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A large number of morphology-based studies have previously reported a variety of
regional abnormalities in hemispheric asymmetry in Alzheimer’s disease (AD). Recently,
neuroimaging studies have revealed changes in the topological organization of the
structural network in AD. However, little is known about the alterations in topological
asymmetries. In the present study, we used diffusion tensor image tractography to
construct the hemispheric brain white matter networks of 25 AD patients, 95 mild
cognitive impairment (MCI) patients, and 48 normal control (NC) subjects. Graph
theoretical approaches were then employed to estimate hemispheric topological
properties. Rightward asymmetry in both global and local network efficiencies were
observed between the two hemispheres only in AD patients. The brain regions/nodes
exhibiting increased rightward asymmetry in both AD and MCI patients were primarily
located in the parahippocampal gyrus and cuneus. The observed rightward asymmetry
was attributed to changes in the topological properties of the left hemisphere in AD
patients. Finally, we found that the abnormal hemispheric asymmetries of brain network
properties were significantly correlated with memory performance (Rey’s Auditory
Verbal Learning Test). Our findings provide new insights into the lateralized nature of
hemispheric disconnectivity and highlight the potential for using hemispheric asymmetry
of brain network measures as biomarkers for AD.

Keywords: Alzheimer’s disease, connectome, diffusion tensor imaging, graph theory, hemispheric asymmetry,
mild cognitive impairment, lateralization

Abbreviations: ACG, anterior cingulate gyrus; AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative;
AFG, anterior fusiform gyrus; AI, asymmetry index; CDR, Clinical Dementia Rating; CUN, cuneus; FA, fractional anisotropy;
FDR, false discovery rate; GLM, general linear models; GM, gray matter; HIP, hippocampus; ICV, intracranial volume; MCI,
mild cognitive impairment; MFG, middle part of fusiform gyrus; MMSE, Mini Mental Status examination; MNI, Montreal
Neurological Institute; NC, normal control; RAVLT, Rey’s Auditory Verbal Learning Test; RECOG, 30-min delay recall scores;
ROI, region of interest; TE, echo time; TOT6, scores of trail 6; TOTAL, total score of the first 5 learning trials; TR, repetition
time; WM, white matter.
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INTRODUCTION

Alzheimer’s disease is the most common form of dementia,
comprising an estimated 60-80% of all dementia cases, and
MCI is considered a prodromal state of AD and possibly other
dementias in which cognitive decline is greater than expected at
a certain age or education level, but with functional impairment
that is insufficient for a diagnosis of dementia (Petersen
et al., 1985). Previous neuroimaging studies have demonstrated
aberrant hemispheric asymmetry of both brain structure and
function in AD and MCI, including cortical thickness (Kim et al.,
2012), cortical volume (Müller et al., 2005; Pennanen et al., 2005;
Shi et al., 2009; Cherbuin et al., 2010; Derflinger et al., 2011;
Dhikav et al., 2016; Li et al., 2016), and cortical surface area
covarying across the brain (Thompson et al., 2003, 2007; Long
et al., 2013). There is also aberrant hemispheric asymmetry in
WM properties (Müller et al., 2005; Damoiseaux et al., 2009;
Stricker et al., 2009; Liu et al., 2011; Wessa et al., 2016) and
functional connectivity (Wang et al., 2006, 2015). Intriguingly,
some of these studies showed that the left hemisphere was
significantly more impaired than the right, indicating a faster left
hemisphere degeneration in AD (Thompson et al., 2003, 2007;
Müller et al., 2005; Damoiseaux et al., 2009; Li et al., 2016; Wessa
et al., 2016).

Recently, the term “connectome” was proposed by modeling
the human brain as a complex network, and graph theoretical
approaches provide powerful tools to uncover human brain
connectome in healthy and disease populations (Sporns et al.,
2005; Bullmore and Sporns, 2009; Rubinov and Sporns, 2009;
Fornito et al., 2013, 2015; Fornito and Bullmore, 2015;
Ohno et al., 2016). Diffusion MRI is the only non-invasive
neuroimaging technique that can provide exquisite details of WM
fiber bundles in vivo, and have been extensively applied to study
AD and MCI (Douaud et al., 2011; Liu et al., 2011; Bosch et al.,
2012; Huang et al., 2012; Voineskos et al., 2012; Amlien and
Fjell, 2014). Furthermore, the WM connectome constructed by
using diffusion MRI have shown altered topological properties
in AD and MCI (Dai and He, 2014; Daianu et al., 2014, 2015;
Garcés et al., 2014; Phillips et al., 2014; Prescott et al., 2014; Sun
et al., 2014; Zhan et al., 2015; Zhang et al., 2015; Palesi et al.,
2016; Wang et al., 2016). Intriguingly, Daianu et al. (2013) found
significant differences between the left and right hemispheric in
the k-core matrices among NC, AD, and MCI. Specifically, the
entire k-core was “lost” in the left hemisphere of AD subjects,
supporting lateralized deficits in connectome topologies of AD.

To date, whether and how the asymmetry of hemispheric
network topology differs among AD, MCI and normal aging
remain largely unknown. Given the difference in hemispheric
asymmetries previously observed among AD, MCI and normal
aging, we hypothesized the existence of differences in the
topological asymmetry of hemispheric networks. To test
this hypothesis, diffusion magnetic resonance imaging (MRI)
was utilized to construct hemispheric brain WM networks
for AD patients, MCI patients, and normal control (NC)
subjects. Graph theoretical methods were then applied to
quantify multiple topological parameters for the hemispheric
networks.

MATERIALS AND METHODS

Participants
All participants in this study were selected from the second stage
of the ADNI-II database, available at http://adni.loni.usc.edu/.
Written informed consent was obtained, as approved by the
Institutional Review Board at each participating center. ADNI is
a large multi-site longitudinal study for evaluating biomarkers of
AD. The diagnostic categories are based on the online standard
criteria1. Table 1 illustrates the demographic information of all
subjects, and only subjects who acquired diffusion MRI data
using a 3T GE Medical System scanner were included in the
present study. The diagnostic inclusion criteria for each group
were as follows:

Normal Control Subjects
Mini-Mental State Examination scores between 24 and 30
(inclusive), a CDR of 0, and the absence of depression or
dementia.

MCI Subjects
Mini-Mental State Examination scores between 24 and 30
(inclusive), a CDR of 0.5, with memory complaint and
objective memory loss measured by education-adjusted scores
on the Wechsler Memory Scale Logical Memory II, absence
of significant levels of impairment in other cognitive domains,
essentially preserved activities of daily living, and absence of
dementia.

Alzheimer’s Disease Subjects
Mini-Mental State Examination scores between 20 and 26
(inclusive) and a CDR of 0.5 or 1.0.

Neuropsychological Testing
To explore the relationship between AI and the memory, Rey’s
Auditory Verbal Learning Test (RAVLT) were chosen from
the ANDI cognitive battery. Previous studies have proven the
effectiveness of RAVLT scores in evaluating memory complaints

1http://www.adni-info.org/

TABLE 1 | Demographic information of study participants.

NC MCI AD

No. of subjects 48 95 25

Age range (years) 60–90 57–94 62–92

Age (mean ± SD) 75.0 ± 6.0 74.9 ± 7.4 77.4 ± 8.4

Sex (Male/Female)∗ 21/27 57/38 19/6

MMSE (mean ± SD)∗∗ 29.19 ± 1.14 27.23 ± 1.59 22.6 ± 2.02

TOTAL (mean ± SD)∗∗ 43.69 ± 11.01 32.56 ± 10.28 20.92 ± 5.48

TOT6 (mean ± SD)∗∗ 8.35 ± 3.91 4.89 ± 3.40 1.08 ± 1.11

RECOG (mean ± SD)∗∗ 6.90 ± 4.26 3.26 ± 3.43 0.36 ± 0.63

∗ Indicates significant difference across groups (p < 0.05), as assessed by a chi-
square test.
∗∗ Indicates significant difference across groups (p < 0.001), as assessed by one-
way ANOVA.
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caused by AD (Balthazar et al., 2010; Reijmer et al., 2013; Moradi
et al., 2016). The RAVLT begins with a list of 15 unrelated words
(List A) repeated over 5 different trials, then the participant is
asked to repeat as many words as possible (Trials 1 to 5). After
that, a new list (List B) of 15 new words is read to the participant,
who is immediately asked to recall the words. After the List B trial,
the examiner asks participant to recall the words from the List
A (Trial 6). After 30-min of interpolated testing (timed from the
completion of List B recall), the participant is again asked to recall
the words from the List A (delayed recall). In this context, three
RAVLT scores were used, i.e., TOTAL score [the sum of scores
form 5 first trials (Trails 1 to 5)], TOT6 score (the scores form
trails 6), and the RECOG score (30-min delayed recall score).
Notably, there were significant group differences in TOTAL score
(F = 45.29, p < 0.001), TOT6 score (F = 40.74, p < 0.001), and
RECOG score (F = 32.79, p < 0.001), as shown in Table 1.

MRI Data Acquisition
Diffusion-weighted imaging and T1-weighted imaging data
were acquired for each participant using 3T GE Medical
System scanners at a variety of sites. T1-weighted images
were collected using spoiled gradient echo (SPGR) sequences
with the following parameters: 256 × 256 acquisition matrix;
voxel size = 1.2 mm × 1.0 mm × 1.0 mm; inversion time
(TI) = 400 ms; TR = 6.98 ms; TE = 2.85 ms; and flip
angle = 11◦. The diffusion-weighted images consisted of 41
diffusion-weighted volumes, with b = 1,000 s/mm2 and 5
b0 volumes with no diffusion sensitivity and were collected
with the following parameters: 128 × 128 matrix; voxel
size = 2.7 mm × 2.7 mm × 2.7 mm; number of slices = 59; and
scan time= 9 min. The values of TR and TE were not exactly the
same because the data were acquired from different sites. More
imaging details can be found at http://adni.loni.usc.edu/wp-
content/uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf.

Hemispheric Brain WM Network
Construction
The procedures were implemented using a pipeline tool of
diffusion MRI called PANDA (Cui et al., 2012). We first
preprocessed all diffusion-weighted images, including brain
extraction, correction for eddy-current distortion and simple
head motion, correction for b-matrix, and computation for
diffusion tensor and FA. To study the topological asymmetry of
human brain networks, two hemispheric brain WM networks
were constructed for each subject. A brain network consists of
two basic elements: nodes and edges.

Node Definition for the Hemispheric Brain WM
Networks
The nodes were determined by the same procedures as previously
proposed (Zhong et al., 2017). First, the automated anatomical
labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) provided
by the Montreal Neurological Institute (MNI) was binarized
to obtain a basic mask. Then, the left and right hemispheres
were flipped along the x-axis, and the basic mask and the
flipped version were averaged to generate a symmetric mask.
The right side of the symmetric mask was parcellated into

a 512-ROI set using a random partition procedure (Zalesky
et al., 2010): each ROI represented a node. Second, the
resultant 512-ROI set was flipped into the left hemisphere
to obtain the final template. This flipping ensured one-to-
one correspondence of ROIs/nodes between the left and right
hemispheric networks, enabling direct comparison between the
two hemispheric networks. Finally, the ROI set in the MNI
space was transformed into the native diffusion space for
each subject as described in a previous study (Gong et al.,
2009). Accordingly, each individual FA image was first co-
registered to the T1-weighted structural images in the native
diffusion space using a linear transformation. The co-registered
structural images were then non-linearly normalized to the
symmetric ICBM-152 T1 template in MNI space. Finally, the
inverse transformations were applied to the parcellation of
MNI space, resulting in native-space GM parcellations for each
subject.

Edge Definition for the Hemispheric Brain WM
Networks
The whole-brain fiber tracking was performed in native diffusion
space for each subject using the Fiber Assignment by Continuous
Tracking (FACT) algorithm (Mori et al., 1999). Fiber tracking
continued until the FA value was less than 0.2 or the angle
between the current and the previous path segment was higher
than 45◦. The edge would be built up between a pair of nodes
if more than one fiber was connected. In this study, the edge
weight was defined as the mean FA values of the connected fibers
between two regions. The FA value is an important index for
evaluating fiber integrity (Beaulieu, 2002), and several studies
have used FA as a marker to study the efficiency of brain
connections (Lo et al., 2010; van den Heuvel and Sporns, 2011).
Finally, two hemispheric 512× 512 symmetric weighted matrices
were generated for each subject.

Network Parameters
The topological properties of human brain networks can be
analyzed quantitatively using graph theory (Bullmore and
Sporns, 2009). In the current study, we calculated the global
network efficiency, local network efficiency and nodal efficiency
to characterize the topological organization of WM networks
at both global and regional levels using GRETNA2. A brief
description for these network parameters was as follows:

Global Network Efficiency
The global efficiency of a network (Eglob) is defined as the average
inverse shortest path length (Latora and Marchiori, 2001). For a
given network G with N nodes, the Eglob is computed as follows:

EG
glob =

1
N(N−1)

∑
i∈G

∑
j 6=i∈G

1
Lij

where Lij is the shortest path length between node i and node
j. Eglob reflects the information transferring ability of the entire
network, and a larger Eglob correlates with a more powerful
efficiency.

2http://www.nitrc.org/projects/gretna/
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Local Network Efficiency
The local efficiency of a network (Eloc) is defined as the average
of the local efficiencies of all individual nodes (Latora and
Marchiori, 2001), which is expressed as follows:

EG
loc=

1
N

∑
i∈G

EGi
glob

where Gi is the sub-graph composed of the nearest neighbors
of node i and the connections among them. Eloc corresponds
to the average efficiency of information flow within the local
environment and reflects the average ability of a network to
tolerate faults.

Nodal Efficiency
The nodal efficiency for a given node i (Enodal) is defined as the
mean of the shortest path length between node i and all other
nodes in the network (Achard and Bullmore, 2007), that is:

EG
nodal(i) = 1

N−1

∑
i6=j∈G

1
Lij

Enodal represents the capacity of a node to communicate with the
other nodes of a network.

Asymmetry Index (AI)
To assess the degree of differences in left and right hemispheric
networks, the AI was computed for each of the left-right pairs
using the following formula (Iturria-Medina et al., 2011; Sun
et al., 2015):

AI =
MR−ML

MR+ML

For network efficiencies, MR and ML, respectively stand for
the global network or local network efficiency of the right and

left hemispheric network. For nodal efficiency, MR and ML,
respectively represent the nodal efficiency of corresponding ROIs
from the right and left hemispheric network. There are 512 nodes
in each hemisphere. Thus, the AI of node efficiency would have
512 values. Notably, a positive value of AI represents a rightward
asymmetry, while a negative value of AI indicates a leftward
asymmetry.

Statistical Analysis
We first tested the within-group asymmetries of global network
efficiency, local network efficiency, and nodal efficiency for each
group (i.e., AD, MCI, and NC). Data were analyzed using
GLMs with repeated measures. Specifically, the left and right
hemispheres were taken as the repeated variable, while age, sex,
and the TR and TE of diffusion-weighted imaging were used
as covariates. The ICV of the hemispheres was also included
as a covariate in the statistical model, considering the network
efficiency-ICV relationship (Yan et al., 2011) and the difference in
the hemispheric brain size (Giedd et al., 1999). The hemispheric
ICV was computed by summing the volume of WM, GM, and
cerebrospinal fluid (CSF) within each hemisphere. The tissue
was segmented from the T1-weighted images using SPM83.
For network efficiencies, a value of P < 0.05 was considered
significant. Multiple-comparison correction was performed for
nodal efficiency using the FDR method, and q < 0.05 was
considered significant.

Next, we assessed group differences in the AI of the global
network efficiency, local network efficiency, and nodal efficiencies
using the GLMs. Notably, the “sex × group” interaction was
first evaluated for each AI measure. If the interaction was not
significant, the interaction term was excluded in the statistical
model. The main group effects were then evaluated after
controlling for age, sex, whole-brain ICV, and the difference in

3http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

FIGURE 1 | Within-group asymmetry of the global and local network efficiency of the hemispheric networks. (A) Global network efficiency (Eglob); (B) Local network
efficiency (E loc). For each group, the statistical analysis was conducted after the data were adjusted for age, sex, hemispheric ICV, and TR and TE from
diffusion-weighted imaging. ∗ indicates a significant difference between two hemispheres (P < 0.05).
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hemispheric ICV, TR and TE of diffusion-weighted imaging. For
the AI of nodal efficiency (512 in total), the statistical procedure
was confined to the nodes/ROIs that showed a significant
asymmetry in at least one of the groups from the analysis in the
previous step. In addition, the Bonferroni method was used to
correct for post hocmultiple comparisons (Comparison time is 3).
For all parameters, P < 0.05 was considered significant.

Besides, to further explore the cause of AI differences, similar
group comparisons of global network efficiency, local network
efficiency and the mean nodal efficiency were implemented in
each hemisphere, with age, sex, and hemispheric ICV, TR, and
TE of diffusion-weighted imaging as covariates.

Finally, we examined the relationships between the AI and
the RAVLT scores (i.e., TOTAL score, TOT6 score and RECOG
score) across all subjects. Specifically, multiple linear regressions
were employed taking age, sex, whole-brain ICV, and the
difference in hemispheric ICV, TR, and TE of diffusion-weighted
imaging as covariates. To limit the number of association
calculations for regional properties, only the nodes showing
significant group difference in the AI of nodal efficiency were
chosen as independent variables. For global network efficiency
and local network efficiency, p < 0.05 was considered for
establishment of a significant relationship. Multiple-comparison
correction was performed for nodal efficiency using the FDR
method, and q < 0.05 was considered significant.

RESULTS

Within-Group Asymmetry of Global and
Local Network Efficiencies
The within-group asymmetries of global and local network
efficiencies for each group are illustrated in Figure 1. Significant

rightward asymmetry in global network efficiency was observed
in the AD group (t = 2.63, P = 0.012) but not in the MCI group
(t = 0.27, P = 0.79) or the NC group (t = 1.23, P = 0.22). For
local network asymmetry, significant rightward (i.e., right > left)
asymmetry was observed in both the AD (t = 2.72, P = 0.009)
and NC (t = 2.08, P= 0.041) group but not in the MCI (t = 1.52,
P = 0.13) group.

Between-Group Differences in the
Asymmetry of Global and Local Network
Efficiency
There were significant “sex × group” interaction effect on the AI
of local network efficiency (F = 3.19; P= 0.04), but no significant
interaction effect on the AI of global network efficiency (F= 1.08;
P = 0.34). Post hoc analysis showed that group difference was
found only in females (F = 9.55; P < 0.001) but not males
(F= 1.73; P= 0.78), as shown in Figures 2A,B. More specifically,
for females, there were significantly difference in the asymmetry
of local network efficiency between AD group and NC group
(t = 3.37; PBonferroni = 0.007) and between AD group and MCI
group (t = 3.60; PBonferroni = 0.003).

For the global network efficiency, on which there was no
significant “sex × group” interaction effect the group effect was
explored after excluding the interaction term from the statistical
model. There were significant group effects on the AI of global
network efficiency (F = 4.97; P = 0.008) as shown in Figure 3A.
For the AI of the global network, post hoc comparison revealed
that there was a significant group difference only between
NC and AD group. Compared with NC group, AD group
exhibited significantly increased rightward asymmetry in global
network efficiency (t = 3.61; PBonferroni = 0.002). Regarding
the hemispheric topological properties for each hemisphere,
there were significant group differences in global network

FIGURE 2 | Between-group differences on the AI of the local network efficiency of the hemispheric networks in males and females. (A) The box plots of the group
differences on the AI of local network efficiency in males. (B) The box plots of the group differences on the AI of local network efficiency in females. Before
conducting the group comparisons, the data were adjusted for whole-brain ICV, hemispheric ICV difference, age, gender, and TR and TE from diffusion-weighted
imaging. P̂ represents the Bonferroni-corrected P-value of post hoc analysis.
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FIGURE 3 | Between-group differences in the AI of the global network efficiency of the hemispheric networks and the absolute network efficiency in the two
hemispheres. (A) The box plots of the group differences in the AI of global network efficiency. Before conducting the group comparisons, the data were adjusted for
whole-brain ICV, hemispheric ICV difference, age, gender, and TR and TE from diffusion-weighted imaging. (B) Bar charts depicting group differences in the global
network efficiency of each hemisphere. Before conducting the group comparisons for each hemisphere, the hemispheric ICV, age, sex, and TR and TE from
diffusion-weighted imaging were adjusted. P̂ represents the Bonferroni-corrected P-value of post hoc analysis.

efficiency only in the left hemisphere (Eglob of left hemisphere:
F = 4.12 P = 0.017; Eglob of right hemisphere: F = 1.62;
P = 0.20; Figure 3B). There was a trend toward an increase
in global network efficiency in both hemispheres from AD to
MCI to NC (Figure 3B). Post hoc comparisons revealed that
compared with NC, AD exhibited significantly decreased global
network efficiency in the left hemisphere (Eglob: t = –2.99;
PBonferroni = 0.012), but not in the right hemisphere (Eglob:
t = –1.49; PBonferroni = 0.42). It is likely that the increased
rightward asymmetry in the AD group compared with the
NC group is mainly attributed to this observed reduction
in global network efficiency of the left hemisphere in AD.
There were no significant differences between AD and MCI in
either the left hemisphere (Eglob: t = –1.93; PBonferroni = 0.17,
Eloc: t = –1.69; PBonferroni = 0.28) or right hemisphere (Eglob:
t = –0.90; PBonferroni = 1.11). There were also no significant
differences between MCI and NC in either the left hemisphere
(Eglob: t = –1.12; PBonferroni = 0.79) or right hemisphere (Eglob:
t = –1.07; PBonferroni = 0.86).

Within-Group Asymmetry of Nodal
Efficiency
The hemispheric network nodes exhibiting significant between-
hemisphere differences in nodal efficiency (FDR-corrected
P < 0.05) in each group are shown in Figure 4. Only four
nodes (512 in total) exhibited rightward asymmetry, and no
node exhibited leftward asymmetry in the AD group. There
were 42 nodes that exhibited rightward asymmetry and 43
nodes that exhibited left asymmetry in the MCI group. In
the NC group, 5 nodes exhibited rightward asymmetry, and
three nodes exhibited left asymmetry. For the MCI group,
the regions/nodes with a rightward asymmetry in nodal
efficiency were mostly located in the inferior frontal gyrus,

precentral gyrus, superior parietal gyrus, paracentral lobule,
postcentral gyrus, precuneus, CUN, and supramarginal gyrus,
lingual gyrus, superior temporal gyrus, superior temporal gyrus,
middle temporal gyrus, inferior temporal gyrus, fusiform gyrus,
parahippocampal gyrus, lenticular nucleus, and insula. In the AD
and NC groups, the regions exhibiting rightward asymmetry were
located in a subset of the above-mentioned areas.

The leftward asymmetric nodes for the MCI group were
mainly located in the anterior cingulate and paracingulate gyri,
orbital part of the superior frontal gyrus, medial orbital part of
the superior frontal gyrus, orbital part of the inferior frontal
gyrus, orbital part of the middle frontal gyrus, triangular part
of the inferior frontal gyrus, olfactory cortex, supplementary
motor area, median cingulate, paracingulate gyri, precuneus,
posterior cingulate gyrus, calcarine fissure, and surrounding
cortex, superior temporal gyrus, superior temporal gyrus of the
temporal pole, middle temporal gyrus, HIP, parahippocampal
gyrus, caudate, thalamus, and lenticular nucleus. These regions
mostly covered leftward asymmetric regions in the NC group,
except for the posterior cingulate gyrus.

Between-Group Differences in the
Asymmetry of Nodal Efficiency
At the nodal efficiency level, there was significant “sex × group”
interaction effect on three nodes (uncorrected P < 0.05).
These nodes were mainly located around MFG, HIP and ACG.
More specifically, the MFG and HIP showed significant group
difference in the AI of nodal efficiency in male only (MFG:
F = 3.51; P = 0.018; HIP: F = 2.79, P = 0.04), whereas ACG was
significant group difference only in female (F = 3.73; P = 0.01).
More specifically, for females, there were significantly difference
in the asymmetry of nodal efficiency in ACG between AD group
and MCI group (t = –2.66; PBonferroni = 0.03) and between MCI
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FIGURE 4 | Three-dimensional representations of the significant
between-hemisphere differences in nodal efficiency (FDR-corrected P < 0.05)
in the AD, MCI and NC groups. The nodes shown in red represent the
significantly rightward asymmetric nodes, and the nodes in blue represent
significantly leftward asymmetric regions. The node size represents the
absolute value of the difference between two hemispheres in mean node
efficiency (right-left).

group and NC group (t = 2.80; PBonferroni = 0.02). For males,
there were significantly difference in the asymmetry of nodal
efficiency in MFG between MCI group and NC group (t = –2.54;
PBonferroni = 0.04) and in HIP between AD group and MCI group
(t = –2.66; PBonferroni = 0.03). The detailed results were shown in
Figure 5.

The significant group difference in the AI of nodal efficiency
is illustrated in Figure 6. Among these three groups, we found
that eight nodes (uncorrected P < 0.05; 512 in total) showed a
significant group effect on the AI of nodal efficiency. These nodes
were primarily located in the anterior and posterior portion of
the inferior temporal gyrus, lingual gyrus, CUN, and precuneus,
AFG, supplementary motor area, and anterior parahippocampal
gyrus (Table 2). Post hoc analysis showed that most of the five
disease-related nodes exhibited increased rightward asymmetry
in the AD group compared with the NC group, except for
a small portion of the anterior inferior temporal gyrus and
supplementary motor area. There were 4 nodes exhibiting
increased rightward asymmetry in patients with AD compared to
those with MCI, mainly located in a small portion of the anterior
inferior temporal gyrus, AFG, anterior parahippocampal gyrus
and supplementary motor area. Two nodes, including the CUN
and anterior parahippocampal gyrus, showed significant group
differences between the MCI and NC groups, with a higher AI of

nodal efficiency observed in patients with MCI compared to NC.
Similar to the network efficiency, there was a significant group
effect on the mean AI of nodal efficiency and the mean nodal
efficiencies of the left hemisphere based on the regions affected
by disease (Figure 7).

Relationship between AI and RAVLT
For the global network efficiency and local network efficiency,
there were significant negatively correlations between the AI
and any RAVLT scores (For AI of Eglobal, TOTAL: t = –2.62,
P = 0.01; TOT6: t = –2.69, P = 0.08; RECOG: t = –2.79,
P = 0.006. Figures 8A–C. For AI of Elocal, TOTAL: t = –2.26,
P = 0.0025; TOT6: t = –2.63, P = 0.009; RECOG: t = –2.07,
P = 0.04; Figures 8D–F). At the nodal efficiency level, 2 nodes
(FDR-corrected p< 0.05), mainly located around AFG and CUN,
exhibited significant negative correlations with RAVLT scores.
(For AFG, TOTAL: t = –3.61, P = 0.003; TOT6: t = –2.97,
P = 0.015; RECOG: t = –2.99, P = 0.012; Figures 9A–C. For
CUN, TOTAL: t = –3.32, P= 0.004; TOT6: t = –2.93, P= 0.015;
RECOG: t = –3.27, P = 0.010; Figures 9D–F).

DISCUSSION

In the present study, we investigated alterations in the topological
asymmetry between the hemispheric brain WM networks of AD
patients and MCI patients. Our main findings are as follows:
(1) the hemispheric brain WM networks showed an aberrant
rightward topological asymmetry in AD patients, but not in
the early phase of the disease (MCI); (2) there were significant
group differences in the topological properties only in the left
hemisphere, suggesting a key role of the left hemisphere in the
aberrant topological asymmetry in AD; and (3) the degree of
rightward asymmetry in nodal efficiency was increased primarily
around the temporal lobe in patients with AD compared with NC
subjects. (4) the aberrations of hemispheric network topological
asymmetry of AD and MCI patients were correlated with the
memory performance. These findings provide direct evidence
of changes in network asymmetry in AD compared to normal
aging and extend our understanding of the neurophysiologic
mechanisms of AD from a network asymmetry perspective.

Disrupted Hemispheric Brain WM
Network in AD and MCI
Previous neuroimaging studies have reported reduced network
efficiency of the whole-brain WM network in AD patients,
compared with NC subjects (Lo et al., 2010; Bai et al., 2012;
Reijmer et al., 2013). Interestingly, we found similar results at
the hemispheric brain WM network level. That is, compared
with NC subjects, the network efficiency of patients with AD
was significantly reduced in the left hemisphere. Consistent with
the present findings, a disrupted hemispheric brain WM network
has been previously reported by comparing 15 AD patients
and NC subjects (Daianu et al., 2013). Taken together, these
results consistently support the longstanding notion that AD is
a syndrome of disconnection (Xie and He, 2012; Tijms et al.,
2013; Dai and He, 2014). Notably, compared with either NC
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FIGURE 5 | The “sex × group” interaction effects on the AI of nodal efficiency. (A) Three-dimensional representations of the significant “sex × group” interaction
effects on AI of nodal efficiency (uncorrected P < 0.05), The nodes in blue represent the significant difference in males, and the node in red represents significant
difference in females. The node size represents the F value when comparing the AI of nodal efficiency among the three groups. (B) The box plots of the
“sex × group” interaction effects on the AI of nodal efficiency in ACG in females. (C) The box plots of the “sex × group” interaction effects on the AI of nodal
efficiency in MFG in males. (D) The box plots of the “sex × group” interaction effects on the AI of nodal efficiency in HIP in males. Before conducting the group
comparisons, the data were adjusted for whole-brain ICV, hemispheric ICV difference, age, and TR and TE from diffusion-weighted imaging. P̂ represents the
Bonferroni-corrected P-value of post hoc analysis.

subjects or AD patients, the network efficiency of MCI patients
showed no significant reduction in network efficiency of either
hemisphere. This finding is consistent with the concept of MCI
as a transitional stage between NC and AD (Petersen et al., 1985),
and a trend for AD < MCI < NC was observed when comparing
the hemispheric network efficiency among the three groups in
both the left hemisphere and right hemisphere.

Within-Group Asymmetry
In addition, we found that NC subjects exhibited no significant
difference in two hemispheric brain WM networks, suggesting
that the two hemispheres showed similar intra-connected
pathways in NC. However, conflicting results have been
reported. For example, Caeyenberghs and Leemans (2014)
reported leftward asymmetry in network efficacies in NC.
This inconsistency is likely due to the differences in network

resolution, weighting strategy for network edges, age range of
samples. The network construction methods can dramatically
affect WM network topological properties (Zalesky et al., 2010;
Bassett et al., 2011; Zhong et al., 2015), and the construction
methods differed between the previous study (Caeyenberghs
and Leemans, 2014) and the present study: Caeyenberghs and
Leemans (2014) involved 45 nodes (low resolution), whereas
we used 512 nodes in the present study (high resolution). In
addition, the number of fibers was defined as edge weights by
Caeyenberghs, while we used the FA value as weight.

Notably, the AD patients exhibited significant right-greater-
than-left asymmetry of network efficiency, suggesting that the
left hemisphere is intra-connected in a more poorly integrated
way with less efficient communication at the hemispheric
level in AD. While there are no comparable structural data
involving hemispheric network efficiency in patients with AD,
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FIGURE 6 | Three-dimensional representations of the nodes with significant
between-group differences in the AI of nodal efficiency. The node size
represents the F-value of GLM when comparing the AI of nodal efficiency
among the three groups, and represents the t-value of post hoc analysis (no
FDR).

our findings are consistent with earlier studies showing that the
left hemisphere lost GM faster than the right in AD patients
(Thompson et al., 2003, 2007).

Atypical Topological Asymmetry in AD
and MCI Patients
Compared with the NC subjects, the AD patients exhibited
significantly increased rightward asymmetry in both local
network efficiency and global network efficiency. Considering
the symmetrical topological organization in the normal aging
brain, this aberrant hemispheric asymmetry in AD is likely
related to a mismatch in disease-related changes in structural
properties within the two hemispheres. Compatibly, Thompson
et al. (Thompson et al., 2007) demonstrated that cortical atrophy
occurred earlier and progressed faster in the left hemisphere than

TABLE 2 | The percentage of voxels in AAL regions that exhibited a significant
group difference in nodal efficiency asymmetry among three groups.

AAL regions Percentage Type

Inferior temporal gyrus 21.17 Association

CUN 17.00 Association

Supplementary motor area 16.88 Association

AFG 15.81 Association

Superior occipital gyrus 8.44 Association

Lingual gyrus 5.23 Association

Olfactory cortex 4.40 Limbic

Anterior parahippocampal gyrus 2.50 Paralimbic

Angular gyrus 1.78 Association

Precuneus 1.55 Association

Amygdala 1.31 Subcortical

Calcarine fissure and surrounding cortex 0.95 Primary

Superior parietal gyrus 0.95 Association

Lenticular nucleus, putamen 0.95 Subcortical

Caudate nucleus 0.59 Subcortical

Gyrus rectus 0.48 Paralimbic

in the right in AD, indicating that the left hemisphere was more
severely impaired than the right and that there was a faster left
hemisphere degeneration in AD. Interestingly, our data reveled
a disease-related disruption in local network efficiency in the
left hemisphere but a slight change in the right hemisphere.
Biochemically, the significant decrease in network efficiency may
be related to the β-amyloid-related protein in AD (Tsai et al.,
2009).

At the nodal level, two nodes (the parahippocampal gyrus
and CUN) showed abnormal topological asymmetry in both AD
and MCI patients compared with NC subjects. This atypical
topological asymmetry in the parahippocampal gyrus may be
associated with structural asymmetry. For example, Kim et al.
(Kim et al., 2012) studied the cortical thickness of MCI patients,
mild AD patients and moderate-to-severe AD patients and
found a progressive reduction in cortical asymmetry in the
parahippocampal gyrus. Liu et al. reported a reduced FA value
in right parahippocampal WM in both AD and MCI patients
(Liu et al., 2011). For CUN, the abnormalities in functional
regional homogeneity have been also reported in AD (Wang
et al., 2006; He et al., 2007). Given the important role of the
parahippocampal gyrus (Staresina et al., 2011) and CUN (Addis
et al., 2004) in episodic memory, it is possible that the observed
atypical topological asymmetry in these regions may be related to
impaired memory of AD and MCI patients.

Compared with the NC subjects, several regions were
identified to have abnormal asymmetry in nodal efficiency
only in AD, including the precuneus, temporal regions, and
lingual gyrus. Given the important role of the precuneus in
communication (Hagmann et al., 2007; Gong et al., 2009),
which is a hub region in both structure network an resting-
state network, our findings provide further support to the notion
that these brain hubs may be preferentially affected in AD
(Buckner et al., 2009; Jacobs et al., 2013; Dai et al., 2015).
The disruptions of the hub regions may indicate more isolated
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FIGURE 7 | (A) Box plot of group differences in the AI, based on the mean AI of observed significant nodes. The data were adjusted for age, gender, whole-brain
ICV, hemispheric ICV differences, and TR and TE from diffusion-weighted imaging. (B) Bar charts depicting group differences in the mean nodal efficiency in each
hemisphere. The data were adjusted for age, sex, hemispheric ICV, and TR and TE from diffusion-weighted imaging. P represents the P-value of GLM, and P̂
represents the Bonferroni-corrected P-value of post hoc analysis.

FIGURE 8 | Scatter plots of the AI of the global network and local network efficiency and RAVLT-related scores. The red circles represent AD patients; the green
circles represent MCI patients; the blue circles represent NC subjects. (A) The significant correlations between the AI of the global network efficiency and TOTAL.
(B) The significant correlations between the AI of the global network efficiency and TOT6. (C) The significant correlations between the AI of the global network
efficiency and RECOG. (D) The significant correlations between the AI of the local network efficiency and TOTAL. (E) The significant correlations between the AI of
the local network efficiency and TOT6. (F) The significant correlations between the AI of the local network efficiency and RECOG.

network architecture in AD, presumably leading to the observed
deficits in overall global integration. GM loss in precuneus of
the AD brain has also been consistently found by applying
voxel-based morphometry (VBM) (Derflinger et al., 2011). For
AFG, abnormalities in this region of AD patients have also
been reported in previous studies. He et al (He et al., 2007)
have reported that the fusiform gyrus showed increased blood

oxygenation level-dependent fluctuations (LFBF) in AD patients.
Yao et al (Yao et al., 2010) have found the abnormalities of
interregional correlation in the fusiform gyrus in AD patients.
For lingual gyrus, Sun et al (Sun et al., 2014) have found abnormal
nodal efficiency in the lingual gyrus in AD patients. For inferior
temporal gyrus, several studies have confirmed that the temporal
gyrus atrophy in AD patients was correlated with changes of
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FIGURE 9 | Scatter plots of the AI of the nodal efficiency and RAVLT-related scores. The red circles represent AD patients; the green circles represent MCI patients;
the blue circles represent NC subjects. (A) The significant correlations between the AI of the nodal efficiency and TOTAL in AFG. (B) The significant correlations
between the AI of the nodal efficiency and TOT6 in AFG. (C) The significant correlations between the AI of the nodal efficiency and RECOG in AFG. (D) The
significant correlations between the AI of the nodal efficiency and TOTAL in CUN. (E) The significant correlations between the AI of the nodal efficiency and TOT6 in
CUN. (F) The significant correlations between the AI of the nodal efficiency and RECOG in CUN.

white matter (i.e., microstructure, number of synapses) (Scheff
et al., 2011; Huang et al., 2012; Delli Pizzi et al., 2015). In
addition, biochemically, Johnson et al evaluated 18F T807, a PET
radiopharmaceutical selective for tau pathology by comparing
normal individuals to MCI or mild AD dementia patients. They
found that 18F T807 binding in the MCI/AD patients was
especially high in inferior temporal lobe (Johnson et al., 2016).
The results of these studies give us some reasonable explanations
for the observed abnormal asymmetry in these regions from
different perspectives.

The increased degree of rightward asymmetry in nodal
efficiency is primarily due to changes in the left hemisphere,
which has been well-documented to dominantly process language
(Gotts et al., 2013). Therefore, our results are to some extent
consistent with the clinical symptoms of AD, and imply that
atypical topological asymmetries may relate to the impairment
in verbal memory, language and other cognitive functions in AD.
Notably, there were more nodes exhibiting significant asymmetry
in AD patients than those in MCI patients, compared with NC
subjects, further supporting the transitional role of the MCI
between the NC and AD.

Relationship between Topological
Asymmetry and the Memory
Performances
We examined the correlation between the AI of network metrics
and RAVLT scores (i.e., TOTALL, TOT6 and RECOG). We
found that subjects with higher level rightward asymmetry in

local network efficiency and global network efficiency had lower
verbal memory performance. Also, subjects with higher level
rightward asymmetry in nodal efficiency of two cortical regions
(i.e., AFG and CUN) had lower verbal memory performance.
Several previous research results were consistent with the present
findings. For example, Reijmer et al. (2013) found that memory
performance (including RAVLT scores) was correlated with
local efficiency and global efficiency in WM network in AD.
At nodal level, He and his colleagues found (He et al., 2007)
that MMSE score in the AD patients group were significant
positive correlations with ReHo in CUN. In addition, previous
morphological studies also have demonstrated the AD-related
structural changes within the brain is closely related to RAVLT
measures (Estévez-González et al., 2003; Balthazar et al., 2010;
Stonnington et al., 2010; Moradi et al., 2016). Notably, Derflinger
et al. (2011) found that the performance of language-based
neuropsychological tests was correlated with lateralization of
GM loss to the left hemisphere in AD. This agreement further
validates our finding that the rightward asymmetry was mainly
contributed by the changes of the topological properties of AD
patients in the left hemisphere. Thus our results of aberrant
hemispheric asymmetry likely reflect the breakdown of function
connections that influences memory performances of the AD
patients. The present findings support a general trend in the
literature showing a direct correspondence between clinical
symptomatology and the underlying anatomical structures
supporting network efficiency and suggest the usefulness of brain
network properties as potential biomarkers for diagnosis and

Frontiers in Aging Neuroscience | www.frontiersin.org 11 August 2017 | Volume 9 | Article 261

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


fnagi-09-00261 August 3, 2017 Time: 15:14 # 12

Yang et al. Topological Asymmetry in AD and MCI

evaluation of the severity of the disease as well as understanding
the pathophysiologic mechanisms.

Limitations and Future Works
Finally, a few limitation should be addressed. First, a tensor-
model-based deterministic tractography method was utilized
to reconstruct the structural brain networks in this study.
It is has been well-known that this fiber tracking method
cannot handle the “fiber crossing” problem (Mori and van
Zijl, 2002). Topological asymmetry analysis based on other
methods such as probabilistic tractography or other imaging
models such as diffusion spectrum MRI or high-angular-
resolution diffusion imaging (HARDI) can be used in further
studies. Second, handedness has been shown to impact the
network efficiency asymmetries of human brains (Li et al.,
2014). However, the present study did not include handness
information; therefore, no assessment of the effect of handedness
on network asymmetries was made. Next, the current study
did not analyze the relationship between changes in network
asymmetry and cortical/subcortical atrophy. Given the WM
alteration could be related to cortical/subcortical atrophy (Huang
et al., 2012; Delli Pizzi et al., 2015), we will evaluate changes
of asymmetry- cortical/subcortical atrophy relationships in AD
the future. It is highly desired to explicitly evaluate changes
of asymmetry-cognition relationships in AD the future. At the
end, the sample size of the present study is relatively small
(48 NC subjects, 95 MCI and 25 AD patients). Give the
ADNI2 subjects are continuously being updated, future work is
encouraged to assess a larger sample size to verify our current
findings.

CONCLUSION

The present study revealed increased rightward asymmetry in
hemispheric brain WM networks from NC to MCI to AD,
and the rightward asymmetry is attributed to aberration of
topological properties in the left hemisphere in patients. In
addition, the degree of the rightward asymmetry of topological
properties was also correlated with memory performance. These
findings provide another angel to understand the pathological
mechanisms in AD and highlight the potential for brain network
asymmetry-based biomarkers for AD.
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