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Abstract: Human cytosolic prolyl-tRNA synthetase (HcProRS) catalyses the formation of the prolyl-
tRNAPro, playing an important role in protein synthesis. Inhibition of HcProRS activity has been
shown to have potential benefits in the treatment of fibrosis, autoimmune diseases and cancer.
Recently, potent pyrazinamide-based inhibitors were identified by a high-throughput screening
(HTS) method, but no further elaboration was reported. The pyrazinamide core is a bioactive
fragment found in numerous clinically validated drugs and has been subjected to various modifica-
tions. Therefore, we applied a virtual screening protocol to our in-house library of pyrazinamide-
containing small molecules, searching for potential novel HcProRS inhibitors. We identified a series
of 3-benzylaminopyrazine-2-carboxamide derivatives as positive hits. Five of them were confirmed
by a thermal shift assay (TSA) with the best compounds 3b and 3c showing EC50 values of 3.77 and
7.34 µM, respectively, in the presence of 1 mM of proline (Pro) and 3.45 µM enzyme concentration.
Co-crystal structures of HcProRS in complex with these compounds and Pro confirmed the initial
docking studies and show how the Pro facilitates binding of the ligands that compete with ATP sub-
strate. Modelling 3b into other human class II aminoacyl-tRNA synthetases (aaRSs) indicated that the
subtle differences in the ATP binding site of these enzymes likely contribute to its potential selective
binding of HcProRS. Taken together, this study successfully identified novel HcProRS binders from
our anti-tuberculosis in-house compound library, displaying opportunities for repurposing old drug
candidates for new applications such as therapeutics in HcProRS-related diseases.

Keywords: prolyl-tRNA synthetase; inhibitor; thermal shift assay; X-ray crystallographic studies;
in silico modelling

1. Introduction

Aminoacyl-tRNA synthetases (aaRSs) are a class of essential enzymes found in all
cells. They are responsible for catalysing the ligation of an amino acid to its cognate tRNA
in an ATP-dependent manner [1]. The charged tRNAs are subsequently used for protein
synthesis at the ribosome. To date, there are 36 known aaRSs encoded by distinct genes
present in human cells. Among them, 16 are found in the cytoplasm, 17 are transported
and exclusively localized in the mitochondria and the remaining three (GlnRS, LysRS and
GlyRS) show dual localization [2]. Many human diseases are associated with aaRS dysfunc-
tion, such as the overexpression and the enhancement of aaRS catalytic activity in some
cancers [3] and the emergence of clinically relevant aaRS mutants in genetic diseases [4–6].
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In addition to their important roles in protein synthesis, aaRSs have also been shown
to have certain non-canonical functions [7] being involved in various physiological and
pathological processes, including post-translational modifications, autoimmune diseases,
angiogenesis, fibrosis and neuropathy [4]. Therefore, aaRSs are attractive targets in the
development of therapeutic agents against multiple human diseases [8,9].

Notably, glutamyl-prolyl-tRNA synthetase (EPRS) is a dual function enzyme that
catalyses the formation of charged glutamyl-tRNA and prolyl-tRNA in the cytoplasm. The
human ProRS (HcProRS) activity is located at the C-terminal region of this protein and
inhibition of this enzyme has been recognized as a promising approach for treatment of
HcProRS-related diseases. Halofuginone (Figure 1), a validated ProRS inhibitor, occupies
both the proline (Pro) binding site and the 3′-end of cognate tRNA binding site in an
ATP-dependent manner [10]. Halofuginone has shown to have excellent anti-malaria,
anti-fibrosis and anti-cancer activities [10–14]. However, due to its poor selectivity between
species, further clinical application has been severely hampered [15]. Recently, Adachi
et al. identified a number of pyrazinamide-based HcProRS inhibitors (Figure 1, compounds
2a–c) via a high-throughput screening (HTS) system based on a bioluminescent enzymatic
assay. Among them, the best compound 2a demonstrated potent binding affinity with a Kd
of 0.76 nM for HcProRS in the presence of Pro [16]. Biochemical data complemented with a
crystal structure further proved that this compound is an ATP-competitive inhibitor that
works in a Pro-dependent fashion.
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Figure 1. Chemical structures of halofuginone (1) [10] and confirmed HcProRS inhibitors 2a, 2b, 2c [16].

Pyrazinamide (PZA) is a clinically validated first-line antitubercular drug for the clini-
cal treatment of active Mycobacterium tuberculosis infections and has also been considered as
a bioactive chemical scaffold used for various chemical modifications [17–22]. Zitko’s group
reported a large series of pyrazinamide derivatives as part of efforts for the development
of new antimicrobials, especially as antimycobacterial drugs [17,18]. The in-house library
contains a series of 3-substituted-N-benzylpyrazine-2-carboxamide derivatives, which
share high structural similarity with confirmed HcProRS inhibitor 2a. This motivated us
to systematically investigate the potential of these compounds as HcProRS inhibitors. We
therefore performed molecular docking to virtually screen our small molecule library using
the available compound 2a-bound HcProRS structure (PDB ID: 5VAD) as a starting model.
Positive hits were further confirmed by thermal shift assay (TSA) and co-crystal structures.
These results enabled us to identify five lead compounds which would be useful for future
structure-based drug design of more potent HcProRS inhibitors.

2. Results
2.1. Docking Compound Library with HcProRS Ligand-Bound Structure

Using the ternary complex of HcProRS:Pro:2a (PDB ID: 5VAD) as a starting model, we
performed in silico screening based on molecular docking of 2,3-disubstituted pyrazines
from our in-house library (97 compounds in total; for the experimental procedure, see
Supplementary Materials). The results indicated that the highest scoring derivatives were
3-benzylamino-N-benzylpyrazine-2-carboxamides (Figure 2, general formula 3), originally
published as antimycobacterial compounds [18]. Some of our derivatives showed the same
binding mode compared to the confirmed inhibitor 2a, exerting all H-bond interactions
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except for the H-bond to the carbonyl oxygen at C3-amine position, which is missing in our
structures (Figures 2 and S1). The RMSD calculated for the shared subset of atoms (bolded
in Figure 2), taking the crystallographic pose of 2a as a reference, ranged from 0.42 Å
(minimum value) for derivatives with a substitution in position 2 of the benzyl ring up to
0.86 Å (maximum value) for derivatives (3) with substituents in position 4 of the benzyl ring
(R = 4-CF3, 4-OCH3, 4-Cl, 4-CH3, 3,4-diCl). The poses of these 4-substituted derivatives
demonstrated worse docking scores and, due to the distortion of the carboxamide moiety
attached at the C2 position of pyrazine, also lacked the H-bond between the NH of the
carboxamide group and the backbone of Thr1164. Both in the confirmed inhibitor 2a
(crystallographic structure) and in our compounds of general structure 3, the substituent
on the C2-carboxamide group exerts only non-specific hydrophobic interactions to the
enzyme. For this reason, we also focused on our in-house derivatives of general structure
4 with an unsubstituted C2-carboxamide group [17]. For these, we generally observed
worse docking scores (as expected because of the lower number of heavy atoms due to the
lack of the substituent on the C2-carboxamide) and more flexibility in terms of different
binding modes. In most cases, compounds 4 with substitution in position 4 of the benzyl
ring were not able to reach the binding mode of the confirmed inhibitor.
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Figure 2. Selected hits from the initial in silico screening of our in-house database [17,18]. The atom numbering of the
compound scaffold is shown in the structure.

To sum up, the initial in silico screening suggested that both compounds of general
structure 3 and 4 are capable of binding to HcProRS in the same mode as the confirmed
inhibitor 2a. The docking also showed preference for derivatives with substitution in
position 2 of the benzyl ring as indicated by both docking scores and RMSD values. On
the contrary, 4-substituted derivatives were discouraged by molecular docking, except for
sterically small R = 4-F. The docking scores and RMSD values of selected derivatives are
present in Table 1, while full results are present in the Supplementary Materials Table S1.

2.2. Confirmation of the Hits from Virtual Screening by a Thermal Shift Assay

Selected compounds from in silico screening (general structures 3 and 4, both active
and inactive as predicted by docking) along with relevant fragments (pyrazinoic acid,
POA; pyrazinamide, PZA; and 3-aminopyrazinoic acid, 3-NH2-POA) were evaluated
against recombinant HcProRS using a fluorescence-based thermal shift assay. Compound
binding usually helps to stabilize the protein due to protein-ligand interactions, resulting
in an increase of the melting temperature (Tm) of the target protein during the thermal
denaturation process [23]. Each compound was pre-tested at 100 µM concentration against
3.45 µM HcProRS in the absence and presence of 1 mM Pro. The ∆Tm was calculated based
on the difference between the Tm values of HcProRS with and without compound. In
the absence of Pro, only two of the 17 tested compounds, 4h and 4j, slightly increased
the Tm by 0.9 and 2 ◦C, respectively, while the remaining compounds did not change or
slightly decreased the Tm (Figure 3 and Table 1). In the presence of the natural substrate
Pro, the Tm of HcProRS increased by 4 ◦C. Normalized by this control, the presence of five
of the 17 compounds, including 4h (R = 2-Cl) and 4j (R = 2-CF3), significantly improved the
thermal stability of HcProRS resulting with ∆Tm values in a range of 2 to 7 ◦C suggesting
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these compounds are likely binding to HcProRS in a Pro-dependent manner (Table 1). In a
second-tier characterization, the Tm-based EC50 values of these five hits were determined.
These compounds demonstrated an activity range varying between lower micromolar
(3.77 µM) for the compounds based on scaffold 3 up to 91.11 µM for derivatives of the
series 4 compounds (Table 1 and Figure S2). Using the previously reported inhibitor 2a
(100 µM) as the reference, we observed a significant increase of the Tm of HcProRS by
7 ◦C (EC50 = 30.35 ± 3.63 µM) and 13.15 ◦C (EC50 = 3.74 ± 0.67 µM) in the absence or
presence of Pro, respectively (Table 1 and Figure S2). This is in good agreement with the
prior reported improved binding affinity and inhibitory activity of 2a in the presence of
Pro when compared to the corresponding values obtained without Pro [16]. Therefore,
taking the limitation of TSA measurements into account, these results suggested that our
best compound 3b and the confirmed inhibitor 2a behave similarly in binding the enzyme.

Table 1. The docking scores, thermal stabilization and EC50 values of studied compounds.
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4j 2-CF3 58.13 +1.98 67.12 +6.92 15.28 ± 1.04 −7.133 0.706 1 
4k 2,4-(OCH3)2 56.08 −0.07 58.48 −1.72 ND −7.160 0.438 2 
2a 6  63.15 +7.00 73.35 +13.15 3.74 ± 0.67 −9.767 0.190 1 
1 Tm values of HcProRS measured in the absence (see top row, reference value) or presence of compound. 2 ∆Tm was cal-
culated based on the difference of Tm values of HcProRS measured in the presence and absence of compound. 3 Tm values 
of HcProRS measured in the presence of compound and 1 mM Pro. 4 ∆Tm was calculated based on the difference of Tm 
values of HcProRS measured in the presence of both compound and 1 mM Pro and only in the presence of 1 mM Pro. 5 
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atoms (bolded in Figure 2); Pose—number of the pose (ordered by S) which took the binding mode of the confirmed 
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4b 3-Cl 55.38 −0.77 60.42 +0.22 ND −6.666 0.964 2
4c 3,4-diCl 54.57 −1.58 57.47 −2.73 ND −6.959 2.765 no
4d 2-CH3 55.91 −0.24 63.33 +3.13 91.11 ± 18.39 −6.949 0.247 2
4e 4-Cl 55.06 −1.09 58.70 −1.5 ND −6.824 2.507 no
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the difference of Tm values of HcProRS measured in the presence and absence of compound. 3 Tm values of HcProRS measured in the
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both compound and 1 mM Pro and only in the presence of 1 mM Pro. 5 S—docking score; RMSD—to the crystallographic pose of the
confirmed inhibitor 2a, calculated for the shared subset of atoms (bolded in Figure 2); Pose—number of the pose (ordered by S) which took
the binding mode of the confirmed inhibitor 2a. 6 Compound 2a reported by Adachi was resynthesized and used as the positive control
during TSA measurements.
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Comparison of the full datasets show that the single ring compounds PZA, POA and 
3-NH2-POA have no effect on Tm. In 3-benzylamino derivatives of general structure 4, 
modification at the ortho-position appeared to be better accepted than at meta- and para-
positions. The EC50 values of 4h (R = 2-Cl) and 4j (R = 2-CF3) proved 6-fold better than R = 
2-CH3 in compound 4d, indicating that the electron withdrawing properties might be 
beneficial for binding. Further modification of the C2-carboxamido moiety with a second 
ortho-methylbenzyl group (3c) decreased the EC50 12.4-fold with respect to 4d, suggesting 

Figure 3. Evaluation of compound binding by a fluorescence-based thermal shift assay. Tm values
of HcProRS were measured by incubating with 100 µM of compound in the absence (black circles)
or presence (blue diamonds) of 1 mM Pro. The control samples of the two separate experiments
correspond to the Tm of HcProRS with vehicle in the absence or presence of 1 mM Pro, respectively.
The black and blue lines correspond to the Tm values of the respective control samples. Each
measurement was performed in triplicate with standard errors shown.

Comparison of the full datasets show that the single ring compounds PZA, POA
and 3-NH2-POA have no effect on Tm. In 3-benzylamino derivatives of general structure
4, modification at the ortho-position appeared to be better accepted than at meta- and
para-positions. The EC50 values of 4h (R = 2-Cl) and 4j (R = 2-CF3) proved 6-fold better
than R = 2-CH3 in compound 4d, indicating that the electron withdrawing properties
might be beneficial for binding. Further modification of the C2-carboxamido moiety with
a second ortho-methylbenzyl group (3c) decreased the EC50 12.4-fold with respect to
4d, suggesting the modifications of both C3-amino and C2-carboxamido groups of the
3-aminopyrazinamide scaffold are preferable for binding. Similar phenomenon was also
observed for the 3.6-fold lower EC50 of double substituted compound 3b (R = 2-Cl) when
compared with the single substituted 4h.

2.3. Structural Studies of the Binding Mechanism of the Compounds with HcProRS

To further clarify the binding mechanism of the identified hits, we determined five
co-crystal structures of HcProRS in complex with the corresponding compound and Pro
at a resolution range of 2.2–2.7 Å (Figure 4 and Table 2). Compared with the reported
ligand-free HcProRS structure (PDB ID: 4K86), our structures have two macromolecules,
corresponding to the biologically active homodimer, in the asymmetric unit (Figure 4a).
In most cases, the calculated electron density map showed a molecule of the respective
compound bound in both active sites of the dimeric HcProRS. However, compound 4d
can only be unambiguously built in one chain while showing weak density in the other
(Figures 4b and S3). This is consistent with the observed higher EC50 for this compound in
TSA measurements compared with the other four identified hits (Table 1). These ternary
complexes confirmed that these 3-aminopyrazinamide-based compounds share a similar
binding pattern with the validated inhibitor 2a, occupying the ATP binding pockets with
Pro found in the amino acid binding site (Figure 4b).
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Superimposition of two chains in the HcProRS complex shows a high degree of sim-
ilarity as evidenced by the overall mean all-atom RMSD value of 0.373 ± 0.103 Å. There-
fore, for the later structural description, we only focus on one monomer, in this case chain 
B due to the weak electron density of 4d in chain A (Figure S3). Comparison of Pro-bound 
and apo-form HcProRS (PDB ID: 4K86) structures shows that the binding of Pro induces 
the movement of the side chain of Arg1152, a motif-2 invariant residue found in all class 
II aaRSs [25], away from the ATP binding site to form a salt bridge between the carboxylic 
group of Pro and guanidino moiety of Arg1152 (Figure 5a). This subsequently provides 
space to accommodate the binding of pyrazinamide-based compounds in the ATP bind-
ing pocket which gives a good rationale why these compounds only show binding in the 
presence of Pro as seen in the TSA measurements (Table 1). 

Figure 4. Crystal structures of HcProRS complexes. (a) Overview of HcProRS structure in the asymmetric unit. The overall
structure is shown as a cartoon representation with chain A and chain B coloured in green and cyan, respectively, while
Zn2+ ions are shown as grey spheres. (b) Omit maps of ligands in the aminoacylation site of chain B of HcProRS. From left
to right, the structures are shown in the order of decreasing EC50 values. The maps, contoured at 3 σ, were calculated in
phenix.polder [24] and shown as grey mesh representations. Pro, compound 4d, 4j, 4h, 3c and 3b are shown as sticks and
coloured in yellow, orange, purple, white, magenta and salmon, respectively.

Superimposition of two chains in the HcProRS complex shows a high degree of
similarity as evidenced by the overall mean all-atom RMSD value of 0.373 ± 0.103 Å.
Therefore, for the later structural description, we only focus on one monomer, in this case
chain B due to the weak electron density of 4d in chain A (Figure S3). Comparison of
Pro-bound and apo-form HcProRS (PDB ID: 4K86) structures shows that the binding of
Pro induces the movement of the side chain of Arg1152, a motif-2 invariant residue found
in all class II aaRSs [25], away from the ATP binding site to form a salt bridge between the
carboxylic group of Pro and guanidino moiety of Arg1152 (Figure 5a). This subsequently
provides space to accommodate the binding of pyrazinamide-based compounds in the ATP
binding pocket which gives a good rationale why these compounds only show binding in
the presence of Pro as seen in the TSA measurements (Table 1).

Superposition of the ligand-bound structures showed that the five compounds adopt
a similar conformation (Figure 5b). Detailed analysis of the best compound 3b highlights
that the class II signature motif-2 (residues 1142–1176) and motif-3 (residues 1269–1287) of
HcProRS form multiple interactions with this compound. The pyrazine ring is sandwiched
by Phe1167 via π-π stacking interaction and Arg1278 via cation-π interaction. The N4 of
pyrazine ring makes one direct H-bond with the side chain hydroxyl group of Thr1276
in motif-3. The nitrogen atom N9 of the carboxamide moiety (H-bond donor) and N1
of the pyrazinamide core (H-bond acceptor) establish two H-bonds with the backbone
oxygen and nitrogen of Thr1164 in motif-2, respectively (Figure 5c). Moreover, the ortho-
chlorobenzyl moiety at C3-amine extends into the ribose binding site of ATP compared with
the adenosine-bound HcProRS structure (Figure 5d, PDB ID: 4K87). The ortho-chlorobenzyl
moiety attached to the C2-carboxamide is located in a cavity surrounded by residues of the
motif-2 loop region and is stabilized via van der Waals interactions (Figure 5d). Despite
being non-specific, the interactions of the substituent at C2-carboxamide clearly enhance the
binding affinity which can be evidenced by the decreased TSA EC50 values of compounds
3b and 3c compared to 4h and 4d.
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Table 2. Data collection and refinement statistics for the structures of HcProRS complexes.

PDB Code
HcProRS:Pro HcProRS:Pro:4d HcProRS:Pro:4h HcProRS:Pro:4j HcProRS:Pro:3b HcProRS:Pro:3c

7OSY 7OSZ 7OT0 7OT2 7OT3 7OT1

Data collection

Resolution range (Å) 39.3–2.23
(2.31–2.23)

65.41–2.46
(2.548–2.46)

63.09–2.32
(2.403–2.32)

54.91–2.48
(2.569–2.48)

52.36–2.53
(2.62–2.53)

62.51–2.711
(2.808–2.711)

Space group P 1 21 1 P 1 21 1 P 1 21 1 P 1 21 1 P 1 21 1 P 1 21 1

Unit cell 69.9 88.4 83.8
90 110.2 90

69.7 86.7 83.1
90 110.1 90

71.2 93.5 87.5
90 108.6 90

72.0 92.8 87.9
90 109.0 90

71.9 92.4 87.3
90 108.9 90

70.3 89.0 84.8
90 110.3 90

Unique reflections 47,843 (4596) 33,698 (3333) 45,788 (4523) 38,563 (3849) 35,859 (3530) 26,094 (2642)
Multiplicity 4.8 (4.9) 3.7 (3.8) 3.8 (3.8) 6.7 (7.2) 6.9 (7.0) 3.7 (3.9)

Completeness (%) 98.05 (99.07) 99.48 (99.52) 96.97 (96.14) 99.01 (99.35) 99.05 (98.85) 97.69 (99.36)
Mean I/σ (I) 11.67 (1.99) 7.03 (1.46) 8.50 (1.52) 14.44 (2.02) 18.10 (1.97) 8.26 (2.24)

Wilson B factor (Å2) 46.34 50.69 55.22 67.28 80.11 49.02
Rmerge 0.07098 (0.8346) 0.1066 (0.9065) 0.08095 (1.054) 0.06697 (1.023) 0.04557 (0.8425) 0.1284 (0.83)
Rmeas 0.07969 (0.9342) 0.1253 (1.055) 0.09489 (1.232) 0.0727 (1.103) 0.04929 (0.9104) 0.1504 (0.9602)
Rpim 0.03575 (0.415) 0.06494 (0.5341) 0.04872 (0.6289) 0.02793 (0.4093) 0.01858 (0.3414) 0.07727 (0.4768)

CC1/2 0.999 (0.713) 0.996 (0.711) 0.996 (0.696) 0.999 (0.84) 0.999 (0.781) 0.992 (0.702)

Refinement
Reflections used for Rfree 1940 (209) 1724 (183) 2190 (196) 1865 (186) 1768 (173) 1230 (130)

Rwork 0.2090 (0.2637) 0.2200 (0.3128) 0.1966 (0.3146) 0.1936 (0.2928) 0.2180 (0.3048) 0.2140 (0.2871)
Rfree 0.2601 (0.3210) 0.2777 (0.3869) 0.2503 (0.3632) 0.2548 (0.3860) 0.2757 (0.3872) 0.2833 (0.3630)

Number of non-H atoms 7653 7646 7847 7764 7581 7631
Macromolecules 7502 7505 7691 7655 7481 7486

Ligands 16(Pro) 16(Pro)/36(4d) 16(Pro)/36(4h) 16(Pro)/42(4j) 16(Pro)/52(3b) 16(Pro)/52(3c)
Solvent 127 80 100 47 26 69

RMS bonds (Å) 0.003 0.003 0.005 0.006 0.003 0.003
RMS angles (◦) 0.91 0.91 0.98 1.09 0.92 0.90

Ramachandran favored
(%) 97.28 97.08 98.06 97.34 97.21 96.33

Ramachandran allowed
(%) 2.62 2.61 1.94 2.66 2.68 3.67

Average B-factor (Å2) 63.57 62.84 71.61 85.06 115.2 52.18
Protein 63.8 62.82 71.84 85.24 115.32 52.26
Ligands 41.78(Pro) 46.88(Pro)/86.19(4d) 45.85(Pro)/66.03(4h) 57.29(Pro)/68.15(4j) 78.54(Pro)/99.88(3b) 36.49(Pro)/52.9(3c)
Solvent 52.88 53.62 58.58 75.61 113.26 41.84

Statistics were generated using Phenix [26], values in parenthesis correspond to the highest resolution shell.
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Figure 5. Structural comparison between different ligand-bound structures. (a) Superposition of ligand-free (blue; PDB 
ID: 4K86) and Pro-bound (cyan) HcProRS structures. The important protein residues making directly polar interactions 
with the substrate Pro are shown as sticks representations. H-bonds and the salt bridge are shown as black dashed lines. 
(b) Protein-based superposition of all five 3-aminopyrazinamide-based ligands. (c) The interactions between HcProRS and 
compound 3b. The residues interacting with Pro and 3b are shown as sticks and H-bonds are shown as black dashed lines. 
(d) Superposition of ternary complexes HcProRS:Pro:3b (salmon) and HcProRS:Pro:adenosine (grey, PDB ID: 4K87). Pro, 
adenine and ribose binding sites were highlighted with black dashed circles. The backbone structure of HcProRS:Pro:3b 
is shown as cyan cartoon representation surrounded with a transparent surface. Ligands are shown as sticks. (e) 
Electrostatic surface potential of the ligand binding site of HcProRS:Pro:3b. Compound 2a (green, PDB ID: 5VAD) was 
superposed onto 3b (salmon) and the structured water molecule of 2a-bound structure is shown as a red sphere that is 
covered with electron density map contoured at 1 σ and shown as white mesh line. (f) Superposition of HcProRS:Pro:3b 
(salmon) and HcProRS:Pro:2a (green) structures. It shows both compounds bind in the same ATP binding site of HcProRS 
in a Pro-dependent manner. The H-bonds of former and latter structures are shown as black and orange dashed lines, 
respectively. The water molecule of 2a-bound structure is shown as a red sphere. The 2-Cl of the C3-substituted moiety is 
clearly sterically excluding the binding of the structured water as seen by the calculated potential steric clash (calculated 
in Pymol and depicted as a red disk). 
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Figure 5. Structural comparison between different ligand-bound structures. (a) Superposition of ligand-free (blue; PDB
ID: 4K86) and Pro-bound (cyan) HcProRS structures. The important protein residues making directly polar interactions
with the substrate Pro are shown as sticks representations. H-bonds and the salt bridge are shown as black dashed lines.
(b) Protein-based superposition of all five 3-aminopyrazinamide-based ligands. (c) The interactions between HcProRS and
compound 3b. The residues interacting with Pro and 3b are shown as sticks and H-bonds are shown as black dashed lines.
(d) Superposition of ternary complexes HcProRS:Pro:3b (salmon) and HcProRS:Pro:adenosine (grey, PDB ID: 4K87). Pro,
adenine and ribose binding sites were highlighted with black dashed circles. The backbone structure of HcProRS:Pro:3b is
shown as cyan cartoon representation surrounded with a transparent surface. Ligands are shown as sticks. (e) Electrostatic
surface potential of the ligand binding site of HcProRS:Pro:3b. Compound 2a (green, PDB ID: 5VAD) was superposed
onto 3b (salmon) and the structured water molecule of 2a-bound structure is shown as a red sphere that is covered with
electron density map contoured at 1 σ and shown as white mesh line. (f) Superposition of HcProRS:Pro:3b (salmon) and
HcProRS:Pro:2a (green) structures. It shows both compounds bind in the same ATP binding site of HcProRS in a Pro-
dependent manner. The H-bonds of former and latter structures are shown as black and orange dashed lines, respectively.
The water molecule of 2a-bound structure is shown as a red sphere. The 2-Cl of the C3-substituted moiety is clearly sterically
excluding the binding of the structured water as seen by the calculated potential steric clash (calculated in Pymol and
depicted as a red disk).

As indicated by docking and TSA studies, there is a clear preference for binding of
compounds having an ortho-substituted benzyl ring at C3-amine instead of meta- or para-
substitution. The binding region of the C3-amine benzyl ring is a β-strand backbone with
hydrophobic characteristics. In addition, due to its position at the N-terminus of conserved
motif-3 α-helix, the inherent dipole of the α-helix makes the electrostatic potential of this
zone of HcProRS overall positive. The positive electrostatic potential is especially profound
in a small cavity accepting the ortho-substituent (Figure 5e). Comparisons of inhibitor 2a
(PDB ID: 5VAD) and adenosine-bound (PDB ID: 4K87) structures of HcProRS revealed
a structured water molecule is placed in this cavity, bridging the interactions between
the ligands (carboxamidic oxygen of 2a and 2′-OH and 3′-OH of ribose of adenosine)
and Thr1276 and Gly1238 (Figure 5e,f). However, in our ligand-bound structures, no
electron density of equivalent water is observed, and the ortho-substituents (2-Cl, 2-CF3
and 2-CH3) of our compounds seem to replace this structured water. Combined, the
positive electrostatic potential of this binding pocket indicated that an electronegative
substituent at ortho-position of the C3-amine benzyl ring is likely better than neutral or
electron-deficient substituents. This is evidenced by the 7-fold better binding potency
of 2-Cl and 2-CF3 substituted compound 4h and 4j compared with 2-CH3 substituted
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4d and 2-fold lower EC50 of 3b (2-Cl) relative to 3c (2-CH3) (Table 1). Superposition of
compound 3b-bound structure onto the previously reported inhibitor 2a (PDB ID: 5VAD)
bound HcProRS complex either by aligning the protein structure (RMSDCα of 0.362 Å over
383 residues) or by superposing the atoms of the pyrazinamide core (RMSD of 0.111 Å),
shows that both compounds have very similar conformations. Therefore, 3b mimics almost
all the important interactions of compound 2a with the exception of the water-mediated
H-bonds formed by carbonyl oxygen in the C3-substituted part of 2a (the carbonyl oxygen
atom is missing in our compounds) (Figure 5f). This experimentally determined binding
mode of 3b is also fully consistent with our predictions based on docking (Figure S4).

2.4. Molecular Dynamics (MD) Simulations

In an attempt to explain the preference for binding compounds with ortho-substitution
on the benzyl ring as suggested by TSA and crystallographic data discussed above, we ran
10 ns MD simulations of the respective ternary complexes. Simulations were performed for
2-substituted compounds 4d (R = 2-CH3), 4h (R = 2-Cl), 4j (R = 2-CF3), and compared to
the results for unsubstituted 4a (R = H). The initial model for the complex of 4a was created
from the complex of 4h by simple alchemical transformation of the ligand (replacement of
the 2-Cl substituent with a hydrogen). The stability of the ligand’s pose in time was judged
by calculating the root mean square fluctuation (RMSF) values for individual heavy atoms
of the ligand. Additionally, the stability in terms of the position of the pyrazinamide core
was assessed by monitoring the distances of the H-bond forming atoms of the ligand and
the receptor, covering all three above-described H-bonds (to carboxamidic hydrogen and to
pyrazine N1 and N4). We also observed the conformational rotation of the benzyl plane that
was expressed by relative angle to the original state. As shown in Figure 6, the comparison
between 2-substituted 4j (R = 2-CF3) and unsubstituted 4a demonstrated that both ligands
were stable in their pyrazinamide part. However, the ortho substituent in 4j led to the
stabilization of the benzyl ring in the original conformation, indicated by small RMSF
values for carbon atoms C12-C17 and by negligible changes in the relative conformation
angle of the benzyl plane. In contrast, the benzyl ring of the unsubstituted derivative 4a is
predicted to be much more flexible, with the angle oscillating back and forth approximately
in the range of −135◦ to +135◦. For full results, see Figures S5 (4a) and S6 (4j). The similar
stabilization of the benzyl ring was also detected for the other studied 2-substituted
compounds 4d and 4h (Figures S7 and S8).

The results of MD simulations confirm our hypothesis that 2-substitution of the benzyl
ring stabilizes the ligand in the ATP-binding site of HcProRS. In the MD-stabilized confor-
mation, which is identical with the crystallographic conformation, the ortho substituent
is located in a water binding site as seen in the 2a-bound structure. Our in silico experi-
ments and the results of the thermal shift assay jointly suggest the ortho-substitution to be
favourable. This is further confirmed by the fact that all compounds which we succeeded
to co-crystallize with HcProRS bear such an ortho substituent.

2.5. Potential Selectivity of Title Compounds towards HcProRS over Other Class II aaRS Members

The 20 standard aaRSs are split into two classes based on two completely different
folds of the catalytic cores that originated for the specific recognition and binding of the
shared substrate ATP [27–29]. The catalytic domain of class I adopts a Rossmann fold while
that of class II is organized as a six-stranded β-sheet. Although the binding mode of ATP
is strictly conserved in each aaRS class, as ATP-competitive aaRS inhibitors, cladosporin
has been reported to specifically target LysRS rather than other class II aaRSs [30] and com-
pound 2a reportedly also demonstrated 2500-fold selectivity for HcProRS versus another
class II member ThrRS. Since our compounds share a similar binding mechanism with
compound 2a, we were encouraged to examine the potential selectivity of our compounds
using the available structures of human class II tRNA synthetases.
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Taking compound 3b as an example, we modelled 3b in the ATP binding site of all
other nine human class II aaRS structures by superimposing the adenine group of available
adenine-containing ligand bound structures with HcProRS:Aze-SA (azetidine-2-carboxylic
acid (Aze) coupled to 5′-sulfamoyladenosine (SA) is a prolyl-adenylate analogue; PDB
ID: 5V58) complex followed by superimposing HcProRS:Pro:3b and HcProRS:Aze-SA
structures [31]. To thoroughly examine the molecular mechanisms defining the potential
family selectivity of 2a and its derivative 3b, we split the ligand molecule into three
fragments: the C3 substituent, pyrazinamide ring and C2-carboxamide moiety (Figure 2).
The former two parts are found in all five confirmed hits and 2a. In HcProRS, the subpocket
binding the 2-substituted benzyl at C3-amine is constituted by Trp1169, Gly1274 and
Gly1238. Examination of other class II aaRSs showed these equivalent residues are highly
variable. In SerRS, ThrRS, HisRS and GlyRS, belonging to the same subclass (IIa) with
ProRS, the corresponding Trp1169 in HcProRS is substituted with polar residues (such
as Lys323, Gln493, Gln173 and Met294, respectively) leading to the loss of hydrophobic
interaction with the C3-amine benzyl ring of our ligands (Figure 7a). In addition, Gly1274
in motif-3 β-strand is replaced with larger amino acids (Thr429, Ala625, Ser383 and Ser524)
that would likely cause a steric clash with the benzyl ring. The Gly1238 is also replaced
with residues with side chains (Leu392, Cys591, Val357 and Ile404). Despite these side
chains do not make direct contacts with the compound, their presence will immobilize
backbone which restricts the carbonyl group pointing to and in parallel with the motif-3
β-strand resulting in potential sterically clash with the ortho-substituent of compound
(Figures 7a and S9). Therefore, these residue replacements likely lead to unfavourable
binding. For other class II members (AspRS, AsnRS, LysRS, AlaRS and PheRS), two out of
three residues are different from those in HcProRS, and the residue equivalent to Gly1238
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was replaced by isoleucine or valine. Similarly, both could also result in potential steric
repulsion (Figure 7a).

The pyrazinamide moiety sits on the top of the N-terminus of motif-3 α-helix. Struc-
tural comparison showed that the stacking residues equivalent to Arg1278 and Phe1167
are highly conserved, and that the residue corresponding to Thr1164 (making backbone
interactions) is always present in other class II aaRSs, which may provide a general binding
for the pyrazinamide core. However, an obvious distinction was observed in the length of
the N-terminus of motif-3 α-helix, where three residues (Thr1276, Thr1277 and Arg1278) are
present in HcProRS that are replaced by four residues in all other class II tRNA synthetases
(Figure 7b,c). This different structural rearrangement may affect the upstream β-strand
and the distinct residues in this region may also provide a steric exclusive binding site
for the pyrazinamide ring. The 2-substituted benzyl moiety at C2-carboxamide extends
towards the motif-2 loop region and only makes non-specific van der Waals interactions.
However, both sequence length and mobility of this loop region are highly diverse. It is
difficult to predict how this region will be arranged when these compounds would bind.
However, in SerRS, due to the presence of the large side chain of Arg192 sitting in the op-
posite side of motif-2 loop (equivalent to a glycine in HcProRS (Figure 7a)), a similar steric
repulsion is observed for the binding of 3b, suggesting our confirmed binders are unlikely
to bind to SerRS. In summary, we generally note subtle differences in the ATP binding site
which appear to be important for designing potential selective ATP competitive inhibitors
of aaRSs.
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the other nine human class II aaRSs. Crystal structures of human SerRS (PDB ID: 4L87), ThrRS (PDB ID: 4HWT), HisRS Figure 7. Structural analysis of potential selectivity of HcProRS inhibitors. (a) Models of com-

pound 3b in HcProRS and the other nine human class II aaRSs. Crystal structures of human SerRS
(PDB ID: 4L87), ThrRS (PDB ID: 4HWT), HisRS (PDB ID: 4G84), GlyRS (PDB ID: 2ZT5), AspRS
(PDB ID: 4J15), AsnRS (PDB ID: 5XIX), LysRS (PDB ID: 6CHD), AlaRS (PDB ID: 4XEM) and PheRS
(PDB ID: 3L4G) are used for superposition. All protein structures are shown as cartoon representa-
tions with corresponding interacting residues shown as sticks. The red discs represent potential VDW
overlaps or steric clashes between 3b and aaRS residues as calculated in Pymol. (b) Superposition
of the N-terminus of motif-3 α-helix of HcProRS:Pro:3b (cyan) and human ThrRS (yellow; PDB ID:
4HWT). The N-terminus of motif-3 α-helix in HcProRS is one residue shorter than that in ThrRS.
(c) Superposition of N-terminus of motif-3 α-helix of all other nine human class II aaRSs. Counting
from the invariant stacking arginine of motif-3 showed that all human class II aaRSs (with an excep-
tion of HcProRS) have four residues at the N-terminus of this α-helix. This structural difference may
affect the binding of the pyrazinamide moiety.
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3. Discussion

Aminoacyl-tRNA synthetases (aaRSs), catalysing the formation of aminoacyl-tRNA,
have been explored as targets for the development of antimicrobials [9,32–35]. However,
HcProRS, located at the C-terminal region of a dual function EPRS, is likewise recognized
as a promising target for anti-cancer [12–14], anti-fibrosis [11,36] and anti-autoimmune
response [37] drug development. Up to date, several HcProRS inhibitors were reported.
Halofuginone specifically targets both the amino acid site and 3′-end of tRNA binding
sites [10] while compounds 2a [16] and T-3833261 [36] occupy the ATP binding site of
HcProRS. Since the HcProRS inhibitory activity of halofuginone can be reverted by in-
creased concentration of Pro [38] and Pro is accumulated in fibrotic tissues [39], the anti-
fibrosis activity of halofuginone is hampered. Therefore, the latter two compounds, as
ATP-competitive inhibitors, may overcome this issue. However, since class II aaRSs share a
very similar ATP binding mechanism, selective inhibition of HcProRS without affecting
other class II members is necessary for drug development.

Compound 2a demonstrated potent HcProRS inhibitory activity with an IC50 value of
12 nM using ATP/PPi exchange assay in vitro and potential selectivity towards HcProRS
over the class II ThrRS, without further follow-up studies. Virtual screening of our in-house
library of synthetic small molecules using compound 2a-bound structure as the initial
model, identified two general structures of substituted 3-aminopyrazinamide (3, 4) [17,18],
which were predicted to bind to HcProRS with the same binding mode as 2a and with
high affinity. Selected compounds were subjected to a thermal shift assay. Five compounds
showed clearly increased thermal stability of HcProRS in the presence of Pro, indicating
these compounds are Pro-dependent binders of HcProRS similar to compound 2a. This
was further proven by the co-crystal structures of HcProRS in complex with a respective
compound and Pro. Pro binding induced the movement of the side chain of Arg1152
out of the ATP binding site, providing additional space to accommodate the binding of
pyrazinamide derivatives. The pyrazinamide core mimics the adenine of ATP while the
C3-substituent replaces the ribose of ATP via hydrophobic interactions with the active site
of HcProRS. The modifications at the C2-carboxamide extending toward the motif-2 loop
region of HcProRS improved the binding affinity which can be evidenced by the decreased
EC50 values for 3b and 3c (R = 2-Cl; 2-CH3) compared to those of 4h and 4d (R = 2-Cl;
2-CH3) having unsubstituted carboxamide at C2.

High class selectivity against HcProRS rather than simultaneous targeting of other
class II members is fundamental for therapeutic applications of aaRS inhibitors. Despite
ATP having a very similar binding pose in class II aaRSs, the subtle differences between
active sites in different class II aaRS enzymes may contribute to designable selectivity.
Modelling compound 3b in all other class II aaRS structures pointed out that three residues
surrounding the ortho-substituted benzyl moiety at C3 of the pyrazinamide core and
making hydrophobic interactions with the ligand, were replaced with either polar or larger
residues in other class II enzymes. Therefore, these latter enzymes cannot form stable
interactions with the C3-substituted moiety. In addition, the specific arrangement of the
N-terminus of motif-3 α-helix in HcProRS (being one residue shorter than that in other
class II members) is responsible for the exact positioning of the pyrazinamide ring, which
may also contribute to its selectivity.

In conclusion, a combination of virtual screening with biophysical and crystallo-
graphic studies successfully identified five new pyrazinamide-based HcProRS ligands that
specifically compete with the binding of the ATP substrate in a Pro-dependent manner.
This research not only applies to the potential repurposing of old compounds for new
applications, but also provides the possibility to further improve the binding affinity and
potential selectivity of HcProRS inhibitors by structure-based drug design particularly at
the C3 substituent. This should be followed by inhibitory activity measurements and whole
cell assays. Taken together, our study leads to the successful exploration and broadening
of the chemical space around the confirmed HcProRS inhibitor reported by Adachi. These
may provide new drug candidates for the clinical treatment of ProRS-associated diseases.
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4. Materials and Methods
4.1. Protein Preparation

The DNA sequence encoding human ProRS (HcProRS) encompassing residues 1001–1512
(UniProt accession ID: P07814) was amplified by PCR from a cDNA library produced from
HEK293T cells. The amplified gene was cloned into the in-house pETRUK vector, a deriva-
tive of pETHSUL [40] that yields a fusion protein with a SUMO tag at the N-termini for
expression in E. coli Rosetta 2 (DE3) pLysS cells. After culture by using auto-induction
media [41], cells were harvested and lysed by sonication in cation exchange buffer A con-
taining 25 mM Hepes pH 8, 200 mM NaCl and 5 mM β-mercaptoethanol supplemented
with 1 mM MgCl2 and 100 U Cryonase (Takara). The lysis was cleared by centrifugation
at 18,000× g for 30 min and the resulting supernatant was applied to a 5 mL Hitrap SP
column (Cytiva, Marlborough, MA, USA). The fractions corresponding to the SUMO-fused
HcProRS were collected followed by SUMO hydrolase treatment to remove the SUMO tag.
This combined mixture was dialyzed in buffer containing 10 mM Tris pH 7, glycerol 10%
(w/v) overnight to remove the salt which was then loaded onto a 5 mL Hitrap SP column
(Cytiva, Marlborough, MA, USA) to remove the SUMO tag and SUMO hydrolase. The flow
through containing HcProRS was further purified by anion exchange chromatography and
gel filtration. Purified HcProRS was concentrated to 45 mg/mL in the final buffer (10 mM
Tris pH 7, 100 mM NaCl and 2.5 mM β-mercaptoethanol) and stored at −80 ◦C.

4.2. Crystallization of HcProRS Complexes

For crystallization of HcProRS complexes, the purified protein at 30 mg/mL in 10 mM
Tris pH 7, 100 mM NaCl, 2.5 mM β-mercaptoethanol was incubated with 10 mM L-proline
and 12% (v/v) DMSO in the absence or presence of 2 mM compound on ice for 1 h before
setting up crystallization using the Microbatch method. Crystals were grown in a Terasaki
Microbatch plate by mixing 1 µL the pre-mix with 1 µL of reservoir solution containing
0.25–0.4 M SrCl2, 15–20% (w/v) PEG3350 and 100 mM HEPES pH 7.5. The drops were
covered with paraffin oil. Suitable crystals were mounted and flash frozen in liquid nitrogen
directly from the plate.

4.3. Data Collection and Structure Determination

All X-ray diffraction datasets were collected from cryo-cooled crystals at Synchrotron
radiation facility and processed by using autoPROC software package [42]. The initial model
of structure was determined by molecular replacement with reported HcProRS:Pro:2a struc-
ture (PDB ID: 5VAD) using the program PHASER from the Phenix program suite [26].
Subsequent structure refinement was conducted in Phenix.refine and the model was man-
ually built in COOT [43]. Data collection and refinement statistics are summarized in
Table 2, and all structural figures were generated using PyMol (http://www.pymol.org,
version 2.0.4). All the crystal structures were deposited in PDB and the related accession
codes are as follows: 7OSY, 7OSZ, 7OT0, 7OT1, 7OT2 and 7OT3.

4.4. Thermal Shift Assay

A total of 0.2 mg/mL HcProRS (corresponding to 3.45 µM) was incubated with various
concentrations of different compounds in the absence or presence of 1 mM L-Pro with
1x thermal shift dye (Life Technologies, California, USA) in reaction buffer containing
50 mM HEPES pH 7.0, 150 mM KCl and 10% (v/v) ethylene glycol. Aliquots (20 µL)
were transferred to a 96-well PCR plate in triplicate. After centrifugation to remove air
bubbles, the plate was measured in Applied Biosystems® Protein Thermal Shift machine
and subjected to a thermal gradient from 4 ◦C to 95 ◦C with the increasing rate of 0.05 ◦C/s.
The fluorescence was detected by Protein Thermal Shift™ Software (Life Technologies,
California, USA). Data analysis was performed by Boltzmann sigmoidal fitting to calculate
melting temperature (Tm).

http://www.pymol.org


Int. J. Mol. Sci. 2021, 22, 7793 14 of 16

4.5. In Silico Studies

Inputs for molecular docking and MD were prepared in Molecular Operating Environ-
ment (MOE), 2020.09 (Chemical Computing Group ULC, Montreal, QC, Canada). The dock-
ing was run in MOE. MD simulations were run in NAMD2 [44] (version GIT20190909) and anal-
ysed in VMD version (1.9.4a51) [45]. For experimental details, see the Supplementary Material.

Supplementary Materials: Detailed results and additional description of methods are available
online at https://www.mdpi.com/article/10.3390/ijms22157793/s1.
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