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Proprotein convertase subtilisin/kexin type 9 (PCSK9) has long been studied in the
liver due to its regulation of plasma low-density lipoprotein cholesterol (LDL-C) and
its causal role in familial hypercholesterolemia. Although PCSK9 was first discovered
in cerebellar neurons undergoing apoptosis, its function in the central nervous system
(CNS) is less clear. PCSK9 has been shown to be involved in neuronal differentiation,
LDL receptor family metabolism, apoptosis, and inflammation in the brain, but in vitro
and in vivo studies offer contradictory findings. PCSK9 expression in the adult brain is
low but is highly upregulated during disease states. Cerebral spinal fluid (CSF) PCSK9
concentrations are correlated with neural tube defects and neurodegenerative diseases
in human patients. Epigenetic studies reveal that chronic alcohol use may modulate
methylation of the PCSK9 gene and genetic studies show that patients with gain-of-
function PCSK9 variants have higher LDL-C and an increased risk of ischemic stroke.
Early safety studies of the PCSK9 inhibitors evolocumab and alirocumab, used to treat
hypercholesterolemia, hinted that PCSK9 inhibition may negatively impact cognition but
more recent, longer-term clinical trials found no adverse neurocognitive events. The
purpose of this review is to elucidate the role of PCSK9 in the brain, particularly its role
in disease pathogenesis.

Keywords: PCSK9, LDLR, brain, Alzheimer’s disease, alcohol use disorder, stroke, neurocognition,
neuroinflammation

INTRODUCTION

Proprotein convertase subtilisin/kexin type 9 (PCSK9) was first identified in 2003 in primary
cerebellar neurons as a mRNA upregulated during apoptosis (Chiang et al., 2001; Seidah et al.,
2003). Originally called neural apoptosis-regulated convertase-1 (NARC-1), PCSK9 is the ninth
member of the mammalian family of serine proteinases, a group of protein convertases (PCs)
that cleave inactive secretory precursors into bioactive proteins and peptides. The discovery
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of PCSK9 was driven by the existence of non-basic amino acid
processing sites not recognized by known PCs (Seidah et al.,
2003). The human PCSK9 gene is located on chromosome 1p32.3
and is translated into a ∼82-kDa zymogen in the endoplasmic
reticulum (ER) (Abifadel et al., 2003; Piper et al., 2007). The
PCSK9 pro-form is autocatalytically cleaved at its internal
VFAQ152 sequence into mature PCSK9 in the ER. It is secreted as
a heterodimer protein with its ∼17 kDa prodomain still bound to
its catalytic domain to inhibit its catalytic activity (Seidah et al.,
2003; Benjannet et al., 2004; Piper et al., 2007; Seidah and Prat,
2012). PCSK9 is mainly secreted by hepatocytes into the blood
stream and exists in the plasma in an active and inactive form.
The active form consists of a full-length heterodimer (∼62 kDa)
that is predominantly associated with the low-density lipoprotein
(LDL) particle, which protects PCSK9 from being cleaved by
furin into its inactive form. The inactive heterodimer (∼55 kDa),
representing 15–40% of total circulating PCSK9, circulates freely
and has at least a twofold lower affinity to LDLR and a limited
ability to degrade it (Tavori et al., 2013; Shapiro et al., 2018;
Macchi et al., 2019). PCSK9 mainly interacts with LDL and
may marginally interact with high-density lipoprotein (HDL),
although findings are controversial (Kosenko et al., 2013; Ferri
et al., 2016a; Burnap et al., 2020).

The most prominent role of PCSK9 is its interaction with the
low-density lipoprotein receptor (LDLR) in the liver, which was
discovered in 2003 in a French family with autosomal dominant
hypercholesterolemia who had two gain-of-function mutations in
the PCSK9 gene (Abifadel et al., 2003). When an LDL particle
with PCSK9 binds to an LDLR, the catalytic domain of PCSK9
interacts with the epidermal growth factor-like repeat A (EGF-A)
domain of the LDLR. The low pH of the endosome enhances
PCSK9/LDLR affinity when the complex is endocytosed, and
PCSK9 prevents the open extended conformation of LDLR
associated with receptor recycling. Instead, the PCSK9/LDLR
complex is shuttled to the lysosome for degradation, resulting in
fewer surface LDLRs and higher plasma cholesterol levels (Seidah
et al., 2003; Benjannet et al., 2004; Poirier et al., 2006; Lo Surdo
et al., 2011). Regulation of plasma PCSK9, LDLR, and LDL-C
levels is tightly linked because PCSK9 is cleared from the plasma
mainly by binding to LDLR but at the same time induces LDLR
degradation due to its interaction (Tavori et al., 2013).

PCSK9 interacts with several receptors in the LDL receptor
family. While PCSK9 mainly interacts with LDLR in the liver
(Lagace et al., 2006; Grefhorst et al., 2008), it also binds to
the LDL receptor-related protein 1 (LRP1) and the scavenger
type B receptor CD36. LRP1 is a large endocytic receptor that
is involved in lipid homeostasis, intracellular signaling, and
clearance of Aβ peptides (Dieckmann et al., 2010; Adorni et al.,
2019). It expressed in hepatocytes in the liver and in vascular
cells, neurons, and astrocytes in the brain and PCSK9 induces
its degradation in different cell types including hepatocytes
and vascular cells (Ferri et al., 2012, 2016b; Canuel et al.,
2013). CD36 is involved in fibrillar Aβ-mediated microglial
activation and oxidized LDL uptake and elevated levels of
PCSK9 stimulate CD36 expression in macrophages (Ding et al.,
2018). In the brain, PCSK9 interacts with several receptors
that transport cholesterol into neurons including the LDLR,

the very-low-density lipoprotein receptor (VLDLR), and the
apolipoprotein E receptor 2 (ApoER2) (Adorni et al., 2019).

Besides the liver, PCSK9 is expressed in the small intestine,
kidney, and brain. Determining the role of PCSK9 in the brain
is particularly important because while the brain is the most
cholesterol-rich organ in the body, composing almost 25% of the
body’s total cholesterol, its cholesterol synthesis and regulation is
isolated from peripheral tissues. Neither cholesterol nor PCSK9
cross the blood-brain barrier (BBB) under normal conditions
(Dietschy, 2009; Nieweg et al., 2009; Chen et al., 2014); however,
several disease states can cause BBB permeability and leakage
that might affect brain cholesterol homeostasis. In a human
study of CNS PCSK9 concentrations, average cerebral spinal fluid
(CSF) PCSK9 concentration was 5 ng/ml and remained constant
over 24 h, while average serum PCSK9 concentrations were
diurnal and varied from 183 ng/ml in the afternoon to 552 ng/ml
in the early morning (Chen et al., 2014). Because cholesterol
homeostasis is separate in the brain, it is necessary to determine
the specific role of PCSK9 in the nervous system. In addition,
recent data show that PCSK9 is dynamically regulated and more
highly expressed in different neuropsychiatric disease states.

PCSK9 ROLE IN THE BRAIN

Neuronal Differentiation
PCSK9 is highly expressed in cells with proliferative ability
including hepatocytes, kidney mesenchymal cells, and
telencephalon neurons (Seidah et al., 2003). During development,
PCSK9 is detectable at the start of neurogenesis (three-somite
stage, 10.33 h post fertilization) in zebrafish and during
telencephalon and cerebellum neurogenesis in mice (E12.5 and
E17-P15, respectively). In adulthood, PCSK9 is only expressed
in areas of continued neurogenesis like cortical, intracranial,
and cerebellar granule neurons in zebrafish and the rostral
extension of the olfactory peduncle (RE-OP) in mice (Seidah
et al., 2003; Poirier et al., 2006; Rousselet et al., 2011). PCSK9
promotes neurogenesis by driving neuronal differentiation, as the
overexpression of PCSK9 in mouse embryonic neural progenitor
cells resulted in an increase in the number of postmitotic neurons
and a concomitant decrease in the number of undifferentiated
neuroepithelial cells (Figure 1A; Seidah et al., 2003).

The mechanistic role of PCSK9 in neuronal differentiation
is likely independent from its mechanistic role in LDLR
metabolism. Endogenous PCSK9 mRNA levels increased
sevenfold with neuroectodermal induction by retinoic acid (RA)
in mouse P19 embryonal carcinoma cells but LDLR protein
levels remained constant (Poirier et al., 2006). Furthermore,
PCSK9 expression during neurogenesis is not controlled by
transcription factors involved in cholesterol regulation. In
the liver, PCSK9 transcription is highly upregulated by sterol
regulatory element-binding protein 2 (SREBP-2), a membrane-
bound transcription factor that activates expression of genes
encoding enzymes involved in cholesterol synthesis (Maxwell
et al., 2003). Unlike PCSK9, SREBP-2 mRNA expression is not
changed by RA, suggesting the increase in PCSK9 expression in
these neuroectodermal cell derivatives is regulated by a different
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FIGURE 1 | Potential roles of PCSK9 in neuronal differentiation, cholesterol regulation, apoptosis, and inflammation in the brain. (A) PCSK9 may influence neuronal
differentiation as elevated PCSK9 in neural progenitors increases number of postmitotic neurons and decreases number of neuroepithelial cells. (B) In the absence of
PCSK9, apoE binds to LDLR, ApoER2, or VLDLR on the surface of neurons, the complex is endocytosed, apoE is cleared from the extracellular fluid, and the
receptor is recycled back to the plasma membrane. With PCSK9, the receptor, apoE, and PCSK9 are endocytosed and the entire complex is targeted to the
lysosome for degradation. (C) PCSK9 promotes neuronal apoptosis through the JNK pathway by decreasing ApoER2 levels and increasing phosphorylated c-Jun
and cleaved caspase-3. PCSK9 promotes neuronal survival by increasing expression of anti-apoptotic proteins XIAP, phosphorylated Akt, and Bcl-2, decreasing
expression of anti-apoptotic proteins Bax and cleaved caspase-3, and decreasing cytosolic cytochrome c. (D) Serum PCSK9 promotes neuroinflammation by
increasing levels of phosphorylated NF-κB and the number of reactive astrocytes and microglia.

mechanism than PCSK9 expression in other cholesterogenic
organs like the liver (Poirier et al., 2006).

LDL Receptor Family Metabolism
PCSK9 increases cholesterol levels in the developing brain
by promoting lysosomal degradation of the LDL family of
receptors (Figure 1B). These receptors bind apolipoprotein
E (apoE), the principal cholesterol carrier in the brain, and
transport apoE-bound cholesterol out of the pericellular fluid
and into neurons, thus lowering cholesterol levels. In Pcsk9−/−

mice, LDLR protein levels were significantly higher in the
telencephalon at E12.5 and cerebellum at P7 than wild type
(WT) mice and levels of untruncated apoE were ∼25% lower
(Rousselet et al., 2011).

In vitro and in vivo studies in adult mice offer contradictory
evidence on whether PCSK9 in the brain targets LDLR,
VLDLR, and ApoER2 for degradation. Co-transfection of
cultured HEK293 cells with LDLR, VLDLR, ApoER2, and
PCSK9 resulted in a substantial decrease in all three receptor
protein levels compared to the PCSK9 empty vector control
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(Poirier et al., 2008). Pcsk9−/− adult mice, however, did not
have significantly different levels of LDLR and apoE proteins
in the RE-OP, olfactory bulb, or CSF compared to WT mice
despite colocalization of PCSK9 and LDLR mRNA in the RE-OP
(Rousselet et al., 2011). Additionally, PCSK9 overexpression
or deletion did not affect LDLR, VLDLR, or ApoER2 levels
in the hippocampus and cortex of the adult mouse brain
(Liu et al., 2010).

One explanation for the discrepancy between in vitro
and in vivo results in the adult brain is that the role
of PCSK9 in cholesterol regulation may be cell- and/or
tissue-specific. Another explanation is that given endogenous
PCSK9 concentrations in adulthood are much lower than during
development, changes in PCSK9 levels may not be sufficient
to alter receptor levels. For example, following ischemic stroke
induced by transient middle cerebral artery occlusion (tMCAO),
PCSK9 expression significantly increased on the lesioned side
of the dentate gyrus compared to the non-lesioned side in WT
mice. Although LDLR protein levels were reduced in both WT
and Pcsk9−/− mice after ischemic stroke, the decrease in LDLR
levels was attenuated by 50% in Pcsk9−/− mice, suggesting that
PCSK9 is necessary for LDLR degradation (Rousselet et al.,
2011). These findings support the idea that PCSK9 does regulate
LDLR levels in the adult brain, but changes are only detectable
when PCSK9 levels are significantly increased because of a
pathology like stroke.

Apoptosis
PCSK9 was first discovered in a cellular model of apoptosis and
subsequent models show PCSK9 confers both pro- and anti-
apoptotic effects (Chiang et al., 2001; Bingham et al., 2006).
PCSK9 promotes apoptosis in potassium-deprived cerebellar
granule neurons (CGNs), with overexpression of PCSK9
inducing cell death and silencing of PCSK9 limiting cell death.
Additionally, PCSK9 exhibits pro-apoptotic properties in other
apoptotic models including staurosporine (STS)-induced CGNs
and nerve growth factor-deprived dorsal root ganglion neurons
(Kysenius et al., 2012). PCSK9 promotes survival in human
neuroglioma U251 cells, as cells where PCSK9 was silenced
exhibited apoptotic characteristics including cell shrinkage,
membrane integrity loss, nuclear fragmentation, and chromatin
compaction, while cells where PCSK9 was overexpressed had
normal morphology (Piao et al., 2015).

PCSK9 has been proposed to promote cell death through the
extrinsic and intrinsic apoptotic pathways and likely acts through
the JNK pathway. In the potassium-deprived CGN model, CGNs
with PCSK9 inhibited by RNA interference (RNAi) had lower
levels of two pro-apoptotic proteins, phosphorylated c-Jun, which
is required for JNK-dependent apoptosis, and cleaved caspase-
3, a major executioner of apoptosis (Bingham et al., 2006;
Kysenius et al., 2012). Interestingly, ApoER2 has been shown
to promote neuronal survival by inactivating the JNK pathway
(Hoe et al., 2005). ApoER2 levels increased 41% in PCSK9 RNAi
CGNs compared to control cells. A knockdown of ApoER2 in
PCSK9 RNAi CGNs increased the previously lower levels of
cleaved caspase-3, suggesting PCSK9 mediates apoptosis at least

in part through controlling ApoER2 levels (Figure 1C; Kysenius
et al., 2012). In the STS-induced CGN model of apoptosis,
PCSK9 RNAi reduced caspase-3 activation in CGNs but had
no effect on phospho-c-Jun activity, suggesting PCSK9 may
promote apoptosis through JNK-independent pathways as well
(Kysenius et al., 2012).

PCSK9 mediates neuroglioma U251 cell survival through
the intrinsic, or mitochondrial, apoptotic pathway. PCSK9
small interfering RNA (siRNA) increased activation of the
pro-apoptotic protein caspase-3, downregulated anti-apoptotic
proteins like XIAP and p-Akt, and increased the ratio of
Bax/Bcl-2 leading to the increased release of cytochrome c from
mitochondria into the cytosol. PCSK9 overexpression had the
opposite effect, decreasing the amount of cleaved caspase-3, the
ratio of Bax/Bcl-2 and the amount of cytochrome c release,
and increasing the amount of XIAP and p-Akt present in the
cells (Figure 1C; Piao et al., 2015). While the pathways by
which PCSK9 regulates apoptosis have been elucidated, the exact
mechanism by which PCSK9 changes concentration levels of
the different proteins in the pathways is still unclear and more
studies are required to determine whether PCSK9 is acting
directly on these proteins or through downstream effects of the
signaling pathway.

Similar to LDLR metabolism, in vitro results were
not observed in vivo (Liu et al., 2010; Kysenius et al.,
2012). Administration of the PCSK9 inhibitor (PCSK9i)
Prep2−8 trifluoroacetate salt before, during, or after cardiac
ischemia/reperfusion injury (I/R; left anterior descending
coronary artery ligation) did not affect the percentage of
apoptotic cells, measured by the TUNEL assay, or the levels of
Bax and Bcl-2 in the rat brain (Apaijai et al., 2019). Additionally,
PCSK9 mRNA expression was not observed in the infarct or the
penumbra of the hippocampus after tMCAO in mice, suggesting
PCSK9 does not play a significant role in neuronal death in
rodent models (Rousselet et al., 2011).

Neuroinflammation
More recently, studies have shown that PCSK9 may promote
neuroinflammation. A rat model of cardiac I/R injury revealed
increased levels of p-NFκB/NFκB and activation of astrocytes and
microglia. Intravenous administration of the PCSK9i Prep2−8
trifluoroacetate salt significantly reduced p-NFκB expression
and rescued the reactive microglial and astrocytic proliferation
and hypertrophy phenotypes induced by cardiac I/R injury
(Figure 1D; Apaijai et al., 2019). Of interest, the PCSK9i did
not reduce PCSK9 levels in the brain, suggesting the PCSK9i
did not cross the BBB and was not acting directly on the brain.
These results imply that inhibition of PCSK9 reduces brain
inflammation by lowering serum PCSK9 concentrations and
modulating systemic inflammation. PCSK9 may also play a part
in local neuroinflammation by controlling LDLR and apoE levels.
A study in BV2 microglia and human THP-1 monocytes found
apoE and apoE mimetics reduced LPS-mediated TNFα and IL-6
secretion and p44/42 MAPK, JAK2, and STAT3 phosphorylation
by interacting with LDLRs (Wang et al., 2019). More studies are
needed to determine the extent to which PCSK9 acts systemically
and locally to control inflammation and immunity in the brain.
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PCSK9 AND DISEASE

Neural Tube Defects
Given the importance of PCSK9 in neuronal differentiation, low
maternal PCSK9 serum levels are associated with fetal neural tube
defects (NTDs) (Figure 2). PCSK9 protein levels were reduced
in pregnant rats with retinoic acid-induced spina bifida aperta
(SBA) fetuses compared to normal pregnant rats. The same trend
was observed in humans, with serum PCSK9 levels in pregnant
women carrying fetuses with NTDs 0.73-fold lower compared to
controls throughout gestation. Researchers have proposed using
PCSK9 as a non-invasive biomarker for prenatal NTDs and
diagnostically it has a sensitivity of 56.67% and a specificity of
98% (An et al., 2015).

Along with NTDs, PCSK9 is necessary for overall survival in
certain species. A knockdown of PCSK9 in zebrafish eggs resulted
in defective neurogenesis, absence of midbrain-hindbrain
boundary, and lethality (Poirier et al., 2006). Interestingly,
PCSK9 silencing is not lethal in mammals like mice or humans.
Total Pcsk9−/− mice were viable and had normal organization
of the telencephalon and cerebellum (Rashid et al., 2005;
Seidah et al., 2008; Zaid et al., 2008; Rousselet et al., 2011).
A woman with loss-of-function mutations in both maternal
and paternal PCSK9 alleles has no immunodetectable circulating
PCSK9 but was healthy, fertile, and college-educated (Zhao
et al., 2006). The nonsense PCSK9 mutation C679X, found in
3.7% of African women who attended clinics in Zimbabwe,
lowered LDL-cholesterol by 27% but did not adversely affect
patients’ development or health (Hooper et al., 2007). These
differences in survival between species suggest mammals may
have compensatory mechanisms for PCSK9 silencing, such as
other proprotein convertases, that fish do not have.

Alzheimer’s Disease
Given the role of PCSK9 in apoptosis, lipoprotein receptor
metabolism, and inflammation, PCSK9 might play a regulatory
role in Alzheimer’s disease (AD) pathogenesis (Figure 2).
Neuronal cell death causes AD and PCSK9 has been shown
to exhibit a pro-apoptotic effect in several cellular models by
degrading ApoER2, which confers neuronal survival (Beffert
et al., 2006; Kysenius et al., 2012). Polymorphisms in the ApoER2
gene are associated with AD risk and adult ApoER2−/− mice had
an accelerated loss of corticospinal neurons during normal aging
(Ma et al., 2002).

PCSK9 expression is also associated with β-site amyloid
precursor protein-cleaving enzyme 1 (BACE1) expression, the
enzyme that cleaves amyloid precursor protein (APP) into toxic
amyloid β (Aβ). Overexpressing PCSK9 in human neuroglioma
(H4) cells reduced levels of mature and immature forms of
BACE1, while downregulating PCSK9 with siRNA increased
expression of BACE1 and total Aβ deposition in Chinese
hamster ovary (CHO) cells (Jonas et al., 2008). Conversely,
inhibiting PCSK9 in a rat model of stroke resulted in attenuated
Aβ aggregation, suggesting PCSK9 promotes plaque formation
(Apaijai et al., 2019). One way PCSK9 promotes amyloid plaque
formation may be by targeting LRP1 and CD36, the two main

lipoprotein receptors involved in Aβ clearance (Adorni et al.,
2019). Deletion of LRP1 in the brain endothelium of mice
resulted in elevated soluble brain Aβ, reduced plasma Aβ levels,
and spatial learning and memory deficits, suggesting LRP1 is
important in the systemic elimination of Aβ via the BBB (Storck
et al., 2016). CD36 is expressed in microglia and enhances
clearance of phagocytosis of Aβ as well as oxidized-LDL uptake
(Hickman et al., 2008). Other authors report PCSK9 does not
regulate BACE1 or Aβ levels in mice and more work is needed
to elucidate the molecular role of PCSK9 in AD (Liu et al., 2010;
Fu et al., 2017).

More generally, elevated plasma LDL-C levels are associated
with higher probability of early-onset AD (Zambón et al., 2010;
Wingo et al., 2019) and vascular dementias (Chung et al.,
2019). While there is almost no exchange of LDL particles
between the CNS and periphery because of the BBB, high
serum LDL may increase Aβ plaque formation in the brain by
changing the balance of oxysterols or by weakening the BBB
through inflammatory mechanisms (Reed et al., 2014). Side-
chain oxidized cholesterol metabolites 24S-hydroxycholesterol
(24-OH), which is synthesized in the brain and important
for cholesterol elimination, and 27-hydroxycholesterol (27-
OH), which is mostly synthesized in peripheral tissues, are
able to pass the BBB. 27-OH levels increase with LDL-C
levels and a change in the balance of 24-OH and 27-OH
in the brain due to increased plasma LDL-C from PCSK9
may promote amyloidosis (Björkhem et al., 2009). Additionally,
serum hypercholesterolemia may promote inflammation that
damages the BBB and allows passage of LDL, pro-inflammatory
cytokines, and other factors into the brain that increase Aβ

aggregation (Altman and Rutledge, 2010).
It is also possible that PCSK9 promotes neuroinflammation

and AD by mediating glucose tolerance and type 2 diabetes
mellitus risk. Pcsk9−/− mice had impaired insulin secretion
leading to accumulation of insulin in beta cells and irregular islet
morphology due to increased LDLR expression in the pancreas
(Da Dalt et al., 2018). Impaired insulin signaling promotes AD
pathogenesis in the brain through increased tau phosphorylation,
pro-inflammatory cytokine production, and oxidative stress
(Akhtar and Sah, 2020).

Brain autopsies reveal elevated PCSK9 mRNA and protein
levels in the frontal cortices of late-onset AD patients compared
to controls (Picard et al., 2019). CSF PCSK9 levels were increased
and positively correlated with apolipoprotein levels in AD
patients (apoE4) and cognitively normal subjects at risk for AD
(apolipoprotein B, apoE, and apolipoprotein J), indicating PCSK9
dysregulation may be evident before onset of AD. Increased CSF
PCSK9 is also correlated with specific AD biomarkers including
amyloid β (Aβ42), phospho Tau (P-tau), and total Tau (T-tau)
(Zimetti et al., 2017; Picard et al., 2019). Another study found
that CSF PCSK9 levels did not differ between AD and non-
AD controls, but that PCSK9 levels were increased in patients
with neurodegenerative disorders more broadly. AD patients
and non-AD controls with neurogenerative disorders exhibited
significantly higher PCSK9 compared to patients and controls
without neurodegenerative disorders (Courtemanche et al.,
2018). Additionally, CSF PCSK9 was positively correlated with
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FIGURE 2 | Theorized mechanistic roles of PCSK9 in central nervous system disorders. PCSK9 affects brain physiology directly or indirectly in four main areas
(neuronal differentiation, cholesterol regulation, apoptosis, and neuroinflammation), which then impacts CNS disorders including neural tube defects, Alzheimer’s
disease, alcohol use disorder, and ischemic stroke.

AD biomarkers including Aβ1−42, P-tau, and T-tau independent
of AD (Cariou et al., 2017; Courtemanche et al., 2018).

Loss-of-function (LOF) PCSK9 polymorphisms that cause
significantly lower cholesterol concentrations are not associated
with AD incidence and may even be protective against
AD (Supplementary Table 1). The LOF small nucleotide
polymorphism (SNP) rs11583680 was not correlated with the
onset of AD in Japanese patients (Shibata et al., 2005). The most
common PCSK9 LOF mutations in French Canadian individuals,
InsLEU and R46L, did not have a protective or deleterious effect
on AD prevalence or age of onset in French Canadian subjects
(Reynolds et al., 2010; Paquette et al., 2018). Additionally, a
Mendelian randomization study of 111,194 Danish individuals
showed that lower LDL cholesterol levels due to PCSK9 LOF
variants rs11591147, rs148195424, and rs562556 did not increase
the risk of Alzheimer’s disease, and instead may have a causal
effect in reducing the risk of AD (Benn et al., 2017). Genetic
studies show some gain-of-function (GOF) PCSK9 variants
are associated with AD risk in a gender-dependent manner.
The GOF SNP rs505151 (E670G) has no association with
AD or dementia in 111,194 Danish individuals and the SNP
rs662145 was not associated with onset of AD in Japanese
patients (Shibata et al., 2005; Benn et al., 2017). However,
postmortem brain tissue from French Canadian individuals
showed females, but not males, with the rs499718 and rs4927193
variants had significant association with late-onset AD risk
(Picard et al., 2019). These studies are not entirely conclusive and
future studies may need to look at compound heterozygotes to
capture variability.

Alcohol Use Disorder
Alcohol upregulates PCSK9 expression in the brain, as PCSK9
levels in the CSF of patients with alcohol use disorder (AUD) were
significantly higher compared to controls. Plasma PCSK9 levels
were positively correlated with CSF PCSK9 levels in patients
with AUD, while CSF studies in healthy human volunteers found
that there was no significant correlation between serum and CSF
PCSK9 levels (Chen et al., 2014; Lee et al., 2019a). The PCSK9
variant rs17111503 was not associated with alcohol drinking
in a Han and Uygur population (Supplementary Table 1;
Han et al., 2017). Although PCSK9 expression may not affect
drinking behavior, alcohol has been shown to control PCSK9
expression by modulating methylation of the gene. Epigenome-
wide association analysis in postmortem bulk brain tissue shows
that chronic alcohol consumption is associated with various
methylation sites in the PCSK9 gene. 17 probes corresponding
to 12 genes were associated with alcohol status and the salience,
executive control, visual, and motor networks and the most
significant gene-associated probe was located in the PCSK9
promoter (Lohoff et al., 2018).

Increased PCSK9 expression with alcohol may also
have an impact on lipid metabolism and inflammation
observed with alcohol use (Figure 2). Administration of
the monoclonal antibody alirocumab against PCSK9 in a rat
model of chronic alcohol exposure increased LDLR protein
levels and attenuated alcohol-induced inflammation in the
liver. mRNA expression of pro-inflammatory cytokines and
neutrophil infiltration was significantly lower in the treatment
group compared to the alcohol group, and most cytokines
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were reduced back down to WT levels (Lee et al., 2019b).
PCSK9 plays a role in systemic cholesterol regulation and
inflammation in response to alcohol that may indirectly
impact the brain, although more studies are needed to
examine the specific molecular role of PCSK9 and alcohol
in brain pathology.

Stroke
Rodent studies show upregulation of PCSK9 mRNA levels
following transient middle cerebral artery occlusion (tMCAO)
to model ischemic stroke. PCSK9 mRNA expression was
increased in the dentate gyrus but not the infarct or penumbra,
suggesting PCSK9 does not play a role in neuronal apoptosis
after ischemic stroke. While adult neurogenesis occurs in the
dentate gyrus, PCSK9 does not appear to play a role in
neuronal differentiation after ischemic stroke, as the BrdU
cell proliferation assay did not reveal significant de novo
neurogenesis in the dentate gyrus. LDLR protein levels in
the hippocampus were reduced in both WT and Pcsk9−/−

mice following tMCAO but the decrease was 50% less in
Pcsk9−/− mice, suggesting PCSK9 promotes LDLR metabolism
after ischemic stroke (Rousselet et al., 2011). A study of brain
damage in rats induced by cardiac ischemic/reperfusion injury
showed PCSK9 inhibition significantly reduced the number
of reactive astrocytes and microglia after injury, showing
PCSK9 is involved in neuroinflammation as well (Figure 2;
Apaijai et al., 2019).

Genetic studies in humans report an association
between ischemic stroke risk and several GOF mutations
in the PCSK9 gene that cause increased plasma LDL-C
(Supplementary Table 1). The rs2479408 and rs1711503 GOF
variants are significantly associated with cerebral ischemic
stroke in 408 Han Chinese cerebral ischemic stroke patients
and 348 controls. The rs505151 (E670G) GOF mutation was
not associated with ischemic stroke risk in the same population
(Han et al., 2014); however, two other studies of the same gene
variant did find an association between the mutation and stroke
incidence (Slimani et al., 2014; Au et al., 2015). The Belgium
Stroke Study (BSS) looked at the rs505151 (E670G) GOF
mutation in 237 central Europeans with small-vessel occlusion
or large-vessel atherosclerosis (LVA) and found significant
association of the gene variant with increased plasma LDL-C
levels, severity of coronary atherosclerosis, and risk of LVA stroke
(Abboud et al., 2007).

Most LOF variants in the PCSK9 gene have no association
with ischemic stroke risk (Supplementary Table 1). The
Atherosclerosis Risk in Communities (ARIC) Study of
atherosclerosis followed 3,363 black subjects (2.6% had
mutations in PCSK9) and 9,524 white subjects (3.2% had
mutations in PCSK9) over a 15-year interval and showed no
difference in stroke rates between participants with PCSK9
LOF Y142X or C679X variants and controls (Cohen et al.,
2006). A meta-analysis of eight observational cohorts and
one randomized trial of statin therapy found that in patients
with the same LOF variants there was no association between
PCSK9 mutations and stroke incidence (Kent et al., 2017).

The rs11583680 LOF variant was not associated with risk of
ischemic stroke or its subtypes in 161 Han Chinese ischemic
stroke patients and 483 matched controls (Zhao et al., 2019).
Several studies and a meta-analysis of the loss-of-function
rs11591147 (R46L) PCSK9 variant found no association with
ischemic stroke and ischemic stroke subtypes (Cohen et al., 2006;
Kostrzewa et al., 2008; Hopewell et al., 2017; Kent et al., 2017).
Interestingly, a Mendelian randomization study of the PCSK9
LOF variant rs11591147 (R46L, G/T) in 337,536 individuals
from the UK Biobank found the T allele was protective against
ischemic stroke in the hypothesis-driven set and a nominally
significant association with stroke in the full data set (Rao
et al., 2018). While most studies show PCSK9 LOF variants are
not associated with ischemic stroke incidence, findings vary
due to different measurements and classifications of stroke,
variabilities among datasets and populations, and differences
in statistical power and analyses between studies. Additionally,
lower LDL-C levels are not associated with ischemic stroke risk
(Pikula et al., 2015).

While low PCSK9 and LDL-C levels may not reduce baseline
stroke risk, PCSK9 inhibitors (PCSK9i) help reduce stroke
incidence in patients with high cholesterol and high risk
of cardiovascular disease. A meta-analysis concluded that all
cholesterol-lowering therapies should reduce the risk of stroke
because lowering circulating cholesterol levels decreases the
risk of atherosclerosis and embolic thrombus (De Caterina
et al., 2016; Castilla-Guerra and Fernandez-Moreno, 2017).
A study of evolocumab, a monoclonal antibody against PCSK9,
showed that stroke is significantly reduced in the group
that received the drug compared to the group that received
placebo in a similar magnitude to statins when treated over
a period of 2 years (Sabatine et al., 2017). Other analyses
of PCSK9 inhibitors, however, found that there were no
associations with stroke reduction. The Open-Label Study
of Long-term Evaluation Against LDL-C (OSLER) and The
Long-term Safety and Tolerability of Alirocumab in High
Cardiovascular Risk Patients with Hypercholesterolemia Not
Adequately Controlled with Their Lipid Modifying Therapy
(ODYSSEY LONG TERM) are phase 2 and 3 safety studies
of evolocumab and alirocumab, respectively, that found no
significant effect of these PCSK9i on stroke rate, even when
transient ischemic attacks were included in the analysis. The
number of patients, 4,465 in OSLER and 2,341 in ODYSSEY
LONG TERM, were relatively small and the study period, 1 year
and 1.5 years, respectively, were relatively short, so longer studies
are needed to fully evaluate effect of evolocumab and alirocumab
on stroke incidence (Koren et al., 2014; Robinson et al., 2015;
Milionis et al., 2016).

Hemorrhagic stroke was rarely reported in genetic
studies given its rarity. One study observed no association
between PCSK9 and hemorrhagic stroke (Rao et al., 2018). A
meta-analysis of 23 studies found that low LDL-C levels were
associated with hemorrhagic stroke but theorized it may be due
to patients’ poor health status in general rather than a causative
role PCSK9 or low LDL-C (Kim et al., 2009; Wang et al., 2013;
Kent et al., 2017).
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PCSK9 INHIBITORS AND
NEUROCOGNITION

In 2012, the FDA warned of potential non-serious and reversible
cognitive side effects such as memory loss, forgetfulness, and
confusion related to cholesterol-lowering statin drugs (Parker
et al., 2010; Gauthier and Massicotte, 2015). Despite case reports
of neurocognitive impairment with statins, meta-analyses and
longitudinal studies in larger populations suggest statins do not
increase cognitive impairment risk and may slow the rate of AD
in some individuals (Beydoun et al., 2011; Bettermann et al., 2012;
Ott et al., 2015). Given the effect of PCSK9 on cholesterol levels
and the importance of cholesterol regulation in brain function,
there was a question of whether PCSK9 inhibition would also
have adverse neurocognitive effects.

In 2015, the FDA approved two PCSK9i, evolocumab and
alirocumab, to treat hypercholesterolemia. Evolocumab, an IgG2
isotype, and alirocumab, an IgG1 isotype, are fully human
monoclonal antibodies that interact with circulating PCSK9
to prevent it from binding to LDLRs, thus reducing LDLR
degradation and lowering plasma LDL cholesterol by 50–60%
(Chaudhary et al., 2017; Nishikido and Ray, 2018). Although
monoclonal antibodies do not typically cross the intact BBB,
early phase 2 safety studies reported a non-significant trend in
neurocognitive impairment with PCSK9i (Swiger and Martin,
2015). The OSLER study found neurocognitive events such as
amnesia or mental impairment occurred in 0.9% of those given
evolocumab and 0.3% of those in the standard of care group
without evolocumab (Koren et al., 2014). Reports of adverse
events may have been skewed because OSLER was unblinded,
no objective neurocognitive measures were performed, and those
receiving evolocumab had more in-person visits and thus more
opportunity to report cognitive changes (Swiger and Martin,
2015). The ODYSSEY LONG TERM trial using alirocumab
showed memory impairment in 1.2% of the alirocumab group
and 0.5% of the placebo group, but the difference between the
groups was not statistically significant (Robinson et al., 2015).

Phase 3 clinical trials with larger sample sizes and longer
follow-up periods found that there are not significant
neurocognitive adverse events associated with PCSK9 inhibitors.
The Evaluating PCSK9 Binding antiBody Influence oN coGnitive
HeAlth in High cardiovascUlar Risk Subjects (EBBINGHAUS)
is a subset of the FOURIER phase 3 clinical trial of evolocumab
(Giugliano et al., 2017a; Sabatine et al., 2017). EBBINGHAUS
followed 1,204 patients over 26 months and used the Cambridge
Neuropsychological Test Automated Battery (CANTAB) to
measure neurocognition. There was memory or concentration
difficulty in 1.9% of the evolocumab group and 1.6% of
the placebo group. This difference was not significant and
there was no association between PCSK9i or low LDL-C and
neurocognitive decline (Giugliano et al., 2017b). Patients in
the EBBINGHAUS trial were still followed for a relatively
short period of time, which may limit definite conclusions
about the long-term neurocognitive effects of PCSK9i.
Another clinical trial to evaluate neurocognitive function
using CANTAB with long-term exposure to alirocumab is
estimated to be completed in March 2020 (NCT02957682)

(Mannarino et al., 2018)1. A recent meta-analysis of 14
randomized trials also found no change in neurocognition
with PCSK9i (Robinson et al., 2017).

Furthermore, there were no neurocognitive changes observed
in people with PCSK9 polymorphisms. REasons for Geographic
and Racial Differences in Stroke (REGARDS) was a prospective
cohort study of the association between PCSK9 loss-of-function
variants (C697X or Y142X) and neurocognitive impairment
and decline in 10,695 black individuals over 5.6 years. Verbal
learning, verbal memory, semantic fluency, and global cognitive
function of 241 participants with and 10,454 without LOF
variants were evaluated by tests from the Consortium to
Establish a Registry for Alzheimer’s Disease (CERAD) battery
and the Six-Item Screener (SIS) assessment. The REGARDS
study found that there was no association between PCSK9
LOF variants and neurocognitive impairment or decline over
time in blacks. Furthermore, while participants with PCSK9
LOF variants had significantly lower LDL-C compared to
those without polymorphisms, there was no difference in
CERAD and SIS scores between the two groups (Mefford
et al., 2018). Several studies of other LOF PCSK9 variants
including rs11591147 (R46L) and rs639750 in diverse groups
such as elderly, British, and African-ancestry individuals also
found no association with neurocognitive disorders (Postmus
et al., 2013; Rao et al., 2018; Verbeek et al., 2018; Safarova
et al., 2019). These results show that lifelong exposure to low
PCSK9 levels and corresponding low LDL-C levels do not
have a major effect on longitudinal changes in neurocognition
and are consistent with neurocognitive outcomes from the
EBBINGHAUS study.

Mendelian randomization (MR) studies looked at other
potential neuropsychiatric effects associated with PCSK9
silencing. PCSK9 was nominally associated with depression in an
MR analysis of the LOF PCSK9 gene variant rs1159147 T allele in
479,522 UK Biobank individuals (Nelson et al., 2019). A second
MR study conducted based on summary statistics from genome-
wide association studies found a statistically significant increased
risk of depression after correcting for multiple testing with
PCSK9i treatment. PCSK9 was not found to impact insomnia or
neuroticism (Alghamdi et al., 2018).

CONCLUSION

Despite the well-researched role of PCSK9 in the liver, the role
of PCSK9 in the brain is still unclear, though rapidly emerging.
In vitro and in vivo studies suggest PCSK9 is involved in the
differentiation of neural progenitor cells to neurons, the targeting
of receptors in the LDLR family to lysosomal degradation, the
regulation of neuronal apoptosis, and the activation of astrocytes
and microglia in the brain. Cell lines, animal models, and genetic
studies reveal the role of PCSK9 in several CNS diseases including
Alzheimer’s disease, alcohol use disorder, ischemic stroke, and
neuropsychiatric disorders. One important question that remains
to be answered is if in these diseases PCSK9 has a local effect

1https://clinicaltrials.gov/ct2/show/NCT02957682
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on the brain or a systemic effect in peripheral tissues that then
affects the brain. For example, in Alzheimer’s disease PCSK9 plays
a direct role in the brain by lowering BACE1 expression and
an indirect role by increasing LDL-C levels, which affects Aβ

plaque formation and aggregation. Similarly, it is unclear whether
PCSK9 has a systemic effect on inflammation by elevating plasma
LDL-C levels, or if PCSK9 also acts locally in the brain to
control inflammation. Future work is also needed to explore
the systemic vs. localized brain effects of PCSK9 monoclonal
antibodies and if or to what extent these antibodies cross the
BBB during disease states including AD, stroke, and chronic
inflammatory brain diseases.

One potential method to explore the effect of PCSK9 in the
brain is by using inclisiran, a novel PCSK9 inhibitor. Inclisiran
is a long-acting, synthetic small interfering RNA (siRNA) that
blocks the synthesis of PCSK9 by degrading PCSK9 mRNA
using the body’s natural pathway of RNA interference. Inclisiran
associates with the RNA-induced silencing complex (RISC) inside
the cell and directs RISC to cleave PCSK9 mRNA catalytically,
with one enzyme cleaving several transcripts, lowering the
number of transcripts available for protein translation and
decreasing the concentration of PCSK9 protein. Inclisiran uptake
is specifically targeted to hepatocytes by conjugating the siRNA
to triantennary N-acetylgalactosamine carbohydrates that bind
to liver-expressed asialoglycoprotein receptors (Fitzgerald et al.,
2016; Kosmas et al., 2018). Clinically, phase 2 and 3 trials
show inclisiran reduces LDL-C levels by ˜50% with relatively
benign side effects and only requires one subcutaneous injection
every 6 months compared to injections every 2 weeks for
monoclonal antibody PCSK9i (Ray et al., 2017, 2020). Unlike
monoclonal antibody PCSK9i, inclisiran also has the potential

to specifically inhibit PCSK9 in the brain. While naked siRNA
cannot cross the BBB, siRNA can be targeted to the brain through
receptor-mediated transcytosis (Zheng et al., 2018). The rabies
virus glycoprotein (RVG29) ligand has been used to target siRNA
nanomedicines to the brain in several diseases including AD,
Parkinson’s disease and traumatic brain injuries (Kumar et al.,
2007; Cooper et al., 2014; Park et al., 2015; Kwon et al., 2016;
Zheng et al., 2018). In the future, inclisiran may be targeted
to the brain and used as both a novel research tool and a
promising therapeutic.
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