but when their adenylyl cyclase was aligned to
a profile for other known adenylyl cyclases, it was obvious to even first-year graduate students that the characteristics
that are common to all other adenylyl cyclases were largely missing. 

The ugly
The authors were later forced to retract their paper [36]. What might have saved them from public humiliation was a
more careful analysis of their results.
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to assign information known about one sequence to other

similar sequences.

Alignments
Before the similarity of two sequences can be computed, their

proper alignment must be determined - an inherently circular

problem, given that evaluating an alignment requires calcu-

lating similarities (Figure 1). The question ‘How similar are

two sequences?’ is not as simple as it seems (see, for example,

[13]). It is, in fact, several questions: Is there a perfect match

between the two sequences? If there is no perfect match, what

is the best alignment between the two sequences? How

should alignments be scored? And if gaps are allowed, how

should they be scored? Answering these questions requires

three things: a means of scoring matches and mismatches, a

means of scoring gaps, and a method of using the two to eval-

uate numerous possible alignments.

Scoring metrics: statistical versus biological
When evaluating a sequence alignment, one would like to

know how meaningful it is. This requires a scoring matrix, or

a table of values that describes the probability of a biologi-

cally meaningful amino-acid or nucleotide residue-pair

occurring in an alignment. Typically, when two nucleotide

sequences are being compared, all that is being scored is

whether or not two bases at a given position are the same. All

matches are given the same score (typically +1 or +5), as are

all mismatches (typically -1 or -4). But with proteins the situ-

ation is different. Substitution matrices for amino acids are

more complicated and implicitly take into account everything

that might affect the frequency with which any amino acid is

substituted for another, such as the chemical nature and fre-

quency of occurrence of the amino acids. The objective is to

provide a relatively heavy penalty for aligning two residues

together if they have a low probability of being homologous

(correctly aligned by evolutionary descent). There are two

major forces that drive the amino-acid substitution rates

away from uniformity: not all substitutions occur with the

same frequency, and some substitutions are less functionally

tolerated than others and are therefore selected against. 

Commonly used substitution matrices include the blocks

substitution (BLOSUM) [16] and point accepted mutation

(PAM) [17,18] matrices. Both are based on taking sets of

high-confidence alignments of many homologous proteins

and assessing the frequencies of all substitutions, but they

are computed using different methods. The PAM matrices

(Figure 2a) were calculated based on a model of evolutionary

distance from alignments of closely related sequences (at

least 85% identical) from 34 superfamilies grouped into 71

evolutionary trees and containing 1,572 changes, or point

mutations. The stringent similarity threshold was chosen to

minimize both errors in the alignments and coincident

mutations. Phylogenetic trees were reconstructed for these

sequences to determine the ancestral sequence for each

alignment. Substitutions were tallied by type, normalized

over usage frequencies and converted to log odds scores (see

Figure 2 legend). The resulting matrix was called M1 or

PAM1 and defines a unit of evolutionary change: the values

in the M1 matrix represent the probability that one amino

acid in 100 will undergo substitution. Multiplying the PAM1

matrix by itself generates scoring matrices for arbitrary

degrees of relatedness; multiplying it by itself n times gives a

scoring matrix for proteins that have undergone n multiple,

independent mutations. The PAM120 matrix is considered a

good scoring matrix for closely related sequences, while the

PAM250 matrix is more appropriate for more distantly

related sequences. Multiplication also multiplies the error

associated with each estimate of amino-acid replacement

probability, unfortunately, meaning that the PAM matrices

of higher order are more prone to error.

The BLOSUM matrices (Figure 2b) were constructed in a

similar manner, but from sequences that were selected to

avoid frequently occurring, highly related sequences. The

underlying data were derived from the BLOCKS database

[19,20], which is a set of ungapped alignments of sequences

from families of related proteins. Using about 2,000 blocks

of aligned sequence segments characterizing more than 500

groups of related proteins, the sequences in each block were

sorted into closely related clusters and the frequencies of

substitutions between these clusters within a family used to

calculate the probability of a meaningful substitution. The

number associated with a BLOSUM matrix (such as

BLOSUM62 or BLOSUM80) indicates the cutoff value for

the percentage sequence identity that defines the clusters.

Lower cutoff values allow more diverse sequences into the

groups, and the corresponding matrices are therefore appro-

priate for examining more distant relationships.

When using BLAST on the NCBI website, one may choose

from several different amino-acid scoring matrices: PAM30,

Figure 1 
Why alignments matter and why determining the best
alignment can be hard. Shown are several different
alignments of two sequences, for which a mismatch is
scored as -1 and a match is scored as +1. The vertical lines
indicate exact matches. (a) A terrible alignment with five
mismatches and no matches gives a score of -5. (b) A poor
alignment with two mismatches and one match gives a score
of -1. (c) The optimal alignment has one mismatch and three
matches, and a score of +2.

(a)

  FASTA

  BLAST

score: -5

(b)

  FASTA--
      |
  --BLAST

score: -1

(c)

  -FASTA
    |||
  BLAST-

score: +2



PAM70, BLOSUM45, BLOSUM62 and BLOSUM80. A more

complete set of scoring matrices, ranging from PAM10 to

PAM500, and BLOSUM30 to BLOSUM100, is available

from the NCBI FTP site [21] (see Table 2) and can be used

with the stand-alone application using the -M flag (see

Table 3); nucleotide match and mismatch scores can be

adjusted with the -r and -q flags.

Gap penalties
Mutational events include not only substitutions but also

insertions and deletions. The consequence with respect to

sequence alignment and comparison is the need to introduce

gaps into one or both sequences in order to produce a proper

alignment. The penalty for the creation of a gap should be

large enough that gaps are introduced only where needed, and

the penalty for extending a gap should take into account the

likelihood that insertions and deletions occur over several

residues at a time. For example, some protein structural

elements tend to evolve as a unit, but entire elements may

move relative to one another. Affine gap penalties, which

impose an ‘opening’ penalty for a gap and an ‘extension’

penalty that decreases the relative penalty for each additional

position in an already opened gap, address both of these issues. 

NCBI’s BLAST page [2] allows one to choose from several

different sets of parameters for scoring gaps (existence

penalties of 7, 8, and 9 with an extension penalty of 2, and

existence penalties of 10, 11 and 12 with an extension penalty

of 1). These values can be adjusted with the -G and -E flags in

the stand-alone version (See Table 3 for further details of

BLAST parameters and options). 

Dynamic programming
The need for an automated way of finding the optimal

alignment out of the numerous alternatives is clear, but the

method must be consistent and biologically meaningful.

“What sounds simple in principle isn’t at all simple in prac-

tice. Choosing a good alignment by eye is possible, but life

is too short to do it more than once or twice.” [8] To guar-

antee that you have the best alignment, many (but not all

possible) alignments must be generated and evaluated. For

two long sequences, doing this directly would take a con-

siderable amount of time, even on the fastest computers.

Examining the calculations in detail, however, one might

notice that the vast majority of the time would be spent
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(a)
   G  A  V  L  I  P  S  T  D  E  N  Q  K  R  H  F  Y  W  M  C  B  Z  X  *

G  5                                                                      G

A  1  2                                                                   A

V -1  0  4                                                                V

L -4 -2  2  6                                                             L

I -3 -1  4  2  5                                                          I

P  0  1 -1 -3 -2  6                                                       P

S  1  1 -1 -3 -1  1  2                                                    S

T  0  1  0 -2  0  0  1  3                                                 T

D  1  0 -2 -4 -2 -1  0  0  4                                              D

E  0  0 -2 -3 -2 -1  0  0  3  4                                           E

N  0  0 -2 -3 -2  0  1  0  2  1  2                                        N

Q -1  0 -2 -2 -2  0 -1 -1  2  2  1  4                                     Q

K -2 -1 -2 -3 -2 -1  0  0  0  0  1  1  5                                  K

R -3 -2 -2 -3 -2  0  0 -1 -1 -1  0  1  3  6                               R

H -2 -1 -2 -2 -2  0 -1 -1  1  1  2  3  0  2  6                            H

F -5 -3 -1  2  1 -5 -3 -3 -6 -5 -3 -5 -5 -4 -2  9                         F

Y -5 -3 -2 -1 -1 -5 -3 -3 -4 -4 -2 -4 -4 -4  0  7 10                      Y

W -7 -6 -6 -2 -5 -6 -2 -5 -7 -7 -4 -5 -3  2 -3  0  0 17                   W

M -3 -1  2  4  2 -2 -2 -1 -3 -2 -2 -1  0  0 -2  0 -2 -4  6                M

C -3 -2 -2 -6 -2 -3  0 -2 -5 -5 -4 -5 -5 -4 -3 -4  0 -8 -5 12             C

B  0  0 -2 -3 -2 -1  0  0  3  3  2  1  1 -1  1 -4 -3 -5 -2 -4  3          B

Z  0  0 -2 -3 -2  0  0 -1  3  3  1  3  0  0  2 -5 -4 -6 -2 -5  2  3       Z

X -1  0 -1 -1 -1 -1  0  0 -1 -1  0 -1 -1 -1 -1 -2 -2 -4 -1 -3 -1 -1 -1    X

* -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8  1 *

   G  A  V  L  I  P  S  T  D  E  N  Q  K  R  H  F  Y  W  M  C  B  Z  X  *

(b)
   G  A  V  L  I  P  S  T  D  E  N  Q  K  R  H  F  Y  W  M  C  B  Z  X  *

G  6                                                                      G

A  0  4                                                                   A

V -3  0  4                                                                V

L -4 -1  1  4                                                             L

I -4 -1  3  2  4                                                          I

P -2 -1 -2 -3 -3  7                                                       P

S  0  1 -2 -2 -2 -1  4                                                    S

T -2  0  0 -1 -1 -1  1  5                                                 T

D -1 -2 -3 -4 -3 -1  0 -1  6                                              D

E -2 -1 -2 -3 -3 -1  0 -1  2  5                                           E

N  0 -2 -3 -3 -3 -2  1  0  1  0  6                                        N

Q -2 -1 -2 -2 -3 -1  0 -1  0  2  0  5                                     Q

K -2 -1 -2 -2 -3 -1  0 -1 -1  1  0  1  5                                  K

R -2 -1 -3 -2 -3 -2 -1 -1 -2  0  0  1  2  5                               R

H -2 -2 -3 -3 -3 -2 -1 -2 -1  0  1  0 -1  0  8                            H

F -3 -2 -1  0  0 -4 -2 -2 -3 -3 -3 -3 -3 -3 -1  6                         F

Y -3 -2 -1 -1 -1 -3 -2 -2 -3 -2 -2 -1 -2 -2  2  3  7                      Y

W -2 -3 -3 -2 -3 -4 -3 -2 -4 -3 -4 -2 -3 -3 -2  1  2 11                   W

M -3 -1  1  2  1 -2 -1 -1 -3 -2 -2  0 -1 -1 -2  0 -1 -1  5                M

C -3  0 -1 -1 -1 -3 -1 -1 -3 -4 -3 -3 -3 -3 -3 -2 -2 -2 -1  9             C

B -1 -2 -3 -4 -3 -2  0 -1  4  1  3  0  0 -1  0 -3 -3 -4 -3 -3  4          B

Z -2 -1 -2 -3 -3 -1  0 -1  1  4  0  3  1  0  0 -3 -2 -3 -1 -3  1  4       Z

X -1  0 -1 -1 -1 -2  0  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 -1 -2 -1 -1 -1    X

* -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4  1 *

   G  A  V  L  I  P  S  T  D  E  N  Q  K  R  H  F  Y  W  M  C  B  Z  X  *

Figure 2 
(a) The PAM250 matrix with the amino acids grouped
according to the chemistry of the side chain. The numbers
indicate how to score the alignment of any given amino acid
(taken from one axis) with any other amino acid (taken from
the other axis). Each value in the matrix is calculated by
dividing the frequency with which one amino acid is
observed to be replaced by another in related proteins
separated by one evolutionary step (based on phylogenetic
trees) by the probability that the same two amino acids
might align by chance, giving what is called the relatedness
odds score. The more common the amino acids in an
aligned pair, the higher the probability of a chance alignment,
indicating a less significant alignment. The ratio is then
converted to a logarithm (which allows the individual pair
scores in an alignment to be added rather than multiplied)
and expressed as what is called a log odds score. PAM
matrices are usually scaled in 10 log10 units, which is roughly
the same as third-bit units. (b) The BLOSUM62 matrix with
the amino acids in the table grouped according to the
chemistry of the side chain, as in (a). Each value in the
matrix is calculated by dividing the frequency of occurrence
of the amino acid pair in the BLOCKS database, clustered at
the 62% level, divided by the probability that the same two
amino acids might align by chance. The ratio is then
converted to a logarithm and expressed as a log odds score,
as for PAM. BLOSUM matrices are usually scaled in half-bit
units. A score of zero indicates that the frequency with
which a given two amino acids were found aligned in the
database was as expected by chance, while a positive score
indicates that the alignment was found more often than by
chance, and a negative score indicates that the alignment
was found less often than by chance.



evaluating the same portions of the candidate alignments

many times over. This redundant aspect of sequence com-

parison makes it amenable to a time-saving shortcut called

dynamic programming.

Dynamic programming methods were first described in the

1950s, outside the context of bioinformatics, and first

applied in this context by Needleman and Wunsch in 1970

[22]. These methods find an optimal solution to a given

problem by breaking the original problem into smaller and

smaller subproblems until the subproblems have a trivial

solution, and then using those solutions to construct solu-

tions for larger and larger portions of the original problem.

In sequence comparison, the overall problem is determining

the optimal alignment of two sequences. This is broken

down into smaller and smaller alignments of parts of one

sequence with parts of another sequence to the smallest

case, which is the alignment of a single residue from one

sequence with a single residue from the other sequence. This

solution to this smallest subproblem is known, and is taken

from the scoring matrix.

A generalization of the recursive dynamic programming

approach, the Smith-Waterman algorithm [23] is an exhaus-

tive, mathematically optimal method, which handles

sequence comparisons in a single computation and is guar-

anteed to find the highest scoring alignment. The algorithm

incorporates the concepts of mismatches and gaps, and

identifies optimal local alignments. Local alignments, where

parts of one sequence are aligned to parts of another are

more biologically relevant than global alignments where

entire sequences are aligned to each other, because long

regions of high similarity are the exception, rather than the

rule, for most biological applications.

Heuristics: sensitivity versus speed
As fast as computers are, and as efficient as the dynamic

programming algorithms are, they are still far too slow to

enable exhaustive searches of huge sequence repositories

such as GenBank [24,25] or SWISS-PROT [26,27]. An

exhaustive search of GenBank is still beyond the reach of

most researchers’ computer power - and with the growth of

sequence databases outstripping increases in computation

speed, this situation is not going to get better any time

soon. This is where BLAST comes in. There are two

primary methods for taking even shorter shortcuts by

approximating the best local alignment: FASTA and

BLAST. Neither is guaranteed to find the best local align-

ment, but they almost always do. As outlined above, this

discussion will focus on BLAST. 

BLAST and FASTA are similar in that both operate on the

assumption that true matches are likely to have at least some

short stretches of high-scoring similarity, but where FASTA

looks for exactly matching ‘words’ (strings of residues),

BLAST uses a scoring matrix - BLOSUM62 for amino-acid

sequences, by default - to find words that may not match

exactly but are high-scoring nevertheless. These high-scoring

‘hits’ are used as ‘seeds’ for the slower, more sophisticated

dynamic programming algorithm. BLAST also performs

some pre-processing of the query sequence - to filter out low-

complexity regions (such as CA repeats) and to discard words

not likely to form high-scoring pairs. Like FASTA, BLAST

does not allow gaps in the primary word-matching pass, but

it does in the subsequent Smith-Waterman alignment stage.

For this reason, BLAST, like FASTA, has the potential to miss

significant similarities present in the database [15]. From a

practical standpoint, BLAST is generally the way to go, not

only because of its better accuracy, but also because of its

availability and its wide acceptance as the standard.

What BLAST does and how it does it
If we define a segment as a contiguous subsequence of a

nucleotide or amino-acid sequence, and a segment pair as a

pair of segments of the same length, one from each of the

two sequences being compared, then the task that BLAST

performs is the identification of all pairs of similar segments

whose score exceeds a given threshold. The resulting pairs of

similar segments are called high-scoring segment pairs
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Table 2

BLAST-related web pages at NCBI 

Page contents URL

BLAST-home page http://www.ncbi.nlm.nih.gov/BLAST/

The statistics of sequence similarity scores (introduction to BLAST statistics) http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html

BLAST frequently asked questions (FAQ) http://www.ncbi.nlm.nih.gov/BLAST/blast_FAQs.html

BLAST information (tutorials) http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/information3.html

BLAST ftp site - clients and databases ftp://ncbi.nlm.nih.gov/blast

BLAST source code ftp://ncbi.nlm.nih.gov/toolbox/ncbi_tools

BLAST references http://ncbi.nlm.nih.gov/BLAST/blast_references.html



(HSPs). The segment pair with the highest score is the

maximal-scoring segment pair (MSP); its alignment cannot

be improved by extending it or shortening it. There are three

major steps in the BLAST algorithm, outlined in Figure 3.

Detail for each of the steps is as follows. 

In step 1, BLAST filters low complexity regions (CA repeats,

for example) and removes them from the query sequence.

Low compositional complexity or short-periodicity repeats

can yield extremely large numbers of statistically significant

but biologically uninteresting results. The filtering and

removal of these can be controlled with the -F flag of the

stand-alone version of BLAST and with check boxes in the

web version. Next, BLAST generates a list of all of short

sequences, or words, that make up the query (Figure 3a).

The default word lengths are 3 and 11, for amino-acid

sequences and nucleotide sequences, respectively, and are

adjustable using the -W flag in the stand-alone version.

Then, BLAST uses a scoring matrix (BLOSUM62, by default,

for amino acids) to determine all high-scoring matching

words for each word in the query sequence. No gaps are

allowed. The list of matches is reduced by taking only those

that will score above a given threshold, called the neighbor-

hood word-score threshold. There is a trade-off at this stage

between speed and sensitivity: a higher threshold gives

greater speed but increases the chance of missing relevant

pairs. Approximately 50 of these matches are usually kept

for each of the words generated from the original query.

In the second step, BLAST searches through the target

sequence database for exact matches to the word list gener-

ated (Figure 3b). Because BLAST has already pre-processed

and indexed the databases for the occurrence of all words in

each sequence in the database, this search is extremely fast.

If a match is found, it is used to seed a possible alignment

between the query and the database sequences. 
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Table 3 

BLAST parameters and options

Parameter Use Parameter type Default setting

(a) Parameters mentioned in the text and Box 2

-M Matrix String BLOSUM62

-r Reward for a nucleotide match (BLASTN only) Integer 1

-q Penalty for a nucleotide mismatch (BLASTN only) Integer -3

-G Cost to open a gap (zero invokes default behavior) Integer 0

-E Cost to extend a gap (zero invokes default behavior) Integer 0

-F Filter query sequence String T

-W Word size; default length is used if set to zero Integer 0

-z Effective length of the database (use zero to get the real size) Real 0

-e Expectation value (E) Real 10.0

(b) Additional useful parameters 

-i Name of the query file Filename “stdin”

-m Alignment viewing options, which include:

0     Pairwise alignment

1      Query-anchored showing identities

2     Query-anchored, no identities

7     XML output Integer 0

-o Name of the BLAST report output file Filename “stdout”

-f Threshold for extending hits; default is used if set to zero Integer 0

-g Perform gapped alignment (not available with TBLASTX) T/F T

-Y Effective length of the search space (use zero get the real size) Real 0

-S Query strands to search against the database (for BLAST[NX], and TBLASTX) Integer 3
3 is both, 1 is top, 2 is bottom

-T Produce HTML output T/F F

-y Drop-off (X) for BLAST extensions, in bits (0.0 invokes default behavior) Real 0.0

-Z X drop-off value for final gapped alignment (in bits) Integer 0

Parameters are preceded by a dash when used with the stand-alone version of BLAST; the web interfaces uses boxes and drop-down menus to control
many of the same parameters. Parameters are given in the table in the order that they are mentioned in the text or on using NCBI-BLAST; additional
parameters are listed at the NCBI [38]. Abbreviations: T/F, true or false; for BLAST variants see Table 1. ‘Query-anchored’ means that the query string is
used as the ‘top line’ of the alignment.



In the third step, the original BLAST method tried to

extend the alignment from the matching words in both

directions as long as the score continued to increase

(Figure 3c). The resulting alignment was called a high-

scoring pair, or HSP. Gapped BLAST [28] uses a lower

threshold for generating the list of high-scoring matching

words; the algorithm uses short matched regions with no

insertions or deletions between them and within a certain

distance of each other as the starting points for longer

ungapped alignments. These joined regions are then

extended using the same method as in the original BLAST. 

Next, BLAST determines whether each score found by one of

the above methods is greater in value than a given cutoff

score S, determined empirically by examining the range of

scores given by comparing random sequences and then

choosing a value that is significantly greater. The maximal

scoring pairs, or MSPs, from the entire database are identi-

fied and listed. Finally, BLAST determines the statistical

significance of each score, initially by calculating the proba-

bility that two random sequences, one the length of the query

sequence and the other the length of the database (the sum of

the lengths of all of the database sequences) with the same

composition (nucleotide or amino acid) could produce the

calculated score. Sometimes, two or more segment pairs can

be made into a longer alignment; in such cases, a combined

assessment of the significance is made by one of two methods

[29]: the Poisson method is based on the assumption that the

probability of the multiple scores is higher when the lower

score of each set is higher; the sum-of-scores method calcu-

lates the probability of the sum of the scores. Earlier versions

of BLAST use the Poisson method, while later versions,

including WU-BLAST and gapped BLAST, use the sum-of-

scores method. When the expectation value for a given data-

base sequence satisfies the user-selectable threshold

parameter (set by the -e flag with the stand-alone version; see

Table 3), the match is reported. ‘Reasonable’ choices vary, but

are typically between 0.1 and 0.001 (see Box 2).

Caveat emptor
An example of BLAST output is shown in Figure 4. The

first part of the output is the header and gives the BLAST

program and version used, the reference, and the names

and lengths of the query sequence and the target database.

The second part is a summary of the sequences producing

significant alignments along with normalized (bit) scores

and E values. The third part displays the alignments and

includes more detailed information about the scores,

including raw score, bit score, E value and identity. The

fourth part summarizes the parameters used in the search,

including the name of the scoring matrix, the gap existence

and extension penalties, and the properties of the search

space, including the parameters ��and K. If you frame your

question carefully, meaning a careful choice of parameters

and databases against which to search, BLAST and other

sequence comparison tools can provide a vast resource of

useful information. But in using sequence similarity to

infer homology, one should take care to follow a few

simple rules. 

Always compare protein sequences if the query sequences encode
proteins
Given that nucleotide and protein databases are not uni-

formly populated, nucleotide and amino-acid sequence com-

parisons should be used to complement each other. Despite
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Figure 3
The BLAST algorithm. (a) Given a query sequence of length
L, BLAST derives a list of words of length w, where w = 3
for amino-acid sequences (shown) and 11 for nucleotide
sequences. There are at most L – w + 1 such words. This
word list is then expanded to include all high-scoring
matching words, keeping only those that score more than
the neighborhood word score threshold T when scored
using a scoring matrix such as PAM250 or BLOSUM62. For
typical parameter values, this results in about 50 words per
residue of the query sequence. (b) The high-scoring word
list is compared to the sequence database and exact
matches are identified. (c) For each word match, the
alignment is extended in both directions to generate
alignments that score higher than the score threshold S.

ABC

BCD

CDE

DEF

ABC

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABD

DEF

DPF

ABCDWFHHFJSLMNKDKJDEHKKJFF

ABC

LMN

OPR

DEK

MSLZMSOWURNFKSADEFAQMAZMSH

DSKOWJJDFKSLMNKDKJDFKKJDFF

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABC

LMN

DEK

ABC LMN

(a)

(b)

(c)



the fact that protein databases tend to be more sparsely pop-

ulated than nucleotide databases, the constraints of protein

evolution - the fact that a protein folds into a functional

structure - along with the redundancy of the genetic code,

make protein sequence comparison a more powerful tool for

inferring structure and function from sequence.
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Figure 4 (see figure on the next page)
The output from a BLAST search consists of four parts. The first is the header (a), which includes the BLAST program and
version used, and the name and length of both the query sequence and of the target database. In this case, the program used
was BLASTX, so the query sequence was a nucleotide sequence and was translated in all six frames and compared to a
protein database, nr, which is the non-redundant protein database maintained by NCBI. The second part of the output (b) is
a summary of sequences producing significant alignments, along with both normalized scores and E values (see text for further
details; only the four highest-scoring hits are shown). (c) The alignments (MSPs) and their properties are then shown,
including the raw score, bit score, E value, and level of identity, for each high-scoring alignment (only one is shown here).
(d) Finally, the output includes all of the parameters used in the search, including the scoring matrix used, the penalties used
for gaps and extensions, the size of the effective search space (the product of the effective lengths of the query sequence and
the database) and the statistical parameters ��and K (only a subset of the parameters are illustrated here).

Box 2

Statistics and meaning 

A BLAST search of a sequence database can produce tens or hundreds of alignments. How can one tell which represent
significant homology and which are merely the best of millions of potential random matches between unrelated
sequences? BLAST provides three related pieces of information to help the user make such distinctions: raw scores, bit
scores and E values. The raw score for a local sequence alignment is the sum of the individual scores making up the
MSP. Because of differences between scoring matrices, raw scores are not necessarily comparable. Bit scores, however,
can be compared, since they take into account the scale or log base of the scoring matrix (�) and the scale of the search
space size (K), and can be expressed as

�S-lnK
S� = —————

ln2

The expectation, or E value, corresponding to a given bit score is E = mn2-S�, where n is the length of the query
sequence and m is the length of the database sequence. Although statistics of local alignments with gaps are more diffi-
cult to treat mathematically, they are significantly similar to the statistics for ungapped local alignments, which are dis-
cussed below [37]. 

While the sum of many random variables follows a normal distribution, the maximum of many random variables follows
an extreme value distribution. Given that the score of the best local alignment (the MSP score) is the maximum of the
scores of many independent alignments, the probability of observing a score S greater than or equal to a given threshold
when comparing two random sequences is given by the extreme value distribution. For certain conditions, this can be
rearranged to express the probability that a pairwise alignment with score S could have been obtained by chance. The
probability of observing a particular score in a database of sequences is approximately given by the Poisson distribution.
The expectation value for the Poisson distribution is given by E = Kmne-�S and tells us the probability that a score as high
as the one observed between two sequences will be found by chance.

The E values are in some ways the most useful of the scores that BLAST provides. They provide an estimate of the
number of alignments one would expect to find with a score greater than or equal to that of the observed alignment in
a search against a random database of the same composition. An E value greater than 1 therefore indicates that the
alignment probably has occurred by chance, and that the query sequence has been aligned to a sequence in the database
to which it is not related. E values less than 0.1 or 0.05 are typically taken to represent biological significance. It is
common practice to use the expectation value (or E value) as a measure of statistical significance.
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Figure 4 (see legend on the previous page)

BLASTX 2.1.2 [Nov-13-2000]

Reference:

Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schäffer, 

Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), 

“Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”,  Nucleic

Acids Res. 25:3389-3402.

Query = ACAT1_3_2               (101 letters)

Database: /server/blast-db/nr 691,164 sequences; 

217,777,941 total letters

Searching..................................................done

Score E

Sequences producing significant alignments:                        (bits) Value

ref|NP_003092.1| sterol O-acyltransferase (acyl-Coenzyme A:...  70 5e-12

prf||2201440A acyl-CoA/cholesterol acyltransferase [Homo sa...    70 5e-12

gb|AAC62931.1| (AF053337) acyl-CoA:cholesterol acyltransfer...   69 6e-12

gb|AAC62930.1| (AF053336) acyl-CoA:cholesterol acyltransfer...    69 6e-12

pir||I47040 sterol O-acyltransferase (EC 2.3.1.26) - rabbit...    66 9e-11

...

>pir||I47040 sterol O-acyltransferase (EC 2.3.1.26) - rabbit (fragment)

gb|AAB06959.1| (U65393) acyl-CoA:cholesterol acyltransferase [Oryctolagus

cuniculus]

Length = 305

Score = 65.6 bits (157), Expect = 9e-11

Identities = 29/32 (90%), Positives = 32/32 (99%)

Frame = +3

Query: 3   GSHFDDFVTNLIEKSATLDNGGCALTTFSVLE 98

GSHFDDFVTNLIEKSA+LDNGGCALTTFS+L+   

Sbjct: 8   GSHFDDFVTNLIEKSASLDNGGCALTTFSILK 39

Database: /server/blast-db/nr

Posted date:  May 22, 2001  4:03 PM

Number of letters in database: 217,777,941

Number of sequences in database:  691,164

Lambda        K        H

0.318    0.135    0.401 

Gapped

Lambda        K        H

0.270   0.0470    0.230 

Matrix: BLOSUM62

Gap Penalties: Existence: 11, Extension: 1

effective length of query: 21

effective length of database: 209,483,973

effective search space: 4399163433

effective search space used: 4399163433

frameshift window, decay const: 50,  0.1

...

(a)

(b)

(c)

(d)



Pay close attention to the statistics 
Although most sequences that share significant similarity are

homologous, many homologous sequences do not share sig-

nificant similarity. In addition, repetitive sequences violate

certain assumptions made in the statistical theory that

underlies BLAST. Ensure that matches are not simply due to

biased amino-acid composition. Certain sequences, such as

low-complexity regions, can display significant similarity

when there is no significant homology. And keep in mind that

similarity spread out over a whole domain is likely to be more

biologically significant than short, nearly exact matches.

Avoid reporting raw BLAST scores in publications 
The significance and meaning of raw BLAST scores depends

on many things, so they are, at best, meaningless and may be

deceptive. It is much better to show an alignment. Although

normalized scores allow comparison of the results of searches

using different scoring systems, they are an extreme reduction

of the rich information available in an alignment. In addition,

when reporting alignments, do not assume that the alignment

that BLAST returns is the correct one.

Know the difference between sensitivity and selectivity
Similarity searching techniques can be improved either by

increasing sensitivity - the ability of a method to recognize

distantly related sequences - or by increasing selectivity,

which means lowering the scores for unrelated sequences.

Since there are many, many more unrelated sequences in a

database than related ones, changes that reduce the scores of

unrelated sequences can have dramatic effects.

Remember that sequence data include experimental artifacts
Sequence databases are known to include vector sequences

[30] and other sequencing errors [31,32], including contami-

nants, chimeric sequences, and shifts in reading frame due

to insertion or deletion errors [33].

Finally, don’t try to do too much with what BLAST gives you.

Remember that the statistics behind the results only tell you

the relative likelihood of finding the given alignment to

finding the same alignment by chance under particular

assumptions, and do not guarantee biological significance.
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