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A wearable device system was proposed in the present work to address the problem
of facial emotion recognition disorders. The proposed system could comprehensively
analyze the user’s own stress status, emotions of people around, and the surrounding
environment. The system consists of a multi-dimensional physiological signals
acquisition module, an image acquisition and transmission module, a user interface
of the user mobile terminal, and a cloud database for data storage. Moreover, a deep
learning based multi-model physiological signal pressure recognition algorithm and a
facial emotion recognition algorithm were designed and implemented in the system.
Some publicly available data sets were used to test the two algorithms, and the
experiment results showed that the two algorithms could well realize the expected
functions of the system.

Keywords: facial emotion recognition, pressure recognition, multi-modal physiological signal, wearable device,
facial emotion recognition disorder

INTRODUCTION

As an important way of emotional expression and cognition, facial expressions are an indispensable
part of our daily activities. Being a form of one’s response to happenings in the objective world,
emotions play an important role in people’s real life and spiritual life. Obstacles in recognition
of facial emotions will inevitably lead to problems in interpersonal communication. Shen et al.
(2015) have found that the mechanisms of facial emotions recognition are complex and are not
the functions of one single area in the brain; instead, different loops are formed between different
regions, and damages to these loops would lead to facial emotion recognition disorders, manifested
by such diseases as schizophrenia, cerebrovascular accidents, dementia syndrome, Parkinson’s
disease, depression, autism, epilepsy, traumatic brain injury, and multiple sclerosis. Therefore,
early detection and identification of potential facial emotion recognition disorders will facilitate
the judgment, treatment and community management of nervous system diseases.

At the same time, with the rapid development of the wearable technology in recent years,
wearable devices have provided a popular solution and played an important role in health
monitoring, safety monitoring, family rehabilitation, efficacy evaluation, early detection of diseases,
and other related fields (Jia et al., 2017). The purpose of this research is to design a wearable device
system for facial emotion recognition disorders, and the system could comprehensively analyze
the user’s own psychological stress, other people’s emotions and surrounding environment, thus
contributing to the prevention, monitoring, and management of related diseases.
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This system is expected to provide a solution to the following
fields. (1) It can be used as a monitoring system for early
diagnosis, prevention and treatment of diseases related to
facial emotion recognition, such as anxiety, to prevent it from
escalating into more serious diseases like depression. (2) The
system can provide a technical basis for treatment of specific
diseases. For example, in the case of patients with autism who
are sensitive to mathematical laws, the system can transform
the emotional data of others into more regular games to help
autistic patients better recover and recognize their emotional
recognition capacity. (3) The system can also be used as a data
collection platform to provide more sample data for the research
on neurological diseases.

Wearable devices for monitoring of users’ physiological
signals and detection of psychological pressure have drawn wide
attention from researchers around the world. Such signals come
from all parts of the body, such as Electrocardiograph (ECG),
Electro- myogram (EMG), Electroencephalogram (EEG), and
respiration. A new wearable ECG monitoring system based on
active cables and smart electrodes developed by the KTH Royal
Institute of Technology includes a hand-held personal health
assistant, an active cable and 10 smartelectrodes, which are
attached to specific parts of the patient’s body from chest to calf,
and can obtain high-quality ECG data (Yang et al., 2008). In a
study by Hasanbasic et al. (2019), they monitored students’ ECG
and skin electrical activity signals by wearable sensors in real
time, and classified by machine learning algorithms such as SVM
to identify the students’ stress level in a specific environment
such as during exams (Hasanbasic et al., 2019). Montesinos
et al. (2019) employed multi-modal machine learning and sensor
fusion technology to detect the occurrence of acute stress events.

In these previous publications, researchers employed wearable
sensors to collect physiological signals, discriminated and
classified psychological pressure through machine learning.
However, physiological-signal monitoring devices mentioned in
the above studies are expensive and cumbersome. As a result,
ordinary users often find it hard to afford these expensive
devices and inconvenient to wear these devices in daily life,
which makes it impossible to popularize these devices. Moreover,
the previous studies have failed to measure the surrounding
environment when stress occurs, and hence could not assess
the impact of the surrounding environment on facial emotion
recognition disorders.

Machine learning models, especially deep learning algorithms,
are popular solutions to classification of physiological
information and it is assumed that these models could bring
new breakthroughs to facial emotion recognition disorders.
In fact, research on facial emotion recognition based on deep
learning has been relatively mature. Arriaga et al. (2017)
proposed a lightweight convolutional neural network, which
reached an emotion recognition accuracy close to human on the
FER2013 database. Therefore, it is feasible to achieve the goal of
recognizing emotions in interpersonal scenarios by improving
machine learning models.

The present work proposes a wearable device system that is
cost effective and can keep track of changes in the surrounding
environment. The system achieves the expected functions by

a self-designed multi-modal psychological signal-based stress
recognition deep learning algorithm and an improved facial
emotion recognition algorithm.

The software of the proposed system was designed as follows.
A multi-modal psychological signal-based stress recognition
multi-head Convolutional Neural Networks (CNN) model was
designed, the facial emotion recognition model based on the
mini_Xception CNN was improved; and the algorithms were
deployed on the cloud server; A cloud database was constructed
to store the physiological signals and analysis results obtained
by the above-mentioned algorithms, and a mobile interface for
user interaction was developed. The hardware of the system
was developed as follows. An ergonomic ear wearable device
was designed, which comprised of sensors for the photoelectric
volumetric heart rate, triaxial acceleration, skin electricity and
body temperature, cameras used for collection of the facial images
of the people whom users interact with and the surrounding
environment, and a Wi-Fi module for data transfer with
the cloud server.

MATERIALS AND METHODS

Overall Framework of Wearable Device
System
This system is composed of five sub-systems: an image
acquisition and transmission system, a human physiological
signal collection and transmission system, an algorithm analysis
system deployed on cloud server, a cloud database and an user
mobile APP, as shown in Figure 1. (1) The image acquisition and
transmission system realizes real-time image acquisition through
cameras, and transmits videos to the cloud server via intranet
transparent transmission technology through module integrated
WI-FI chips, thus completing wireless image transmission. (2)
In the human physiological signal acquisition and transmission
system, small-sized sensors are used to make the device portable
and easy to use; the physiological signals collected by the sensors
are input into the ESP8266 WI-FI communication module
connected with the serial communication ports through the main
development board, and the module further uploads the data to
the cloud server using the Transmission Control Protocol (TCP)
transmission protocol. (3) On the cloud server, a multi-modal
physiological signal-based stress recognition model and a facial
emotion recognition model are deployed to acquire and analyze
data, and provide feedback to the cloud database. (4) The cloud
database records the collects raw data and algorithm analysis
results, and returns the user stress state and the facial emotion
prediction result of people around to the user through the mobile
APP. (5) The mobile APP receives the algorithm analysis results
returned by the cloud database and displays them on the user
interface for users to view.

Hardware Circuit and Appearance
Design
In the hardware circuit design, the image acquisition and
transmission system and the human physiological signal
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FIGURE 1 | Relations between the sub-systems in the proposed wearable device system.

acquisition system are independent of each other. As shown
in Figure 2, the image acquisition and transmission system is
composed of the ESP32CAM module with integrated cameras
and WI-FI chips powered by lithium batteries. In the human
physiological signal acquisition system, STM32 is used as the
main development board, and ADXL345 acceleration sensor,
LM324 skin electrical sensor, MAX30205 body temperature
sensor and photoelectric volumetric WRB002 heart rate sensor
are connected to the corresponding serial ports of the
development board, and are also powered by lithium batteries.
The serial port data exchange end of the motherboard is
connected to the WI-FI module ESP8266, through which
physiological signals can be transmitted to the cloud server.

The wearable device presents a U-shaped elastic ring structure,
which is placed above the ear and close to the head. Each
sensor opening is arranged on the side to facilitate physiological
signal acquisition. U-shaped front-end cameras can collect the
facial images of the people whom users interact with and the
surrounding environment. Figure 3 presents the appearance and
internal structure of the device.

Software Design
The experimental software includes a mobile APP, a cloud
database and algorithm analysis system deployed on the cloud
server. The mobile APP interface is written in Java and
can be used on Android mobile devices. By receiving the
algorithm analysis results returned from the cloud database,
the app presents the user’s psychological stress status and
the facial emotion recognition results of people around
in real time (Figure 4). The cloud database uses MySQL
language to record and store the raw physiological signals
from sensors and algorithm analysis results. In order to

facilitate the follow-up studies about the impacts of the
scenes on the user’s stress state, the cloud database will
also store the images collected by the camera module when
the algorithm judges that the user is under stress. The
cloud server adopts the Windows Server 2012 system. The
working principles of the multi-modal physiological signal-based
stress recognition model and the facial emotion recognition
model deployed on the cloud server will be discussed in
detail in Sections “Facial Emotion Recognition Algorithm
Description” and “Multi-modal Physiological Signal-based Stress
Recognition Algorithm.”

Facial Emotion Recognition Algorithm
Description
Image Texture Feature Extraction
Texture, a common feature of images, has been widely used in
various image segmentation, classification and recognition tasks.
Tyagi (2018) points out that there is no universally-accepted
definition for the image texture at present. However, in some
studies (Smith and Chang, 1996; Hall-Beyer, 2007), texture is
defined as the surface roughness and roughness of objects,
which are unique and show certain patterns. Texture features
are reflected by gray intensity distribution pattern in images, and
these features have been described in diverse forms in the field
of digital image processing. Khaldi et al. (2019) points out that
gray level co-occurrence matrix (GLCM) is often considered as
an accurate method of texture feature extraction, and has seen
wide adoption in various fields because of its simplicity and
high efficiency. For an image I of the size of N × M, with a
given displacement vector (1x, 1y), the gray level co-occurrence
matrix M can be obtained by Eq. 1.
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FIGURE 2 | The hardware circuit.

M(p, q) =

N∑
i=1

M∑
j=1


1 if I(i, j) = p and

I(i+1x, j+1y) = q
0 otherwise

(1)

Usually, some statistical indicators are used to characterize the
gray level co-occurrence matrix and hence reflect that texture
features of images. In the present work, the following statistical
indicators were employed to calculate the eigenvalue of the local
gray level co-occurrence matrix of the images: the mean, standard
deviation (std), contrast, dissimilarity, homogeneity, angular
second moment (ASM), energy, maximum and entropy, so as to
generate images that reflect the texture features of the image.

Figure 5 shows the pseudo-color images of a human face after
extraction of texture features. An image with a size of 48× 48 and
a gray scale range of 0–255 is used for testing. The lighter colors
corresponds to the higher gray values. The pseudo-color images
clearly presents the texture features extracted by the gray level
co-occurrence matrix based on different statistical indicators.

Algorithm Description
To solve the problem of parameter redundancy, improve the
model’s generalization capacity, and reduce the processing
burden of the hardware, Arriaga et al. (2017) proposed a
lightweight CNN: mini_Xception. This network borrowed the
ideas of deep segmentable volume and residual network from the
Google mainstream CNN Xception (Chollet, 2017), to achieve
higher accuracy under small model complexity.

In order to improve the performance of mini_Xception in
facial emotion recognition task, the gray level co-occurrence
matrix was introduced in our method to extract texture features
from the input images so as to enrich the types and scale of
data for the model. The algorithm implementation flow is shown
in Figure 6.

As Figure 6 shows, the algorithm first extracts the texture
features of the input image to generate nine texture-feature
images. After that, ten images including the original image are
input into the algorithm through 10 separate channels, and are
filtered by 3 × 3 convolution networks with the 16 dimensions.
After passing the activation layer of the Rectified Linear Unit
(ReLu) function, the features of each channel are fused and input
into the mini_Xception model. At last, the mini_Xception model
outputs the probabilities of seven predicted emotions through the
softmax activation layer, and takes the emotion with the largest
probability as the final predition outcome. The Adam optimizer
is used as the weight optimizer of the algorithm network in the
training process.

Multi-Modal Physiological Signal-Based
Stress Recognition Algorithm
Batch Standardization
Firstly, the physiological signals of the input model are
standardized in batches. The mean and variance of a batch of
data can be calculated by Eqs 2 and 3, respectively, and then
each indicator in the batch of data is standardized by Eq. 4, and
finally the weight of the data is corrected to achieve the result.
By standardizing the variance of the training set data, the values
of feature vectors in each dimension are treated equivalently, and
are made to follow the normal distribution with the mean value of
0 and the variance of 1. Thus the problem of unbalanced weight
caused by the difference in the values of feature vectors can be
avoided (Tang, 2017).

µB =
1
m

m∑
i=1

xi (2)

σ2
B =

1
m

m∑
i=1

(xi − µB)2 (3)
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FIGURE 3 | Wearable device appearance and internal structure.

x̂i =
xi − µB√
σ2

B + ε
(4)

Slicing
Usually, Eq. 5 is used to transform single-row single-dimension
inputs into multi-row and multi-dimension. In Eq. 5, “input” is

the input value of the model, “slice” is the slice length, and ak is a
row of vector of the original data. The purpose of this method is
to change the input from single time point to multi-points time
period, and to provide the data with continuous physiological
information. Because of the large individual differences of one-
dimensional physiological data, it has poor robustness in model
adaptation. In addition, the separate time points of physical
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FIGURE 4 | Display of analysis results on the mobile app.

signals are not all index data, and cannot be used to indicate a
certain physiological state just because the value of which reach
a specific threshold. Therefore, the input of multi-dimensional
time period data is needed to ensure the introduction of
continuous characteristics of signals, so as to make the model
more robust and practical (Jia et al., 2017).

Input = (a1, a2, a3 . . . ak)T(k = 1, 2, 3 . . . Slice) (5)

Model Design
In the model proposed in this study, the multi-channel
concatenate layer fusion model was used for training.

The main working principle is shown in Eq. 6.

Zconact =
c∑

i=1

Xi ∗ Ki+
c∑

i=1

Xi ∗ Ki+ c+ · · · (6)

The model structure is shown in Figure 7.
As shown in Figure 7, there are four basic input channels

of the model in this experiment. The first three channels share
the same workflow, all consisting of an input layer, a one-
dimensional convolution layer, a random inactivation layer, a
maximum pooling layer and a flattening layer. The convolution
kernel size was set at 3, 5, and 11 to extract features from different
scales. The fourth channel is composed of a Convolution+Long
Short-Term Memory-2D (ConvLSTM-2D) model and a flatten
layer. Among them, the traditional two-stream LSTM model
cannot only improve the performance of the neural network by
making better use of the dependency product between sequence
frame data (Jie et al., 2021), but also introduce the long-term
and short-term memory mechanism to the model. Through
the convolution layer, the relationship between time series can
be obtained, and at the same time, the spatial features can be
extracted, and thus the spatio-temporal features are obtained.
Therefore, the two-stream convolution of LSTM combined
with Attention-Conv can better analyze the spatio-temporal
relationship of local features. Then, the data from the four input
channels are weighted and fused, and the feature dimension
is reduced through the full connection layer, after which four
kinds of stress recognition results are output: physiological stress,
cognitive stress, emotional stress and relaxed state.

Evaluation Indicators
To evaluate the experimental results, the following evaluation
criteria are defined and used.

Loss Function
In multi-classification problems, the cross entropy loss functions
of Eqs 7 and 8 are often used, where y is the predicted value, and
y_hat is the label value. By continuously reducing the value of the
loss function L to 0, the predicted result and the actual label value
could be matched.

Soft max
(
yi
)
=

eyi∑n
i=1 eyi

(7)

L
(
y, y−hat

)
= −

1
n

n∑
i=1

y−hati × log
(
Soft max

(
yi
))

(8)

Accuracy
In evaluation of multi-classification tasks, multi-classification
problems are often transformed into multiple two-classification
problems. The selected class is set as positive (P), while the rest is
set as negative (N). If the prediction result matches the label, the
classified target is marked by a prefix T; otherwise, it is marked
by the prefix F.
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FIGURE 5 | Grayscale pseudo-color images for nine features.

Equation 9 shows the calculation of the classification accuracy,
which represents the ratio of correct prediction times to all
prediction times.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(9)

Evaluation Indicators of Test Set
Equation 10 is used to calculate the classification precision of a
random class i, which describes the proportion of true positives
in samples predicted to be positives.

Precisioni =
TPi

TPi + FPi
(10)

Equation 11 is the recall rate of classification of Class i, which
represents the number of samples predicted to be positive among
the samples that are really positive.

Recalli =
TPi

TPi + FNi
(11)

Equation 12 is the F1 score of the classification of Class i, which
is the harmonic mean of the precision and recall rate.

F1i =
2 · Precisioni · Recalli
Precisioni + Recalli

(12)

Equations 13–15 are the macro average calculation formulae of
the precision, recall rate and F1 score, which are obtained as the
arithmetic average of various components.

Precisionmacro =

∑L
i=1 Precisioni

|L|
(13)

Recallmacro =

∑L
i=1 Recalli
|L|

(14)

Macro F1 =
2 · Precisionmacro · Recallmacro

Precisionmacro + Recallmacro
(15)

Equations 16–18 are the weighted average calculation formulae
of the precision, recall rate and F1 score, which represent the
weighted coefficients of a certain class in the total sample.

Precisionmacro =

∑L
i=1 Precisioni × wi

|L|
(16)

Recallmacro =

∑L
i=1 Recalli × wi

|L|
(17)

Macro weighted F1 =
2 · Precisionmacro · Recallmacro

Precisionmacro + Recallmacro
(18)

EXPERIMENTAL VERIFICATION

Experimental Verification of Facial
Emotion Recognition Algorithm
Data Selection
In order to evaluate the performance of the proposed model, an
evaluation experiment was designed. In the experiment, the CK+
data set of face emotion recognition was used. This data set has
been widely used in experiments to evaluate the performance of
facial emotion recognition algorithms, and consists of 593 video
clips collected from 123 subjects of various races. Among them,
327 samples were marked with seven emotional labels: anger,
contempt, disgust, fear, happy, sad and surprise. According to the
recommendation of the data set, three frames from the middle of
each video clip were intercepted as samples in our experiment to
form a data set. This dataset is available online1.

As the number of data in the CK+ data set is limited, to
enhance the generalization capacity of the model, the samples
were rotated and balanced, and finally the data set was expanded
to 16,890 samples.

1http://www.pitt.edu/~emotion/ck-spread.htm
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FIGURE 6 | Algorithm implementation flow chart.

Experimental Process
In the experiment, the data set to be tested was divided into a
training set, a test set and a verification set by a ratio of 7:2:1,
the data were randomly divided to ensure that the experimental
results are reasonable and effective. In order to make the input
samples compatible with the model, the images in the dataset
were transformed into 8–8 bit gray images in 48× 48 format prior

to the experiment, and the label values were digitally encoded:
0–anger, 1–contempt, 2–disgust, 3–fear, 4–happy, 5–sad, and 6–
surprise. The model was written in Python and trained with
RTX-2070 graphics card. The number of training rounds were
set to 500 rounds, but the training would be terminated if the
loss function of verification set exceeded 50 rounds in the callback
function, and the actual training rounds were about 60.
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FIGURE 7 | Model structure.

FIGURE 8 | Loss and accuracy of the model on the training set and the verification set.
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FIGURE 9 | Confusion matrices of test set.

The loss function and accuracy curve of the training set and
the verification set are shown in Figure 8.

As shown in Figure 8, after 20 rounds of training, the loss
function curves and accuracy curves of the training set and the
verification set tend to flatten out, and there is no obvious decline.
After 50 training rounds, the accuracy of the training set and
verification set has reached more than 99%, which proves the
good performance of our proposed algorithm.

Experimental Verification of Multi-Modal
Physiological Signal-Based Stress
Identification Algorithm
Data Selection and Preprocessing
In order to verify the effect of the proposed model, the published
data set of multi-modal physiological stress identification
(Birjandtalab et al., 2016) by the University of Texas was
employed to test the model. This data set has collected five
kinds of physiological signals from 20 college students (16
males and four females): triaxial acceleration, body temperature,
galvanic skin response (GSR), Saturation of Peripheral Oxygen
(SPO2) and heart rate, and in a period of time, a series of
external environmental stimuli were applied to the subjects to
direct them into four psychological stress states: physiological
stress, cognitive stress, emotional stress and relaxed state. The
relaxed state, as described in the work (Birjandtalab et al.,
2016), was controlled to stay only within the first time period
to make the quantity of data in each class of state more
balanced. In addition, in the dataset, the sampling frequency

of heart rate and blood oxygen signal in this data set is
1 HZ, while the sampling frequency of other physiological
signals is 8 HZ. To make the sampling frequency of each
physiological signal consistent, other physiological signals except
the heart rate and the blood oxygen were down-sampled to
a frequency of 1 HZ. After the above operations, four kinds
of labels of physiological signals from 20 samples at 29,582
time points were obtained from the data set. In order to
meet the requirements of the model input, the data was
extracted by slices with 5 s as a unit. Label values were
digitally coded beforehand: 0–relaxation, 1–physiological stress,
2–cognitive stress, and 3–emotional stress. This dataset is
available online2.

Experimental Process
In the experimental, the data to be tested were divided into a
training set and a test set by a ratio of 19:1; then, the verification
set was separated from the training set by a ratio of 9:1. The
data were randomly divided into different sets to ensure that the
experimental results were reasonable and effective. The model
was written in Python language, and RTX-2070 graphics card
was used in the training process. The number of training rounds
was set to 300, and the training would be terminated if the loss
function of verification set exceeded 60 rounds in the callback
function, and the actual training rounds were about 110 rounds.
Figure 10 shows the loss and accuracy curves of the model on

2https://physionet.org/content/noneeg/1.0.0/
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FIGURE 10 | Loss and accuracy of the model on the training set and the verification set.

FIGURE 11 | Confusion matrix of test set.

the training set and the verification set, and Figure 11 shows the
confusion matrix on the test set.

As Figure 10 shows, the model achieves a good fitting effect,
with an accuracy of 99.3% on the training set and 96.2% on the
verification set, without overfitting. After 40 rounds of training,
the loss and accuracy curves flatten out. As Figure 11 shows,
cognitive stress marks the highest classification accuracy among
all stress states.

DISCUSSION

Discussion of of Facial Emotion
Recognition Algorithm Experimental
Results
Furthermore, the confusion matrix obtained by using the test set
is shown in Figure 12.
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FIGURE 12 | Confusion matrix on the test set.

As Figure 12 shows, the model also achieves high accuracy on
the test set. Table 1 shows the specific results on the test set.

As Table 1 reveals, the results of the test set have reached an
ideal range in terms of accuracy, F1 score and recall rate. Among
them, the model performs best in classification of the emotions
of anger and surprise. The accuracy of the test set is 99%, and the
weighted F1 score is 0.99.

Comparisons between our model and previous works are
shown in Table 2. As it suggests, our model gain an advantage
over the previous advanced methods, thus rationalizing the
application of the improved algorithm of mini_Xception in
face emotion recognition and classification. Besides, because the
mini_Xception model has a small scale of parameters and is
applicable to low-performance platforms, the proposed improved
algorithm can be well applied to the system, providing support
for the facial emotion recognition function. The future research
work can make breakthroughs in these aspects: (1) The parameter
scale of feature extraction and the running time of the algorithm

TABLE 1 | Specific evaluation results on the test set.

Class Precision Recall F1-score

Angry 0.99 0.99 0.99

Contempt 0.99 0.98 0.98

Disgust 0.99 0.99 0.99

Fear 0.99 0.99 0.99

Happy 0.99 0.99 0.99

Sad 0.97 0.99 0.98

Surprise 0.99 0.99 0.99

Macro average 0.99 0.99 0.99

Weighted mean 0.99 0.99 0.99

can be reduced to improve the efficiency of the system. (2)
The model can be further improved and applied to continuous
emotion recognition to enhance the universality of the model.
(3) The performance of the model on emotion recognition
accuracy under the condition of partial occlusion of the face can
be tested and improved to enhance the generalization capacity
of the algorithm.

Discussion of Multi-Modal Physiological
Signal-Based Stress Identification
Algorithm Experimental Results
To verify the advantages of our model, it was compared with
other machine learning models, including the support vector
machine (SVM) model, decision tree model, classical Naive Bayes
(NB) model, and gradient boosting decision tree (GBT) model.
The form of data input remained the same on all the models for
comparison. In addition, in order to better reflect the advantages
of the proposed model, we compare with the Gaussian Mixture
Model (GMM) used in the paper containing the original database
and the Ensemble classifier based on statistical feature used in a
research adopting the same database (Xin et al., 2019). Table 3
shows the comparison result between our model and the machine
learning models as well as advanced methods from previous
works, and Figure 9 show the performance of all the machine
learning models that were compared.

As Table 3 shows, our model has absolute advantages over
the classical Naive Bayes and SVM models, and it outperforms
the random forest model and the gradient boosting decision-
tree model in terms of accuracy. It could be also found that
the proposed method outweights that of the previous works in
terms of several crucial parameters. In addition, the variables
input in the models are sliced and extracted, which contain
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TABLE 2 | Comparison of performance on the dataset between different
algorithms.

Source Method Accuracy F1-score

Lopes et al. (2017) 7-Layers CNN 0.99 0.98

Lu et al. (2016) LeNet-5 0.84 0.8456

Yong et al. (2018) 5-Layers CNN 0.97 0.9645

Xi et al. (2020) CCRNet 0.98 0.9801

Our model mini_Xception+GLCM
feature extraction

0.99 0.99

TABLE 3 | Model performance comparison.

Models Accuracy Weighted-recall Weighted-F1 score

SVM 0.78 0.78 0.77

NB 0.75 0.75 0.75

GBT 0.94 0.94 0.94

Decision tree 0.93 0.93 0.93

This model 0.96 0.96 0.96

GMM 0.84 NA NA

Ensemble classifier 0.94 0.94 NA

more time features, so the model is expected to have better
robustness in real-world scenarios. Nonetheless, as the model
merges inputs from diverse channels, which increases the number
of parameters. Convolutional layers dominate the computation
complexity and consequently affects the latency and throughput
(Jafari et al., 2018). In the future, more research work needs to
be devoted to achieve a balance between the complexity and
accuracy of the model.

Discussion of Wearable Device System
Compared with previous work, the proposed wearable device
has the following advantages: (1) a good balance is achieved
between cost and functional effectiveness of the wearable device
system; (2) the proposed device is portable and comfortable,
thus making its application scenarios more general; (3) the
system pays attention to the influence of external environment
information, providing the basis for the follow-up research; (4)
the integrated system could monitor both users’ stress and facial
emotions of people around, which is suitable for research on
facial emotion recognition disorders; (5) an original multi-modal
physiological signal-based stress identification algorithm as well
as an improved facial emotion recognition algorithm is carefully
designed for the system.

However, this research also has many shortcomings. First of
all, because facial emotion recognition disorders are related to
mental illness, it is necessary to analyze the specific situation
of different types of users to avoid the following problems:
the users may not want to wear this device, and significant
differences among specific users in the physiological signals
would result in reduced accuracy of the model. In the future,
surveys will be performed on the users to improve the shape,
appearance and size of the device to increase its appeal to
users. Moreover, more data on different groups of people should
be collected to improve the model’s performance. Secondly,

collecting information about emotions of people around and
the surrounding environment by cameras may incur privacy
disputes. Thus, in the future, it is necessary to improve the rules
concerning the use of the device and the collected information
to conform to the law and protect the privacy of users. Finally,
the mobile APP designed in our system can provide only the
result feedback function. Thus, it is necessary to expand the
functions of the app to monitoring and analysis of the user’s
movements, automatic emergency alarming and the like to
improve user experience.

CONCLUSION

In the present work, an ear wearable device system was
proposed. The system can analyze the user’s own stress state
and recognize the facial emotions of people around the user.
It will provide a solution to long-term supervision of patients
with facial emotion recognition disorders. The contributions of
this work are as follows: A new platform is proposed, which
can be used to assist and study facial emotion recognition
disorders. The system is expected to provide help for patients
or potential sufferers of facial emotion recognition disorders.
Specifically, it can collect information and keep track of
the stress state of the user, the surrounding environment,
the emotions of people whom users interact with through
sensors and cameras to realize real-time monitoring of the
user’s psychological stress and allow the user to identify
emotions of people around. The system can also be used
by hospitals to analyze the patients’ specific conditions and
make corresponding treatment plans. Moreover, a novel multi-
modal physiological signal-based stress identification algorithm
and an improved facial emotion recognition algorithm are
put forward in this work, and experimental results show
that these two algorithms could well meet the functional
requirements of the system.
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