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Simple Summary: The Eph receptor family is implicated in both tumour promotion and suppression,
depending on the tissue-specific context of available receptor interactions with ligands, adaptor
proteins and triggered downstream signalling pathways. This complex interplay has not only
consequences for tumorigenesis but also offers a basis from which new cancer-targeting strategies
can be developed. This review comprehensively summarises the current knowledge of Eph receptor
implications in oncogenesis in a tissue- and receptor-specific manner, with the aim to develop a better
understanding of Eph signalling pathways for potential targeting in novel cancer therapies.

Abstract: The Eph receptor tyrosine kinase family, activated by binding to their cognate ephrin
ligands, are important components of signalling pathways involved in animal development. More
recently, they have received significant interest due to their involvement in oncogenesis. In most
cases, their expression is altered, affecting the likes of cell proliferation and migration. Depending on
the context, Eph receptors have the potential to act as both tumour promoters and suppressors in a
number of cancers, such as breast cancer, colorectal cancer, lung cancer, prostate cancer, brain cancer
and Kaposi’s sarcoma (KS), the latter being intrinsically linked to EphA2 as this is the receptor used
for endothelial cell entry by the Kaposi’s sarcoma-associated herpesvirus (KSHV). In addition, EphA2
deregulation is associated with KS, indicating that it has a dual role in this case. Associations between
EphA2 sequence variation and KSHV infection/KS progression have been detected, but further work
is required to formally establish the links between EphA2 signalling and KS oncogenesis. This review
consolidates the available literature of the role of the Eph receptor family, and particularly EphA2,
in tumorigenesis, with the aim to develop a better understanding of Eph signalling pathways for
potential targeting in novel cancer therapies.
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1. Introduction

The Eph family of receptor tyrosine kinases (RTKs), involved in signalling pathways
that are key to embryogenesis and tissue patterning, have been implicated in the oncogene-
sis of a number of cancers. Generally, this involves their aberrant expression, allowing them
to act as either tumour promoters or tumour suppressors, depending on the context [1,2].
Here, the focus is on the role of Eph receptors in breast cancer, colorectal cancer, lung cancer,
prostate cancer and brain cancer as these have been the most extensively researched and
are among the most common and/or debilitating cancers known. In addition, more recent
evidence for the involvement of Eph receptors in Kaposi’s sarcoma (KS), the most common
acquired immune deficiency syndrome (AIDS)-related malignancy worldwide, has been
investigated [3]. Understanding the oncogenic mechanisms of Eph receptors, however,
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proves to be a challenge due to the fact that both canonical and noncanonical pathways
exist. The most well-characterised example of this is for EphA2, where the classical ligand-
and tyrosine kinase-dependent signalling mechanism is accompanied by a pathway in
which tumour promotion is achieved independently of ligand or tyrosine kinase activation
of the receptor [4]. Resolving these distinct pathways is, therefore, necessary if the results
of functional studies are to be understood.

2. Eph Receptor Structure and Signalling

Eph receptors are type-I transmembrane proteins with a structure that is generally
conserved. The ligand-binding domain, cysteine-rich region and two fibronectin type III
repeats compose the extracellular domain of the receptor, while the intracellular region
is made up of a juxtamembrane domain, a protein tyrosine kinase (Pkinase-Tyr) domain,
a sterile alpha motif (SAM) and a C-terminal PDZ-binding motif (Figure 1) [2,5]. There are
two classes of Eph receptors, grouped according to the ligands they preferentially bind.
While there are a few exceptions, EphA-type receptors bind ephrin-A ligands and the
EphB-type receptors bind ephrin-B ligands (Figure 1) [5]. The ephrin ligands are gener-
ally membrane-bound, and it is the difference in anchorage that distinguishes the two
classes. Ephrin-A ligands are attached to the membrane via a glycophosphatidylinositol
anchor; this is in contrast to the ephrin-B ligands, which have a transmembrane domain,
as well as a cytoplasmic region with a PDZ domain [5,6]. Heterodimerisation upon in-
teraction between an Eph receptor and its ephrin ligand is followed by the formation of
tetrameric complexes, leading to receptor tyrosine phosphorylation and kinase activa-
tion [6]. A unique feature of Eph-ephrin signalling is that it is bidirectional. Conventional
forward signalling is that already mentioned, in which the signal is transduced in the
receptor-expressing cell. Reverse signalling, on the other hand, involves a signal transduc-
tion cascade in the ephrin-expressing cell. For example, upon Eph receptor engagement,
the cytoplasmic tail of the ephrin-B ligand becomes tyrosine phosphorylated and can then
interact with signalling molecules that contain SRC-homology-2 domains [5–7].

Figure 1. The general structure of the Eph receptors and ephrin ligands. Both the ephrin-A and ephrin-B ligands are
depicted here. Figure created with BioRender.com.

This signalling plays a role in a number of biological processes important for both
development and homeostasis. By modifying cell adhesion and the organisation of the
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actin cytoskeleton, Eph signalling controls cell morphology and migration. Eph signalling
also affects cell proliferation and differentiation [7,8]. Many of these functions are also
important in cancer development, when well-controlled functions become dysregulated.
Hence, in addition to their expression in normal tissues, Eph receptors are expressed in
cancer cells and the tumour microenvironment where they are involved in processes related
to tumorigenesis and metastasis [6,8,9]. Expression in tumours, however, is not always
increased, and the downregulation of certain Eph molecules in a number of malignancies
suggests that Eph receptors can act as both tumour promoters and suppressors [2,8]. In the
following sections, the role of Eph receptors in breast cancer, colorectal cancer, lung cancer,
prostate cancer, brain cancer and KS is discussed and summarised in Table 1, providing a
synthesis of the literature that has been published to date.

Table 1. Summary of the various Eph receptors and their implicated roles depending on cancer type.

Cancer Type Eph
Receptor Aberrant Function Role of Eph

Receptor Reference

Breast
cancer

EphA2 Overexpressed; impaired
tyrosine phosphorylation

Tumour-
promoting [8,10]

EphA4 Overexpressed Tumour-
promoting [11]

EphA5 Low expression Tumour-
suppressive [12]

EphA7 Overexpressed Tumour-
promoting [11]

EphA10 Overexpressed Tumour-
promoting [13]

EphB2 Overexpressed Tumour-
promoting [14]

EphB4 Overexpressed/low expression

Tumour-
promoting/

tumour-
suppressive

[2]

EphB6 Low expression Tumour-
suppressive [15]

Colorectal
cancer

EphA1 Overexpressed in early stages;
low expression in later stages

Tumour-
suppressive [16]

EphA2 Overexpressed in early stages;
low expression in later stages

Tumour-
suppressive [16]

EphA3 Low expression Tumour-
suppressive [17]

EphA4 Overexpressed Tumour-
promoting [18]

EphA7 Low expression Tumour-
suppressive [19]

EphB2 Overexpressed in early stages;
low expression in later stages

Tumour-
suppressive [20,21]

EphB3 Overexpressed in early stages;
low expression in later stages

Tumour-
suppressive [20,21]

EphB4 Overexpressed Tumour-
promoting [19]

EphB6 Low expression Tumour-
suppressive [22,23]
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Table 1. Cont.

Cancer Type Eph
Receptor Aberrant Function Role of Eph

Receptor Reference

Lung
cancer

EphA1 Overexpressed Tumour-
promoting [24]

EphA2 Increased expression in
advanced stages

Tumour-
promoting [25]

EphA3 Low expression Tumour-
suppressive [26]

EphA4 Overexpressed Tumour-
promoting [24]

EphA5 Overexpressed Tumour-
promoting [24]

EphA7 Overexpressed Tumour-
promoting [24]

EphB3 Overexpressed Tumour-
promoting [27]

EphB4 Overexpressed Tumour-
promoting [28]

EphB6 Low expression Tumour-
suppressive [29,30]

Prostate
cancer

EphA1 Low expression Tumour-
suppressive [6,31]

EphA2 Overexpressed Tumour-
promoting [32]

EphA3 Overexpressed Tumour-
promoting [31]

EphA4 Overexpressed Tumour-
promoting [33]

EphA5 Low expression Tumour-
suppressive [34]

EphA6 Overexpressed Tumour-
promoting [35,36]

EphA7 Low expression Tumour-
suppressive [37]

EphB2 Mutational inactivation Tumour-
suppressive [38]

EphB3 Overexpressed Tumour-
promoting [39]

EphB4 Overexpressed Tumour-
promoting [39]
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Table 1. Cont.

Cancer Type Eph
Receptor Aberrant Function Role of Eph

Receptor Reference

Brain
cancer

EphA2 Overexpressed in glioblastoma Tumour-
promoting [40]

EphA3 Overexpressed in glioblastoma Tumour-
promoting [41]

EphA4 Overexpressed in glioblastoma Tumour-
promoting [42]

EphB1

Low expression in glioblastoma

Tumour-
suppressive;

dependent on
ligand

stimulation

[43]

Overexpressed in
medulloblastoma

Tumour-
promoting [44]

EphB2

Overexpressed in glioblastoma Tumour-
promoting [45]

Overexpressed in
medulloblastoma [46]

EphB4 Overexpressed in glioblastoma Tumour-
promoting [47]

Kaposi’s
sarcoma EphA2 Overexpressed; impaired

tyrosine phosphorylation Unknown [48]

3. EphA2 and EphB4 Are the Main Oncogenic Eph Family Members in Breast Cancer

The best characterised Eph receptors in breast cancer are EphA2 and EphB4, but there
are also others that have been found to play a role. EphA2, the main EphA receptor to
have been extensively studied for its involvement in breast carcinomas, is overexpressed
in 40% of breast cancers and is generally correlated with a poor prognosis [10,49]. This
overexpression has been shown to be linked to transformation of mammary epithelial
cells, mediating cancer cell migration in culture and inducing tumour formation upon
injection of these cells into nude mice [6,9]. Conversely, a knockdown of EphA2 resulted in
a reduction in tumorigenicity in human breast cancer cells [9]. The ability of the overex-
pressed EphA2 to cause oncogenic transformation appears to be dependent on a low level
of ligand-induced forward signalling, as the receptor is poorly tyrosine phosphorylated
(see Section 9) in breast cancer cell lines, and ligand binding reversed the malignant phe-
notype of the cells conferred by EphA2 overexpression [9,50]. It has also been proposed
that low EphA2 forward signalling is a result of dephosphorylation of the receptor by the
low-molecular-weight phosphotyrosine phosphatase (LMW-PTP) as this has been shown
to cause transformation of mammary epithelial cells [51]. Alternatively, loss of E-cadherin
has been suggested as this leads to an impairment of the EphA2-ephrin-A1 interaction,
a phenomenon that was detected in malignant breast cancer cells [52]. Another scenario
proposed by Brantley-Sieders et al. involves the possibility that EphA2 exerts noncanoni-
cal tumour-promoting effects via crosstalk with oncogenic signalling pathways, entirely
independent of ephrin ligand stimulation [11]. An example of this is its complex formation
with ErbB2, leading to enhanced Ras-MAPK and Rho GTPase signalling. These pathways
are involved in cell proliferation and cell motility, respectively, and so this interaction may
contribute to tumour progression [49].

The expression of EphA4 and EphA7 receptors was also found to be upregulated
in breast cancer, which correlated with a worse prognosis [11]. EphA4, in particular,
has been shown to be associated with proliferation, migration and invasion of breast
cancer cells, in the context of transforming growth factor-beta (TGFb) signalling [53,54].
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Similarly, the expression of EphA10 was associated with lymph node metastasis in breast
cancer [13]. EphA10, however, is a kinase-deficient receptor, and so it has been hypothesised
that it exerts its effects through an interaction and nuclear colocalisation with EphA7,
the consequences of which could be the transcriptional activation of genes involved in
invasiveness [55]. EphA5, on the other hand, was found to be downregulated in breast
cancer cell lines, associated with hypermethylation of its promoter. This suggests that it
may play a role as a tumour suppressor and could be of use as a prognostic marker [12].

Similar to EphA2, EphB4 has been implicated in breast cancer in numerous studies. Its
expression has been found to be both upregulated and downregulated in breast cancer cells,
suggesting it has the ability to be both pro- and antioncogenic [2]. When stimulated by its
preferred ligand, ephrin-B2, EphB4 behaved as a tumour suppressor in a mouse xenograft
model of breast cancer [56]. This activation of EphB4 triggered the Abl-Crk pathway,
blocking cell proliferation and leading to downregulation of matrix metalloproteinase-2
(MMP2), which is proinvasive [56,57]. Accordingly, high levels of EphB4 expression in
breast cancer cell lines was found to be often accompanied by low expression of its ligand,
ephrin-B2, and this allows for signalling via ligand-independent pathways and evasion
of EphB4’s tumour-suppressing effects [56,58]. Complicating matters further, it has been
reported that EphB4 can exert tumour-suppressor effects independent of ligand stimulation,
e.g., through a decrease in integrin-mediated adhesion [59]. In MCF-7 breast cancer cells, on
the other hand, EphB4 displayed pro-oncogenic effects, via ephrin-B2-mediated activation
of the extracellular signal-regulated kinase (ERK) pathway, which has been linked to the
promotion of protein phosphatase [60]. Higher levels of EphB2 expression were associated
with poor survival in breast cancer patients, suggesting it has prognostic value [14]. It was
shown that EphB2 was regulated by TGFb signalling, which could be inhibited by p53 [61].
However, EphB2’s role in the different stages of breast cancer is not explicit and a model to
resolve this has been suggested, i.e., in non-invasive cells, EphB2 stimulates autophagy,
which triggers apoptosis, but when apoptosis is blocked in cancer cells, autophagy has a
prosurvival role instead, leading to the promotion of invasion [62].

EphB6, a receptor lacking kinase activity, thereby considered “kinase dead,” has
been shown to be downregulated in breast carcinoma cells, suggesting a role as a tumour
suppressor [15]. In invasive breast carcinoma cells, EphB6 expression was found to be tran-
scriptionally silenced by promoter hypermethylation, and it has, therefore, been proposed
as a biomarker for breast cancer detection and diagnosis [15].

4. Eph Receptors Are Downregulated in the Advanced Stages of Colorectal Cancer

In slight contrast to the distinct upregulation or downregulation already mentioned
in breast cancer (see Section 3), the expression levels of EphA1 and EphA2 were found
to differ between the stages of colorectal cancer. In stage I and the locally invasive stage
II, overexpression of EphA1 and EphA2 has been observed. This was followed by a
downregulation in the metastatic stage III via epigenetic silencing in which there was
increased methylation of CpG islands in the gene’s promoter [16]. In support of this, lower
expression of EphA1 was correlated with shorter survival in colorectal cancer patients [16].
In order to establish the link between this decreased EphA1 expression and increased
invasiveness, EphA1 was knocked out in HRT18 colorectal cancer cells using the CRISPR-
Cas9 genome editing system, resulting in increased spreading and adhesion of the cancer
cells, which suggests that EphA1 may be able to suppress these processes, achieved through
the deactivation of the ERK and JNK signalling pathways [63].

It has been shown that EphA7 expression is lost in colorectal cancer, also as a result of
epigenetic silencing mediated by CpG methylation of the promoter [19]. Similarly, EphA3
expression was downregulated in colorectal cancer cells, possibly via the same mechanism,
and suggestive of the fact that EphA3 may possess tumour-suppressing abilities [17].

Finally, in the progeny of colorectal cancer cells subjected to radiation treatment,
EphA4 activation was shown to be induced. This EphA4 overexpression caused a reduction
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in E-cadherin expression and, therefore, disrupted cell–cell adhesion; it also activated the
ERK1/2 pathway, which led to increased cell migration and invasion [18].

As in the case of EphA1 and EphA2, initial upregulation of EphB2 and EphB3 ex-
pression appears to be followed by a loss of expression in the more advanced metastatic
stages of colorectal cancer. This upregulation was found to be a result of activating Wnt
pathway mutations leading to constitutive transcription from the Tcf-4 complex; EphB2
and EphB3 are Tcf-4 target genes, and their expression is thereby enhanced [20,21]. The
tumour-suppressor function of EphB2 and EphB3 is thought to be reliant on their ability to
compartmentalise tumour cells, which involves E-cadherin-mediated adhesion [21]. The
adenoma-carcinoma transition is generally associated with a loss of EphB2 and EphB3
expression and this explains how the cells can then invade the surrounding tissue [1,20].

Conversely, the expression of EphB4 is upregulated in colorectal cancer, suggesting
that it functions as a tumour promoter [19]. By overexpressing EphB4 in colorectal cancer
cell lines using EphB4 expression vectors, vascularisation and migratory ability were
enhanced [64]. Conversely, a loss of EphB6 expression in colorectal cancer has been found
to be correlated with poor prognosis contributing to increased metastasis [22,23].

5. The Overexpression of Many Eph Family Members Promotes Lung
Cancer Tumorigenesis

The expression levels of EphA1, EphA4, EphA5 and EphA7 have been investigated in
patients with nonsmall cell lung carcinoma (NSCLC), the most common type of lung cancer.
Giaginis et al. suggested that the increased expression detected in non-advanced stage
NSCLC was an indication that these receptors may participate in the biological mechanisms
underlying carcinogenic evolution [24]. Notably, higher levels of EphA4, EphA5 and
EphA7 have been associated with favourable patient survival, and the authors suggest
they may, therefore, be of use as biomarkers for prognosis [24]. For EphA2, higher levels
were found to be correlated with more advanced stages of NSCLC compared to earlier
stages, and increased EphA2 expression was associated with the development of brain
metastasis [25]. A G391R mutation in the EphA2 gene was recurrent in lung squamous
cell carcinoma and associated with increased phosphorylation of two serine residues
within mTOR—it has been suggested that this may be functionally important for EphA2’s
invasive signals [65]. Low expression of EphA3 in small cell lung cancer (SCLC) has been
associated with multidrug resistance [26]. Inducing EphA3 overexpression reduced the
phosphorylation of components of the phosphoinositide 3-kinase (PI3K)/BMX/signal
transducer and activator of transcription 3 (STAT3) signalling pathway, increased apoptosis
and decreased chemoresistance, suggesting that EphA3 has a tumour suppressor role and
could be a novel therapeutic target for SCLC [26].

Like EphA2, EphB3 was shown to be overexpressed in NSCLC in which it likely
promotes cell growth and migration. Consequently, the loss of EphB3 lead to activation of
caspase-8-mediated apoptosis and suppression of cell migration [27]. Stimulation of EphB3
by its ligand, ephrin-B1, resulted in suppression of NSCLC metastasis. The proposed
mechanism includes EphB3 activation, followed by RACK1-mediated formation of a
ternary complex of protein phosphatase 2a, Akt, EphB3 and RACK1, leading to inhibition
of Akt phosphorylation and consequently inhibition of cell migration [27]. Because ephrin-
B1 is not overexpressed in lung cancer, this tumour-suppressive signalling pathway is
not common, but it has still been hypothesised as an opportunity for a novel therapeutic
strategy [35,66]. EphB4 was also found to be overexpressed in lung tumours, promoting
cellular proliferation, colony formation and motility. However, paradoxical to this, there
seems to be a positive correlation between EphB4 expression and patient survival, and
therefore, it was suggested to be of use as a positive prognostic indicator in lung cancer [28].
In contrast, EphB6 was shown to be tumour suppressive, which correlated with its lower
expression in metastatic compared to nonmetastatic NSCLC. This downregulation was
found to be due to epigenetic silencing mediated by hypermethylation of its promoter
DNA [29,30]. Low expression of EphB6 was, therefore, suggested as a poor prognostic
indicator for NSCLC [67]. In addition, mutations in EphB6 could potentially cause a loss
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of function in NSCLC. For example, an in-frame deletion mutation identified in a subset
of NSCLC patients increased the metastatic capacity of NSCLC cells in an in vivo mouse
model [29].

6. Eph Receptors Have a Potential Relevance in Prostate Cancer

While the expression levels of other EphA receptors seem to be upregulated in prostate
cancer, the expression of EphA1 was shown to be downregulated, decreasing from normal
prostate to primary prostate tumour cells and finally to metastatic cells, possibly due to
CpG methylation of the promoter [6,31]. This suggests that it may have a role to play in
preventing the transformation of cells [31]. In contrast, EphA2 expression increased as pro-
static epithelial cells progressed toward a more aggressive phenotype. Importantly, EphA2
expression was increased in high-grade prostatic intraepithelial neoplasia, the precursor
to prostatic adenocarcinoma, indicating a possible role for EphA2 in the early stages of
prostatic carcinogenesis [32]. Similarly, EphA3 was overexpressed in the more invasive
cell lines, implicating it in the development of prostate cancer [31]. Comparable trends
are apparent for EphA4; its importance has been highlighted through siRNA knockdown,
which resulted in a reduction in prostate cancer cell viability [33]. Soler et al. suggest
that the levels of EphA4 may be controlled by ERBB3/HER3, a prostate cancer-associated
receptor, as knockdown of ERBB3 in DU-145 cells resulted in EphA4 downregulation [68].
In contrast, EphA7 has been assigned a tumour-suppressive role and was found to be
downregulated in prostate cancer, the mechanism responsible for this being CpG methy-
lation [37]. These tumour-suppressive abilities involve the enhancement of tumour cell
apoptosis, which is dependent on ligand stimulation as EphA7 mutants that cannot be
phosphorylated were unable to exert these same effects [69]. Similarly, EphA5 has been
suggested to have a suppressive role in the progression of prostate cancer, highlighted by
its downregulation in prostate cancer tissues and the fact that this was associated with
higher Gleason scores [34]. Finally, EphA6 has been identified as a metastasis gene and
positively correlated with the progression of prostate cancer, by facilitating invasiveness
and angiogenesis [36]. EphA6 knockdown decreased Akt and thereby the PI3K/Akt path-
way, which contributes to prostate cancer progression, as well as EIF5A2, a target gene for
Akt, which promotes melanoma cell invasion; this indicates that EphA6 may mediate its
effects via interaction with the PI3K/Akt pathway [35,36].

Support for EphB2 functioning as a tumour suppressor in prostate cancer comes from
the identification of its mutational inactivation; when DU-145 cells were transfected with a
wild-type EphB2, clonogenic growth was suppressed [38]. Conversely, EphB3 and EphB4
were upregulated in prostate cancer cells, possibly contributing to invasion and metastasis
through the deregulation of contact inhibition of locomotion (CIL) as CIL was restored
upon knockdown of the two receptors [39]. It has also been shown that EphB4 regulates
the expression of the integrin β8 receptor and that this might be promoting prostate cancer
cell motility [70].

7. Eph Receptors Are Potential Prognostic Markers in Glioblastoma
and Medulloblastoma

Glioblastoma and medulloblastoma are two of the most aggressive cancers affecting
the brain. In glioblastoma, overexpression of EphA2 was shown to correlate with poor
prognosis [40]. Its tumour-promoting activities were found to be exerted via a ligand-
independent mechanism involving the phosphorylation of EphA2’s serine 897 residue [40].
It has been shown that this phosphorylation event can occur either through the mitogen-
activated protein kinase kinase 1 (MEK)/ERK/ribosomal S6 kinase (RSK) pathway or
through the PI3K/Akt pathway upon the binding of epidermal growth factor (EGF) to
EphA2-expressing cells [40,71]. EphA2 is part of a reciprocal regulatory loop with Akt and
acts as an Akt substrate when phosphorylated at S897—with consequences for enhanced
cell migration and invasion [71]. In addition, EphA2 can promote self-renewal and tu-
morigenicity of tumour-propagating cells in glioblastoma as these were suppressed upon
siRNA-mediated knockdown of EphA2 expression [72]. In medulloblastoma, EphA2 was
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implicated in vasculogenic mimicry (VM) through its activation of PI3K, which regulates
MMP-14 and subsequently activates MMP-2, thereby driving VM [73]. Overexpression of
EphA3 has also been reported in glioblastoma and this resulted in inhibition of the MAPK
pathway, keeping tumour cells in a dedifferentiated and tumorigenic state. This highlights
its potential use as a therapeutic target in glioblastoma patients [41]. In addition, highly
expressed in malignant gliomas, EphA4 forms a complex with fibroblast growth factor
receptor 1 (FGFR1), accelerating the canonical FGFR1 signalling pathway and resulting in
increased cell proliferation and migration [42].

In contrast to EphA2, it has been shown that an overexpression of EphB1 was asso-
ciated with a favourable prognosis for glioma patients. This, however, was dependent
on stimulation by its ligand, ephrin-B2, with this interaction resulting in an inhibition of
cell invasion and migration [43]. Conversely, EphB1 seems to act as a tumour promoter in
medulloblastoma. Consequently, when EphB1 was knocked down in the DAOY human
medulloblastoma cell line, migration was inhibited [44]. This was exemplified by a de-
crease in the expression of β1-integrin and the levels of phosphorylated Src, two molecules
involved in cell adhesion and migration. In addition, it was postulated that EphB1 is
important for cell growth and survival as these features were reduced when EphB1 was
downregulated, possibly due to reduced cyclin E expression, being a master regulator of
cell cycle progression [44]. The levels of proliferating cell nuclear antigen (PCNA) and phos-
phorylated Akt were also decreased, an indication that the cells were failing to progress
from G1 to S phase in the cell cycle. Finally, EGF receptor (EGFR) expression was decreased,
indicating that an interaction with EGFR might be involved in EphB1’s oncogenic poten-
tial [44]. In glioblastoma, overexpression of EphB2 caused phosphorylation and activation
of R-Ras, thereby decreasing cell substrate adhesion and mediating enhanced invasiveness.
Signalling via R-Ras also caused the inhibition of the MEK/MAPK pathway, leading to
reduced cell growth [45]. Higher expression levels of EphB2 have also been measured
in medulloblastoma samples, concomitant with decreased cell adhesion and increased
invasion when EphB2 was stimulated with ephrin-B1 [46]. This was substantiated by the
observation that targeting the EphB2 receptor via knockdown, combined with radiation,
decreased the viability and invasion of medulloblastoma cells [74]. Higher expression of
EphB4 and its ligand, ephrin-B2, has also been reported in gliomas and this correlated with
a worse prognosis for glioblastoma patients [47].

8. EphA2 Plays a Dual Role in Kaposi’s Sarcoma Oncogenesis

Kaposi’s sarcoma, a vascular tumour of endothelial origin, is one of the malignancies
associated with the oncogenic Kaposi’s sarcoma-associated herpesvirus (KSHV). KSHV
infection of endothelial cells is mediated via interactions between the virus and several
cell surface receptors [75–77]. Some of the receptors implicated in the KSHV entry process
include integrins (α3β1, αVβ3, and αVβ5), the xCT cystine/glutamate reporter and EphA2,
with heparan sulphate (HS) being a major cell attachment factor. Indeed, KSHV first
attaches to HS and then interacts with the integrins and xCT, causing the initiation of
a signalling cascade via phosphorylation of focal adhesion kinase (FAK), Src and PI3K,
and the recruitment of the adaptor protein c-Cbl. This is followed by translocation of
KSHV into lipid rafts where it interacts with EphA2, causing amplification of the signalling
cascade. The association of c-Cbl and myosin IIA with EphA2 causes bleb formation and
micropinocytosis of KSHV [78,79]. EphA2 is essential for viral entry, as knockdown or
deletion of EphA2 abolished the infection of endothelial cells [48,78]. Furthermore, it is
EphA2’s intracellular Pkinase-Tyr domain that is important for KSHV infection, shown
by the fact that overexpression of full-length EphA2 but not a mutant lacking this domain
resulted in enhanced KSHV infection [48]. There is evidence that EphA4 may also be an
entry receptor for KSHV; EphA4 expression has been detected in KSHV target cells and an
EphA2-EphA4 double-knockout resulted in a greater reduction in infection than EphA2 or
EphA4 single knockouts [80]. Another Eph receptor possibly involved in KSHV infection
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is EphA5 as transduction of an EphA5 (or an EphA4) construct was able to rescue infection
in cells that were deficient for EphA2 [81].

From this, it is evident that EphA2 plays a key role in KSHV entry, and this suggests
that it may also be an important determinant for susceptibility to KS. Indeed, EphA2 is
upregulated in a number of cancers (see Table 1) and, likewise, immunohistochemistry has
demonstrated increased protein expression of EphA2 in KS skin tissue [48]. While KSHV
infection is necessary and HIV infection and/or other forms of immune suppression are
important contributing factors for the development of KSHV-associated cancers, not all
KSHV/HIV-co-infected individuals develop KS. Additionally, the rates of KSHV infection
do not necessarily correlate with rates of KSHV exposure. This suggests that the processes
of KSHV infection and KS progression may also have host genetic components to them.
Previous work from our laboratory found that EphA2 sequence variants were associated
both with KSHV infection and KS prevalence in HIV-infected patients [82]. These variants
were identified in the intracellular and functionally important Pkinase-Tyr and SAM
domains. While Pkinase-Tyr variations were associated with KS may be due to enhanced
EphA2 Pkinase-Tyr signalling, variations associated with susceptibility to KSHV infection
were hypothesised to be related to an enhancement in the EphA2 signalling downstream of
KSHV binding necessary for its internalisation. Altered SAM functioning is likely behind
the association between variations in the SAM domain and KS because of this region’s role
in mediating signalling downstream of EphA2 activation through the binding of adaptor
proteins [82].

9. EphA2 and Oncogenesis

As highlighted above, EphA2 plays an important role in a number of cancers (see
Table 1); however, its role is context-dependent, and it can act as either a tumour promoter
or tumour suppressor. There has been an accumulation of evidence that shows that EphA2
possesses peculiar modes of signalling and it may be that these underscore its opposing
functions [4]. As already alluded to (see Section 3), EphA2 has both canonical and non-
canonical modes of driving oncogenesis (Figure 2). The canonical pathway involves ligand-
and tyrosine kinase-dependent forward signalling via EphA2, which suppresses tumori-
genesis. It does so through the inhibition of FAK, Akt and ERK phosphorylation, thereby
controlling cell motility and survival [4]. For example, upon EphA2 autophosphorylation,
it can no longer associate with FAK to cause phosphorylation and activation. FAK has
been implicated in the growth of breast cancer cell lines and its deactivation resulted in
reduced oncogenic activity [10]. Importantly, this mechanism is specifically reliant on
Tyr772 phosphorylation, highlighted by the fact that a phosphorylation-abrogating Tyr772
mutation resulted in increased transendothelial migration [83]. Consequently, a low level
of EphA2 forward signalling promotes tumorigenicity. As already mentioned in the context
of breast cancer, this could be due to low ephrin expression, an impaired EphA2-ephrin-A1
interaction due to loss of cadherin, or dephosphorylation of Tyr772 by LMW-PTP [8,51,52].
A good example of this duality has been identified with regards to mesothelioma. Here,
EphA2 activation by ephrin-A1 is associated with suppressed tumorigenesis. However,
in mesothelioma cell lines, EphA2 was found to be overexpressed, and therefore, in the
absence of sufficient ligand, the signalling of other RTKs through the Ras oncogene results
in the promotion of malignancy [84].
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Figure 2. The canonical and noncanonical oncogenic mechanisms of EphA2. Phosphorylated residues
are indicated with red circles; Y = tyrosine, S = serine. Figure created with BioRender.com.

The noncanonical pathway, conversely, involves the ligand- and tyrosine kinase-
independent activation and phosphorylation of EphA2. This is regulated by inflammatory
cytokines and growth factors via phosphorylation of EphA2 at Ser897, with induction of
this phosphorylation carried out by RSK, Akt and protein kinase A (PKA) [4]. The effects
of this phosphorylation include localisation of EphA2 at the leading edge of migrating
cells, allowing for actin cytoskeleton assembly and the formation of lamellipodia [71],
thereby leading to the promotion and maintenance of certain cancer cell features such
as motility and proliferation [4]. A recent demonstration of the noncanonical EphA2
action was focused on its role in the oncogenesis of bladder cancer. Here, the growth
factor progranulin was found to be the predominant EphA2 ligand and was upregulated
compared to ephrin-A1, which was expressed at normal levels. Stimulation of EphA2 by
progranulin resulted in Ser897 phosphorylation, allowing for interaction with liprin-α1, a
protein that is necessary for cell motility to occur in this case [85].

10. Conclusions

Eph receptors play a complex role in oncogenesis, which is dependent on the specific
interactions between the receptors, ligands, signalling pathways and adaptor proteins.
Moreover, Eph receptors are implicated in tumour promotion and suppression, depending
on the context—their differential expression having consequences for cell proliferation and
migration [2]. It is important that the effects of each receptor are investigated in a cancer-
specific manner as it is evident that Eph receptors do not always function the same way;
EphA7, e.g., has a tumour-suppressive role in colorectal cancer and prostate cancer, but is
tumour-promoting in NSCLC [35]. Temporal context is also an important consideration as it
is possible for there to be different levels of expression for different stages of disease such as
is the case for EphA1 in colorectal and prostate cancer [35]. While the involvement of these
receptors in breast, colorectal, lung, prostate and brain cancer has been outlined here, their
role in other cancers cannot be excluded and warrants further study. Additionally, further
research is required to determine the prognostic value of the Eph receptors and how they can
be potentially targeted in novel cancer therapies. EphA2, in particular, is a major receptor
of interest, in no small part due to it having both canonical and noncanonical oncogenic
mechanisms. While EphA2 has been well characterised in the oncogenesis of breast cancer,
its association with lesser prevalent cancers such as KS is still being elucidated. So far, EphA2
sequence variations in KS patients have been identified and their functional significance
investigated, but the consequences for KS oncogenesis are not yet fully understood [82].
Therefore, subsequent research into EphA2’s role in KS development is required, which will
potentially also shed light on the oncogenic role of EphA2 in other cancers. In conclusion,
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Eph receptors present an important and promising area of study in the oncogenesis of a
variety of cancers and may have important clinical implications.
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