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Abstract

Background: One of the major goals in gene and protein expression profiling of cancer is to identify biomarkers
and build classification models for prediction of disease prognosis or treatment response. Many traditional
statistical methods, based on microarray gene expression data alone and individual genes’ discriminatory power,
often fail to identify biologically meaningful biomarkers thus resulting in poor prediction performance across data
sets. Nonetheless, the variables in multivariable classifiers should synergistically interact to produce more effective
classifiers than individual biomarkers.

Results: We developed an integrated approach, namely network-constrained support vector machine (netSVM), for
cancer biomarker identification with an improved prediction performance. The netSVM approach is specifically
designed for network biomarker identification by integrating gene expression data and protein-protein interaction
data. We first evaluated the effectiveness of netSYM using simulation studies, demonstrating its improved
performance over state-of-the-art network-based methods and gene-based methods for network biomarker
identification. We then applied the netSVM approach to two breast cancer data sets to identify prognostic
signatures for prediction of breast cancer metastasis. The experimental results show that: (1) network biomarkers
identified by netSVM are highly enriched in biological pathways associated with cancer progression; (2) prediction
performance is much improved when tested across different data sets. Specifically, many genes related to
apoptosis, cell cycle, and cell proliferation, which are hallmark signatures of breast cancer metastasis, were
identified by the netSVM approach. More importantly, several novel hub genes, biologically important with many
interactions in PPl network but often showing little change in expression as compared with their downstream
genes, were also identified as network biomarkers; the genes were enriched in signaling pathways such as TGF-
beta signaling pathway, MAPK signaling pathway, and JAK-STAT signaling pathway. These signaling pathways may
provide new insight to the underlying mechanism of breast cancer metastasis.

Conclusions: We have developed a network-based approach for cancer biomarker identification, netSVM, resulting
in an improved prediction performance with network biomarkers. We have applied the netSYM approach to breast

performance across independent data sets.

cancer gene expression data to predict metastasis in patients. Network biomarkers identified by netSVM reveal
potential signaling pathways associated with breast cancer metastasis, and help improve the prediction

Background

While promising progress in research has been made in
recent years, predicting cancer outcomes is a difficult
task since cancer is a complicated disease and its
mechanisms remain largely unclear. Biomarkers play an
important role in the diagnosis of cancer, and also in
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assessing prognosis and directing treatment of cancer.
As microarray technology makes it possible to measure
the expression of tens of thousands of genes simulta-
neously, biomarker identification has become one of the
major tasks in the field of microarray data analysis.
Common statistical practice attempts to find biomarkers
differentially expressed across different phenotypes, such
as cancer samples vs. normal samples, in a high-dimen-
sional gene space. Given clinical outcomes data, the pro-
blem can also be formulated as a prediction problem
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that is designed to find informative genes from a classi-
fication model with good prediction performance.

Traditional methods [1-8] are largely developed based
on microarray data alone, with the assumption that each
individual gene contributes independently to clinical
outcomes. Thus, the reproducibility of prediction perfor-
mance is often unexpectedly low when tested across dif-
ferent data sets (even though data are acquired from
apparently similar study designs). This problem may be
explained in part by the properties of microarray data
that are often noisy and the cellular and molecular het-
erogeneity of cancer specimens. Unfortunately, biomar-
kers selected by many current algorithms often have
limited mechanistic coherence related to the specific
cancer under study, partly because the approaches do
not deal effectively with the challenges posed by work-
ing in high dimensional data spaces [9].

Genes generally work collaboratively, and many can-
cer-related genes are involved in multiple pathways [10].
Recently, several methods have been developed to iden-
tify significant gene sets or pathways involved in diseases
or biological processes by incorporating some prior bio-
logical knowledge. For example, gene set enrichment
analysis or pathway enrichment analysis [11-13] uses the
membership information in functional gene clusters or
pathways, which facilitates an understanding of the
underlying biological mechanism(s). Other algorithms
use interacting structures, such as protein-protein inter-
actions (PPIs), protein-DNA interactions, or regulatory
pathways. For example, Chuang et al. [14] proposed a
protein-protein network-based approach to identify bio-
markers of metastasis using breast cancer gene expres-
sion data. Biomarkers identified by this approach are
encoded as subnetworks of interacting proteins within a
large human PPI network. The average expression activ-
ities of these subnetworks were then used for prediction
of metastasis. A noticeable limitation of this method is
that the network structure was not taken into considera-
tion in the classifier building step. Li et al. [15] intro-
duced a network-constrained regularization procedure
for linear regression analysis of microarray data. Specifi-
cally, a network-constrained term based on the L1-norm
of regression coefficients was used to enforce the
smoothness of the coefficients for each network. In a
general regression framework, the effectiveness of this
approach has been initially demonstrated with relevant
genes or subnetworks identified showing an improved
association with the appropriate phenotypes. However,
in many cases only binary information of clinical out-
comes are known (recurrent/non-recurrent, alive/dead),
therefore a binary prediction model is more suitable
than a regression model for cancer prediction. Zhu et
al. [16] recently started using support vector machines
to build binary classifiers as prediction models, in which
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an F.-norm constraint was proposed to account for
gene-gene interaction information. As an initial attempt,
they applied this approach to breast cancer data to
study three small, focused networks centered upon
TP53, BRCA1, and BRCAZ2, respectively, showing the
potential of this approach to identify those frequently
mutated cancer related genes, although the results apply
to genes largely known from previous studies [16].

We have developed an integrated approach, network-
constrained support vector machine (netSVM), to predict
clinical outcome of patients and to identify biologically
meaningful biomarkers by incorporating protein-protein
interacting network information. Specifically, we embed a
network constraint into the objective function of an SVM
to impose the smoothness of coefficient over a prediction
network. The network constraint is represented by a Lapla-
cian matrix of protein-protein interactions. We first vali-
date the netSVM approach using simulation studies to
explore the effectiveness of the proposed method. We then
apply the netSVM to breast cancer data for cancer biomar-
ker identification. The study shows that our method can be
used to improve the prediction performance across data
sets, especially when signal-to-noise ratio (SNR) is relatively
low. More importantly, the identified genes and subnet-
work are highly related to biological pathways involved in
breast cancer progression and metastasis.

Results and discussion

Network-constrained support vector machines

We propose an integrated approach using gene expres-
sion data and PPI network information to predict clinical
outcomes of breast cancer and to identify cancer biomar-
kers. For these studies, we are less interested in describ-
ing clinically useful classifiers than we are in using
clinically relevant outcomes data to support a classifier
from which we can obtain mechanistically relevant biolo-
gical insights. Figure 1 shows the framework of the pro-
posed method. The method takes gene expression data
and PPI network knowledge as the input, builds a classi-
fier using a network-constrained support vector machine
(netSVM), and then predicts the outcome of new samples
based on the trained classifier. Significant genes or sub-
networks from the classifier can be detected through a
significance test based on permutation of sample labels.
Unlike conventional SVM, netSVM adds a network con-
straint in the gene space to its objective function; thus we
obtain highly connected genes as the significant features
and should improve prediction performance across dif-
ferent data sets. The approach is described in the Meth-
ods part with its mathematical details outlined.

Simulation experiments
We simulated microarray gene expression data under two
conditions by a modified MRF-GG model [17]. First, a
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Figure 1 Flowchart of the proposed approach, network-constrained support vector machine (netSVM), for cancer biomarker
identification.

Markov random field (MRF) model was used to determine
the states of genes - differentially expressed (DE) and
equally expressed (EE) - given a known, ground truth sub-
network. Based on the states of genes, the Gamma-Gamma

(GG) model [18] was then used for modeling the gene
expression levels in the two conditions (see Methods).

We conducted simulation studies on a breast cancer-
related network that contains 584 genes and 2,280
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interactions. Genes are either breast cancer related [19]
or involved in estrogen signaling pathways collected
from Ingenuity Pathway Analysis (Ingenuity® Systems,
http://www.ingenuity.com). Interactions were extracted
from the HPRD database [20]. Weights in the network
were set to 1 if there are known connections between
two genes, and to 0 otherwise. Parameters in the GG
model (o = 10, &ty = 0.9 and v = 0.5) are those in New-
ton et al. [18]. When generating simulation data sets,
we added different levels of noise and adjusted para-
meter w (see Eq. 11 in Methods) to control the false
positive rate in the sampled DE subnetworks. For each
scenario, we randomly generated 100 training and test-
ing data sets, each data set with 100 training samples
and 100 testing samples.

We implemented network-constrained SVMs for
training and testing. A 10-fold cross validation was con-
ducted on the training data set to select the optimal
value of parameter A, a trade-off parameter between
classification error and network constraint (see Eq. 4 in
Methods). We then computed the accuracy, sensitivity,
and specificity for classification performance evaluation
on the testing data. The classifier’s performance in reco-
vering ground truth subnetwork genes was also assessed
using receiver operating characteristic (ROC) analysis
[2] of the ranked gene list. Specifically, genes were
ranked by their p-values through a significance test.
True positive rate and false positive rate were calculated
in the ranked gene list, and the area under the ROC
curve (AUC) were calculated for an overall performance
evaluation.

As a comparison, we also implemented many existing
methods for classifier training and performance evalua-
tion. Among them, F.-norm SVM [16], Larsnet [15]
and Chuang’s method [14] are network-based methods
that integrate gene expression data and protein-protein
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interaction network information. Conventional SVM,
Lasso [21] and Linear Discriminant Analysis (LDA) [22]
are gene-based methods that are based on gene expres-
sion data alone. Note that for LDA we used t-test to
select top ranked (significant) genes for prediction if
number of genes is greater than number of samples.
Similarly, we conducted 10-fold cross validation to
determine the optimal parameters for the methods and
compared the classifier’s performance in term of predic-
tion accuracy in the outcome of testing samples and
recovering ground truth subnetwork genes.

We first fixed weight (o = 10) and added different
levels of Gaussian noise to the simulated gene expres-
sion data. Table 1 shows that the AUC values of predic-
tion performance on testing data sets for netSVM and
other existing methods. From the table we can see that
when signal-to-noise ratio is relatively high (>4 db),
most of the methods can achieve good prediction
results, except for two regression methods, Larsnet and
Lasso. However, when signal-to-noise ratio is low, which
is a common problem with microarray gene expression
data, netSVM gives rise to an improved classification
performance compared to other methods. The regres-
sion methods do not show good prediction perfor-
mances in noisy conditions. One possible reason is that
the simulation data are generated based on statistical
distributions rather than precise regression models. The
AUC values for subnetwork identification are shown in
Table 2. We can see that network-based methods out-
perform gene-based methods consistently, and netSVM
outperforms all other methods. This indicates that inte-
grating PPI network information could improve disco-
vering underlying subnetworks. Figure 2 and Figure 3
show the detailed comparison between netSVM and
conventional SVM in terms of AUC values of prediction
performance and subnetwork identification, respectively.

Table 1 Means and standard derivations of AUC values of prediction on simulation data sets with different signal-to-
noise levels for netSVM, other network-based methods and gene-based methods

SNR network-based method gene-based method
(db)
netSVM F..-norm SVM Larsnet SVM Lasso LDA

10 1.00 = 0.00 1.00 = 0.00 0.62 £ 007 1.00 = 0.00 0.61 + 0.04 1.00 + 0.00
8 1.00 £ 0.00 1.00 £ 0.00 0.60 £+ 0.05 1.00 £ 0.00 0.59 + 0.05 1.00 + 0.00
6 1.00 £ 0.00 1.00 = 0.00 0.58 £ 0.05 1.00 = 0.00 0.57 + 0.05 1.00 + 0.00
4 1.00 + 0.00 1.00 + 0.00 0.57 + 0.05 1.00 + 0.00 0.56 + 0.03 1.00 £ 0.00
2 1.00 = 0.00 1.00 = 0.00 0.57 £ 0.03 1.00 = 0.00 055 + 0.04 1.00 £ 0.00
0 1.00 = 0.00 1.00 = 0.00 0.58 + 0.03 1.00 = 0.00 057 + 0.04 0.99 £ 0.01
-2 099 + 001 098 + 0.01 0.57 £ 003 099 + 001 0.56 £ 004 0.98 + 0.01
-4 0.99 + 001 094 + 003 0.58 + 0.04 097 + 002 057 £ 004 093 = 0.01
-6 095 + 0.02 0.88 + 0.04 0.58 + 0.03 093 = 0.03 0.56 = 0.04 0.88 = 0.03
-8 0.88 = 0.03 0.81 + 0.05 0.57 = 0.04 081 + 0.04 0.56 + 0.04 0.83 + 0.02
-10 0.82 + 0.04 0.73 = 0.05 0.56 + 0.04 0.75 + 0.03 057 £ 0.05 0.76 = 0.02
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Table 2 Means and standard derivations of AUC values of prediction of subnetwork genes on simulation data sets
with different signal-to-noise levels for netSVM, other network-based methods and gene-based methods

SNR network-based method gene-based method
(db)
netSVM F..-norm SVM Larsnet Chuang’s method SVM Lasso T-test

10 0.89 + 0.00 0.80 = 0.03 0.64 + 0.02 0.85 = 0.03 0.79 + 0.00 0.62 + 0.02 0.78 + 0.03
8 0.90 + 0.02 081 + 0.03 0.64 + 0.02 081 +0.03 0.79 + 0.02 062 + 0.01 0.78 + 0.04
6 090 + 0.02 0.81 £ 0.03 063 £ 002 0.84 £ 003 0.79 £ 0.03 062 £+ 002 0.77 £ 0.04
4 0.90 + 0.02 081 + 0.04 063 + 0.01 0.82 + 0.02 0.80 + 0.02 061 + 0.01 0.78 + 0.04
2 0.90 + 0.02 0.80 + 0.03 063 + 0.01 0.83 + 0.02 0.79 + 0.02 062 + 0.02 0.77 + 0.04
0 0.90 + 0.03 0.81 +0.03 0.63 + 0.02 0.83 = 0.04 0.79 + 0.03 061 + 0.02 0.78 + 0.04
-2 091 + 0.02 0.80 = 0.03 0.63 + 0.02 0.82 £ 0.03 0.80 + 0.02 061 + 0.02 0.79 + 0.03
-4 0.89 + 0.02 0.79 £ 0.03 063 + 001 0.83 £ 0.02 0.78 £ 0.02 061 £ 0.02 0.78 £ 003
-6 0.88 = 0.02 0.79 £ 0.03 063 £ 0.02 0.83 £ 0.04 0.75 £ 0.02 061 = 001 0.76 £ 0.05
-8 0.89 + 0.02 0.77 £ 0.03 0.63 + 0.01 0.83 + 0.03 0.75 + 0.04 061 + 0.01 0.77 + 0.04
-10 0.87 + 0.03 0.75 £ 0.03 063 + 0.02 0.80 = 0.04 0.74 + 0.03 061 + 0.01 0.76 + 0.04

NetSVM outperforms SVM significantly in identifying
the ground truth subnetwork or relevant genes.

We further evaluated the performance of uncovering
underlying network/genes with different false positive
rates in the data by varying weights (), to control the
false positive rate of sampled subnetworks compared
with the ground truth subnetwork. With a fixed signal-
to-noise ratio (SNR = 0 dB), the prediction performance

of six methods are similar with the ones in Table 1
(results are not shown). However, the performance in
identifying underlying subnetworks is substantially dif-
ferent, which is shown in Table 3. From the table, we
can conclude that network-based methods outperform
gene-based methods in general. Figure 4 shows the
detailed comparison between netSVM and conventional
SVM. From the figure we can see that netSVM achieves
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higher AUC values than conventional SVM significantly,
especially when false positive rate of sampled subnet-
work is high (>40%).

Since our method is designed to emphasize the role of
hub genes, the negative effect on prediction accuracy of
hub genes is greater than other genes when the genes
have inconsistent, abnormal expression between training

Table 3 Means and standard derivations of AUC values of

and testing data sets. We assessed the robustness of the
method by perturbing the expression levels of all ground
truth genes and hub genes, respectively. Genes were
considered as hub genes if their connection degrees are
larger than 10. We added different levels of noise in the
test data sets and compared the prediction performance
of netSVM and that of conventional SVM. From

prediction of subnetwork genes on simulation data sets

with different false positive rate (FPR) for netSVM, other network-based methods and gene-based methods

FPR network-based method gene-based method
(%)
netSVM F-norm SVM Larsnet* Chuang’s method SVM Lasso* T-test

25 095 + 0.02 0.90 + 0.03 093 + 0.02 092 + 003 0.90 + 0.03 081 + 0.04 091 + 002
27 095 + 0.02 0.90 + 0.03 092 + 0.02 093 + 0.02 0.88 + 0.02 0.80 + 0.03 0.89 + 0.02
29 094 + 0.02 0.89 + 0.03 091 + 0.02 0.90 + 0.02 0.86 + 0.02 0.80 + 0.03 0.88 + 0.03
33 091 + 0.03 0.87 + 0.02 0.89 + 0.02 0.90 + 0.02 0.83 + 0.03 0.79 = 0.03 0.86 = 0.04
39 092 + 0.03 0.85 + 0.03 0.87 + 0.03 0.87 + 0.03 0.80 + 0.04 0.78 + 0.03 0.83 = 0.03
46 089 + 0.01 083 + 0.03 082 + 0.02 0.83 + 002 0.75 £ 0.04 0.76 + 0.03 0.77 + 003
58 0.86 + 0.02 0.79 + 0.03 0.77 £ 0.02 0.80 + 0.02 0.70 + 0.03 0.72 + 003 073 + 004
68 0.83 + 0.05 0.76 + 0.03 0.73 + 0.02 0.72 + 0.03 0.64 + 0.05 0.71 + 0.02 0.66 + 0.04
77 0.77 + 0.04 0.70 + 0.04 0.69 + 0.02 067 + 0.04 0.55 + 0.05 067 + 0.02 0.58 + 0.03
86 0.74 + 0.04 0.66 + 0.04 0.64 + 0.02 0.66 + 0.03 051 + 0.06 0.63 + 0.02 0.52 + 0.04
98 0.70 + 0.05 062 + 0.04 0.59 + 0.00 0.56 + 0.03 049 + 0.05 059 + 0.01 047 + 004

*: noise = 0; others: SNR = 0 db;
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simulation experiments, we can see that netSVM is
more robust than conventional SVM when perturbing
all ground truth genes (Figure 5(a)). The performance
degrades even faster when perturbing hub genes alone,
but it is still acceptable when compared to the perfor-
mance of conventional SVM (Figure 5(b)).

Breast cancer microarray data

We studied two gene expression profiles of breast can-
cer patients previously reported by van de Vijver et al.
[23] and Wang et al. [24]. We focused on estrogen
receptor (ER) positive patients in our study, aiming to
improve our understanding of estrogen signaling and
action. Among the ER positive patients, 78 patients in
van de Vijver et al. [23] and 80 in Wang et al. [24] had
been diagnosed with metastasis during their follow-up
visits within 5 years of surgery, which were assigned to
‘recurrence’ group.

The remaining 217 and 129 patients, respectively in
the two studies, were then labeled as ‘non-recurrence’.
In order to construct a network, we collected a set of
genes that are either breast cancer related [19] or
involved in estrogen signaling pathways from Ingenuity
Pathway Analysis (Ingenuity™ Systems, http://www.inge-
nuity.com). The protein-protein interactions (PPIs) were
extracted from the HPRD database [20]. In this study,
the weights in the network are set as 1 if there are con-
nections between two genes and 0 otherwise. After map-
ping the network to the two gene expression data sets

[23,24], we obtained a PPI network with 553 breast can-
cer related genes and 2,257 interactions.

We conducted a stratified, 5-fold cross validation on
the first data set to build a classifier, and then tested on
the second data set to measure its prediction perfor-
mance, and vice versa. For cross-validation with net-
work-constrained SVM, the samples are divided into
five subsets: three are used to train the classifier, one is
used to determine the optimal value of parameter A, and
validation performance is calculated on the remaining
subset using the optimal A. To obtain a more reliable
evaluation of the performance, we repeated the cross-
validation procedure 100 times by random partitions.
The most frequently occurring value of parameter A
during the cross validation was used to build a classifier
based on all training samples for independent testing.
We evaluated the prediction performance of netSVM
using ROC analysis, from which AUC, accuracy, sensi-
tivity, and specificity were calculated.

Similarly we compared the prediction performance of
netSVM with other network-based methods and gene-
based methods in terms of cross-validation and indepen-
dent testing. For the cross-validation performance, Table
4 shows the mean and standard deviation of prediction
performance for all methods; network-based methods
achieved a slightly better classification performance than
the gene-based methods. Table 5 shows the prediction
performance of independent testing on two data sets.
The prediction performance of netSVM and Chuang’s
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(b)

method are comparable and better than other network-
based and gene-based methods. This indicates that
netSVM, along with Chuang method, is of a better
reproducibility to predict independent data sets as com-
pared to conventional SVM and other methods. The

overlaps in the top 50 ranked genes from two data sets
also show that netSVM has a better reproducibility for
network identification (Figure 6).

We also compared the prediction performance with
the performances reported in the original studies



Chen et al. BMIC Systems Biology 2011, 5:161
http://www.biomedcentral.com/1752-0509/5/161

Page 9 of 20

Table 4 Means and standard derivations of AUC, accuracy (ACC), sensitivity (SEN) and specificity (SPE) for 5-fold cross
validation on van de Vijver et al. [23] (top) and Wang et al [24] (bottom) for netSVM, other network-based methods

and gene-based methods

network-based method

gene-based method previous study

net F..-norm Larsnet Chuang'’s SVM Lasso t-test + LDA 70 genes 76 genes
SVM SVM method* [23]* [24]*

AUC 068 + 0.60 + 069 + - 063 + 061 + 0.64 + - -
0.02 0.02 0.02 0.02 0.02 0.02

ACC 065 + 062 + 067 + 0.70 063 + 053 + 064 + 062 -
0.02 0.02 0.02 0.02 0.02 0.02

SEN 051 + 050 + 071 + 0.90 049 + 073 + 044 + 093 -
0.04 0.02 0.03 0.04 0.02 0.02

SPE 074 + 067 + 067 + 063 071 + 047 + 071 + 053 -
0.03 0.02 0.02 0.03 0.02 0.02

AUC 073 064 + 070 + - 072 + 068 + 0.60 + - -
0.02 0.01 0.02 0.02 0.02 0.02

ACC 071 % 063 + 068 + 0.72 0.70 + 068 + 059 + - 062
0.02 0.01 0.02 0.02 0.02 0.02

SEN 042 + 061 £ 065 + 0.90 042 + 063 + 049 + - 093
0.04 0.02 0.03 0.04 0.03 0.02

SPE 081 + 064 + 071 062 0.80 + 072 + 065 + - 053
0.02 0.02 0.02 0.02 0.02 0.02

*: results are extracted from the study [14].

[23,24]. 70 gene signatures were identified in van de
Vijver et al. [23] and 76 gene signatures in Wang et al.
[24]. In the setting of cross validation netSVM
achieved a slightly better prediction performance than
the original studies (Table 4). However, in the setting
of independent testing across data sets, netSVM
achieved a significant improvement in prediction accu-
racy as compared to that from the 70 or 76 gene sig-
natures identified in the original studies (Table 5).
Furthermore, netSVM can identify more overlapped
genes from two data sets (~20%) than those of pre-
vious studies (~1%) (Figure 6), which indicates that
netSVM has a better reproducibility across data sets in
terms of prediction performance and biomarker
identification.

As observed in the simulation study, netSVM is more
sensitive to hub genes if they have abnormal expression
between two data sets. To study the possibility of this
effect, we examined the expression changes of hub
genes and non-hub genes in two breast cancer data sets.
Figure 7 shows the distribution of difference of fold
changes between two data sets for 100 hub genes and
100 non-hub genes. The variance of hub genes is in
overall smaller than non-hub genes. This observation is
consistent with our assumption that hub genes have lit-
tle expression changes between difference phenotypes,
so that they have less variations across different data
sets as compared to their down-stream genes. We also
conducted a statistical analysis to assess the significance
of robustness of selected genes across two data sets. We

Table 5 AUC, accuracy (ACC), sensitivity (SEN) and specificity (SPE) for independent testing on van de Vijver et al. [23]
(top) and Wang et al. [24] (bottom) for netSVM, other network-based methods and gene-based methods

network-based method

gene-based method previous study

net SVM  F.-norm SVM  Larsnet Chuang’s method* SVM Lasso t-test + LDA 70 genes [23]* 76 genes [24]*
AUC 0.61 0.50 0.58 0.72 0.55 051 0.54 - 0.50
ACC 067 064 070 0.56 062 0.66 062 - 049
SEN 047 036 038 090 047 033 062 - 037
SPE 0.75 0.75 0.82 043 0.68 0.78 0.62 - 0.54
AUC 0.64 0.60 0.66 0.63 0.62 0.61 0.60 0.60 -
ACC 0.65 0.59 0.60 0.49 0.64 0.62 057 0.59 -
SEN 053 0.63 047 0.90 051 0.60 044 045 -
SPE 073 0.58 082 0.24 0.72 0.65 0.66 067 -

*: results are extracted from the study [14].
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study

take the variance of difference of fold change as the
summary statistic and generate the null distribution
from randomly selected genes (of the same number as
the identified genes). The empirical p-value is then cal-
culated by the frequency of occurrences of null variance
less than the observed one. The p-values for the top 50
genes selected by netSVM are 0.09 in van de Vijver et
al. [23] and 0.02 in Wang et al. [24], respectively, which
are much more significant than those from the genes
selected by SVM (0.13 in van de Vijver et al. [23] and
0.18 in Wang et al. [24], respectively). These results
further support and validate that network-based meth-
ods can perform better than single gene-based methods.

We further examined the top ranked genes and their
composed networks from the classifiers defined by net-
work-constrained SVM and conventional SVM on two
data sets. The genes were ranked by their p-values
through a significance test (see the Methods section for
the detailed procedure). We compared various network
properties including number of edges, average node
degree and network density. Network density is defined
as 2 x m/nx (n-1), where m is the number of edges and
n is the number of nodes in the network. Figure 8 and
Figure 9 show the trends of network properties with dif-
ferent network sizes for netSVM and SVM, respectively.
From the figures we can see that netSVM results in
much denser subnetworks than does SVM for the top
ranked genes. Figure 10 shows the number of over-
lapped genes in the top ranked genes from van de Vijver

et al. [23] and Wang et al. [24]. netSVM results in more
overlapped genes in the top ranked subnetworks than
SVM, indicating that a good reproducibility can be
obtained by using netSVM across different data sets.

To obtain a more detailed comparison and under-
standing of the subnetworks identified by SVM and
netSVM, we selected the top 50 genes (p-value thresh-
old 0.05) to check the subnetworks from van de Vijver
et al. [23] and Wang et al. [24]. For SVM, 20 genes (17
edges) in van de Vijver et al. [23] and 18 genes (15
edges) on Wang et al. [24] are connected to form sub-
networks. Only 5 genes overlap in the two subnetworks.
For netSVM, 47 genes (100 edges) on van de Vijver et
al. [23] (shown in Figure 11) and 49 genes (131 edges)
on Wang et al. [24] (shown in Figure 12) are connected
to form subnetworks. Moreover, 17 genes overlap in the
two subnetworks. We further input these gene lists to
the DAVID database [25] for functional annotation and
pathway enrichment analysis. ‘Pathways in cancer’ is
highly enriched in two subnetworks identified by
netSVM (Benjamini p-value = 2.1 e-12 on van de Vijver
et al. [23]; Benjamini p-value = 4.6 e-21 on Wang et al.
[24]), which is much more significant than those
obtained with SVM (Benjamini p-value = 0.12 on van de
Vijver et al. [23]; Benjamini p-value = 1.1 e-6 on Wang
et al. [24]). The networks are shown in Figures 11 and
12 as displayed by the Cytoscape software [26,27].

Figures 11 and 12 show three major components in
each subnetwork and they are quite similar. The first
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component contains common (or shared) genes of SRC,
CHUK, CASP7, HDAC1, MDM2, NFKB1A and JAK2
(the right panels in Figure 11 and Figure 12). The major
functional annotations for these genes are apoptosis (p
= 5.7 e-7), response to cytokine stimulus (p = 2.4 e-5),
chemokine signaling pathway (p = 1.6 e-7) and JAK-

STAT signaling pathway (p = 3.4 e-06), as estimated
using the DAVID database [25]. The second component
includes genes of FN1, CAV1, TGFBR1, MAPKI,
MAPK14, MAPK3, SMAD4, and PXN (the left panels in
Figure 11 and Figure 12), which are enriched in regula-
tion of apoptosis (p = 8.1 e-7); regulation of growth;
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respectively.

regulation of cell proliferation (p = 1.1 e-7); TGF-beta
signaling pathway (p = 1.8 e-6) and MAPK signaling
pathway (p = 3.1 e-5). For the remaining genes, one is
centered by TP53 (Figure 11) and another is centered
by AR and BRCA1 (Figure 12) in the nucleus. Both
components are enriched in regulation of cell cycle (p =
7.0 e-5).

The significant genes in the subnetworks from the
Wang and van de Vijver data sets potentially represent
a strong prognostic signature in breast cancer. The
functions of most of these genes are related to biologi-
cal pathways already known to be involved in disease
progression, such as apoptosis, cell cycle and cell prolif-
eration, and these functional results are consistent with
ones discovered in the original studies [23,24]. Impor-
tantly, some gene itself may not show differential
expression between two phenotypes, but may play an
important role in interconnecting other differentially
expressed genes in PPI network [14]. Therefore we con-
sider the genes with high degree of interactions in PPI

network as hub genes. Our proposed method can high-
light several hub genes and signaling pathways that
were not identified in the original studies, such as
MAPK, TGEF-beta, and JAK-STAT signaling pathways
(see Figures 11(b) &12(b)). The subnetworks from two
data sets have been extensively studied in Chuang et al.
[14], where many subnetworks are functionally related
to signaling of cell growth and survival, cell proliferation
and replication, apoptosis, metabolism, etc. However,
with the limitation inherited from a local search, many
subnetworks only contain a small number of genes,
which makes it difficult to gain a global picture of
underlying biological mechanisms. This is especially
problematic for signaling pathways, because signaling
pathways are considered to be more global (from mem-
brane to cytoplasm and to nucleus) rather than local
protein interactions. As a comparison, the networks
identified by netSVM are more related to signaling
pathways; and the genes in the networks are likely to be
associated with diverse cellular locations ranging from
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Figure 9 Comparison of network properties of the top ranked genes identified from Wang et al. [24]by netSVM and SVM, respectively.

extracellular matrix, plasma membrane, cytoplasm and
nucleus (Figures 11(b) &12(b)).

In estrogen receptor-positive breast cancer, MAPK
activation is robustly increased during ligand (estrogen)-
independent cell proliferation resulting from long-term
estrogen deprivation [28], and combined inhibition of
the Ras/MAPK and Notch signaling pathways is being
explored as a potential new modality for breast cancer
treatment [29]. A previous study [30] has also shown
that MAPK inhibition in estrogen receptor-negative
breast cancer cell lines can restore estrogen receptor
expression and growth inhibition by the antiestrogen
Tamoxifen. Recent studies have further shown that acti-
vation of MAPK signaling pathway could mediate
response to Tamoxifen in breast cancer patients [31]
and the combination of MAPK and PI3K inhibitors is
an effective strategy to overcome endocrine therapy
resistance [32]. Transforming growth factor-beta (TGF-
beta) is often considered a tumor suppressor, which is
implicated in many types of human cancer including
breast cancer [33]. However, other recent studies have

shown that TGF-beta signaling may positively influence
the metastatic cascade in breast cancer by enabling cells
to become motile and enhancing the ability of cells to
survive clearance from the lungs during the metastatic
process [34]. Regulation of JAK-STAT signaling is highly
complex and involves cross-talk with numerous other
signaling pathways. For example, the functions of acti-
vated STATs can be altered through association with
other transcription factors such as c-Jun, c-Fos, NF-Kap-
paB, SMAD, SP1, p300, CBP, BRCA1 and MCMS5 [35].
Furthermore, STAT1 [36], STAT3 [37] and STATS5 [38]
have all been shown to play important roles in endo-
crine-resistant breast cancer.

As a final note, the prediction accuracy from two data
sets is not high enough for recurrence prediction of
breast cancer for clinical applications. This limitation is
a challenge to the field, which is largely caused by the
sample heterogeneity, complexity of breast cancer and
experimental noise in microarray data. However, our
method can achieve a comparable performance with
other network-based methods. Besides, our method can
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600

identify important network biomarkers that are func-
tionally related to breast cancer, aiming for a mechanis-
tic understanding of breast cancer. The networks and
enriched pathways identified from two data sets have
shown that there is a convergent point at the functional
level even with a large discrepancy observed at the gene
expression level.

Conclusion

In this paper, we have developed a novel method
(netSVM) for cancer biomarker identification that
incorporates gene-gene interaction information. This
network information has been explicitly formulated as
a Laplacian matrix and embedded into the objective
function of SVM for optimization. Therefore, the con-
tribution of hub genes to the classification hyperplanes
of SVM is greatly enhanced, even when these hub
genes are not significantly differentially expressed
between the two phenotypes. Our method for

subnetwork identification in simulated and breast can-
cer data shows significantly improved reproducibility
of prediction performance across different data sets
when compared to other network-based methods and
gene-based methods. Finally, several signaling pathways
revealed by netSVM have high functional relevance to
breast cancer, and these may provide us new insight
into the underlying mechanism of breast cancer pro-
gression and metastasis.

The proposed method works under the assumption
that hub genes usually have little expression changes,
thus to help improve the generalizability across different
data sets by integrating network information. The
method may not achieve an improved performance if
the assumption is violated. In addition, since the pro-
posed method utilizes protein-protein interaction data
as prior knowledge, the performance largely relies on
the correctness of prior knowledge. Therefore in future,
it is necessary to assess the influence of prior knowledge
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- J

onto the method. Meanwhile, it is desirable to incorpo- Although we focused on a breast cancer study in the
rate more sophisticated network identification paper, the proposed method can be generalized to dif-
approaches into this method to improve the prediction ferent applications (e.g., studying drug resistance in
accuracy for clinical applications. breast cancer) or other cancer studies (e.g., ovarian



Chen et al. BMIC Systems Biology 2011, 5:161 Page 16 of 20
http://www.biomedcentral.com/1752-0509/5/161

Extracellular Space ’ TGFB1 — TGFB2
/

Plasma Membrane

Cytoplasm

Nucleus

Down regulated ~ Up regulated

MAPK signaling pathway : J AK-STAT signaling pathway '

- TGFB2

TGFB1

Extracel lular

Space

Plasma
membrane

Cytoplasm

MNucleus
ErsaEGAEEEEEEEE

Il
T

Figure 12 (a) Subnetworks from the top 50 genes identified by netSVM on Wang et al. [24]; (b) signaling pathways highlighted in the
identified subnetworks including MAPK, TGF-beta and JAK-STAT signaling pathways.

- J

cancer) to identify biomarkers by integrating expression interact with each other. In such case, netSVM can pro-
data and protein-protein interaction network. The pro-  vide an effective way to impose constraints on the fea-
posed method could be further extended to general clas-  tures to model their dependency hence to improve the
sification problems when the features are dependent and  reproducibility of the classifier.
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Methods

Support vector machine (SVM) is a classification
scheme that addresses the general case of nonlinear and
non-separable classification tasks efficiently. The goal of
an SVM is to find a hyperplane that maximizes the
width of the margin between the classes and at the
same time minimizes the empirical errors. Since the
coefficients in weight vector correspond to real genes
for linear SVM, we will focus on discussing the net-
work-constrained SVM for linear case only in order to
have a clear biological interpretation of those significant
features (i.e., genes).

Support vector machine

Given a training sample set (X, y1),..., (X;, y;) with p fea-
tures and [ samples, where x; € R” and y; € {-1 + 1},
the SVM learning algorithm aims to find a linear func-
tion of the form fix) =B -x + b, with pe R’ and b e R
such that a data point x is assigned to a label +1 if f{x)
> 0, and a label -1 otherwise. The linear SVM classifier
can be obtained by solving the following optimization
problem:

mln_||ﬂ||2+cz‘é§-l (1)

’

StYl(B X1+b)> 1_5115120

where the slack variable & > 0 denotes the difference
of sample i to the required functional margin. The sum
of &; can be seen as an upper bound of the empirical
risk. And the regularization constant C > 0 determines
the trade-off between 1/2||B||* (the complexity term)
and the sum of &,

By introducing non-negative Lagrangian multipliers o,
the above optimization problem is equivalent to maxi-
mizing the dual Lagrangian function with respect to o;
in Equation (2):

1 1 !
LD(OI) = Zai - = Z Oliotj)/iy]'Xi -Xj,
i-1 20
st. Yi0<a; <C : 2)
)
Zaiyi =0

i=1
This is a quadratic programming problem and the

1
solution to Equation (2) gives that B = > a;y;x;, while b
i=1
can be simply computed with any training point such
that equality holds in Equation (1).

Network-constrained SVM

Consider a gene network that is represented by a graph
G = (V, E, W), where V is a set of vertices that corre-
spond to p genes, E = {u ~ v} is a set of edges indicating
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that gene u# and v are linked on the network and W is
the weights of the edges. The degree of a vertex v is

defined as & = ;w(u, V), where w(u, v) indicates the
weight of edge u~v. For this application, the weights

could represent the probabilities of having edges
between two vertices. Following Chung et al. [39], we

define the Laplacian matrix L of G with the uv™ ele-
ment to be:
w(u, v)
1= d, ifu=vandd, #0
L(u,v) = { —w(wv)  if uand v are adjacent. ~ (3)
Jd,d, otherwise
0

This matrix is symmetric and non-negative definite
and its corresponding eigenvalues or spectra reflect
many properties of the graph as detailed in [39].

We define the network-constrained SVM given non-
negative parameter 4 as follows:

mln BTB +ABTLB +C Z &

. (4)
StYI(B xj + b) >1_<§u§1 >0

Compared to Equation (1), the only difference is that
we add one more regularization term AB”LP into the
objective function. We already know that the first regu-
larization term is designed to maximize the width of the
margin between two classes. We will thus focus on dis-
cussing the meaning of the second regularization term.

Note that L can be written as L = SS”, where S is the
matrix whose rows are indexed by the vertices and
whose columns are indexed by the edges of G such that
each column (corresponding to an edge e = {u, v}) has

an entry \/w(u,v)/+/d, in the row corresponding to u,
—/w(u, v)/+/d, in the row corresponding to v,

and zero entries elsewhere. Therefore we can see that
T .
B LB can be re-written as

BTLp - Z( N f)zw(u,v). )

From this representation we can understand that the
added regularization term AB’LB imposes the smooth-
ness of parameters (coefficients) B over the network via
penalizing the weighted sum of squares of the scaled
difference of coefficients between neighboring vertices
in the network.

It is worth noting that the network-constrain SVM is
different from Laplacian SVM [40]. Network-constrained
SVM imposes smoothness for weight vector B, while
Laplacian SVM imposes smoothness for Lagrangian

an entry
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multipliers a. In Laplacian SVM, it assumes that the
data of each class, which follow a manifold and decision
function must avoid passing through the manifold. In
network-constrained SVM, the underlying assumption is
that the genes highly connected in a network have
synergistic effect and they should be considered together
rather than individually.

Next, we will discuss how to solve the problem of
Equation (4). Here we propose a simple algorithm by
reducing it to a conventional SVM optimization pro-
blem. Since L is symmetric and semi-positive definite,
Equation (4) can be represented as

N e !
min - L*B+C i
B.bE ZB B 1:21 éi , (6)

styiB-xi+b)>1-&,&>0
where,
L* = (I+2AL) = Uuru’
=ur2ri2yu’ = pp. (7)
when P = Ur''/?

Further with the definition of B* = P’B, the problem
in Equation (6) can be reduced to

N !
min —B*' B+ CY &
B*,b,EZB B ,;: !
S.t.yi(ﬂ* -X;»k + b) >1-&,6>0

, (8)

where x* = ((P*)~!)Tx;. Therefore, this optimization
problem can be solved by its corresponding dual pro-
blem similar to Equation (2). The solution gives that

!
B* = Y a;yix* and we can recover B through B = (P”)
i=1
!B*. Note that A is a parameter that can be optimized
through cross validation in practice.

Significance analysis of subnetworks defined by netSVM

From the input network, we want to know which parts
of the network are significantly contributing to the deci-
sion boundary for classification. As is shown in the
Equation (4), the larger the absolute value of an element
in coefficient vector B, the more important the corre-
sponding gene is. Based on the clinical outcome infor-
mation, we design a significance test to evaluate the
significance of each gene in the network and then signif-
icant subnetworks can be determined by those genes
whose p-values are less than some predefined threshold.
For each gene i in the network, we take its absolute
value of coefficient f; as a summary statistic. To form a
null distribution, we randomly permute training sample
labels, and learn the coefficient vector B° using network-
constrained SVM on the training samples with
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permuted labels. The procedure is repeated B times, and
all the corresponding absolute values of 3,° will be used
to form the null distribution. The p-value of gene i can
be calculated as follows:

pi = P, (121 > 1Bi])
_#b: 1B > 1Bl b=1, - B). ®)
- B

Simulation of microarray gene expression data

We modified a Markov random field (MRF) model in
[17] to embed differentially expressed subnetwork/genes
in a PPI network given a ground truth subnetwork. Let
S be a binary vector indicating the differential expressed
states of genes in a PPI network G, 0 representing
‘equally expressed’ (EE’)and 1 representing ‘differentially
expressed’ ('DE’). Assume the ground truth differential
subnetwork is Gy, which means Sigoy = 1 and Sg.go} =
0. We sample the gene state according to the following
probability based on Markov random field model:

pi(kl-) oc exp(yi — x pi(1 — k)). (10)

In the original model, y,;(1-k) denotes the number of
neighbors of gene i having state 1-k, k = 0, 1. % and ¥
are the parameters predefined. In order to introduce dif-
ferent level of false positives in the sampled differential
subnetwork, we added one parameter to control the
probability of keeping initial states of ground truth DE
genes and background EE genes. Here we define p;(1-k)
as a function of parameter @ as follows:

w-(1=-8+ > (1=

JENI
wi(l —k) =
4 ) 0+ Y, (Sjl*k + S]k) (11)
jENI
where S'=S5, §°=1-S.

The larger w is, the more consistent the simulated DE
genes and ground truth genes are. Therefore we can
vary o to generate different simulation gene expression
data sets with different levels of consistency.

Then, we simulated gene expression data X given S
using a Gamma-Gamma (GG) model [18,41]. In the GG
model, the observed variable x (gene expression level) is
a Gamma distribution having shape parameter a>0 and
scale parameter y,, with a mean value u, = ay,. Its
probability density function is:

x! eXp{_x/Xg}

xgT(a) 12

p(x|a, Xg) =

In the above equation, the scale parameter y, has a
Gamma distribution with shape parameter ¢, and scale
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parameter v. Given these three parameters, we can
simulate gene expression levels in two conditions with
multiple replicates. Particularly for this study, we assume
that equally expressed gene has same expected mean
value for all samples and differentially expressed gene
has different expected mean values for samples in differ-
ent conditions. We fist sampled the scale parameter y,
based on Gamma distribution (¢t v) and then sampled
gene expression levels using parameters (¢, x,) given the
states of genes.
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