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Abstract
Total knee replacement (TKR) is commonly used to correct end-stage knee osteoarthritis.

Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of

TKR patents. Complete understanding of loading at the knee is of great interest in order to

aid patient populations, implant manufacturers, rehabilitation, and future healthcare

research. Musculoskeletal modeling and simulation approximates joint loading and corre-

sponding muscle forces during a movement. The purpose of this study was to determine if

knee joint loadings following TKR are recovered to the level of healthy individuals, and

determine the differences in muscle forces causing those loadings. Data from five healthy

and five TKR patients were selected for musculoskeletal simulation. Variables of interest

included knee joint reaction forces (JRF) and the corresponding muscle forces. A paired

samples t-test was used to detect differences between groups for each variable of interest

(p<0.05). No differences were observed for peak joint compressive forces between groups.

Some muscle force compensatory strategies appear to be present in both the loading and

push-off phases. Evidence from knee extension moment and muscle forces during the load-

ing response phase indicates the presence of deficits in TKR in quadriceps muscle force

production during stair ascent. This result combined with greater flexor muscle forces

resulted in similar compressive JRF during loading response between groups.

Introduction
Total knee replacement (TKR) is commonly used to correct end-stage knee osteoarthritis (OA)
of the knee joint. The frequency with which TKRs are performed was expected to double in the
US alone by 2015 and reach nearly 3.5 million by 2030 [1]. The primary purposes of a TKR are
to alleviate pain, restore normal range of motion (ROM), and restore the ability to perform
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activities of daily living. Several studies have reported reductions in the pain after a TKR [2–4].
However other studies have reported disappointed patients due to post-surgery pain [5, 6] and
difficulties with stair negotiation [6]. Difficulty with stair climbing prolongs a challenge to TKR
patents, which a TKR is intended to correct. Stair climbing is a common activity of daily living,
with older adults utilizing stairs as frequently as younger adults [7]. Additionally, stair climbing
is utilized in all clinical recovery assessments after a TKR including the original knee society
scoring system [8], the new knee society scoring system [9], and the oxford knee [10].

Experimental studies have been conducted to provide an understanding of how well a TKR
actually restores a healthy gait in end-stage OA patients [11–15]. A recent review of stair ambu-
lation after TKR reported that during stair ascent, peak knee extension moment appears to be
reduced following TKR compared to healthy subjects [15], though this review only included
studies utilizing an inverse dynamics approach to calculate joint moments. The information
provided by net joint moments and net joint reaction forces via inverse dynamics does not pro-
vide a true bone on bone loading at the knee joint. Loading at the joint results from the contrac-
tion of muscles, not just the GRF propagated up through the body. Several studies have
provided a good understanding of these effects by utilizing an instrumented TKR while climb-
ing stairs [16–23]. Compressive loads at the knee during stair ascent were found to range
between 2.5 and 3.06 times bodyweight (BW) [18–20]. Shear loads at the knee during stair
ascent were also reported with rather large variability [17, 20, 22]. While instrumented
implants do provide accurate joint loading information during stair ascent, they are limited in
subject populations due to expenses and patient consent, and they do not provide the ability to
examine muscle forces surrounding the knee joint.

Musculoskeletal modeling and simulation provides a means to approximate joint loading
and corresponding muscle forces during a movement. Kim, et al. [21] made comparisons
between musculoskeletal simulation and instrumented implant data, showing good agreement
between contact forces of both components of the tibiofemoral joint during overground walk-
ing. Musculoskeletal simulation has been utilized in applications for overground walking in
healthy and patient populations including knee OA and cerebral palsy [24–29]. Knee joint
force has been reported in these studies to range from 2.8 BWs in healthy individuals to nearly
7 BWs in those with a severe crouch gait [24, 25, 27, 29]. However, only a limited number of
studies have utilized musculoskeletal simulations to investigate knee joint loading in stair nego-
tiation tasks [30–33]. Taylor et al. (2004) compared over-ground walking to a single step-up in
total hip arthroplasty patients and found peak knee compressive force to range between 4.9
and 5.6 BWs during the step-up task. Complete understanding of loading to the knee for TKR
populations is of great interest in order to aid rehabilitation, implant design improvements,
patient education, and future healthcare research. Musculoskeletal simulation can provide an
excellent means of determining true subject-specific knee loading and aid in improving TKR
design and restoring TKR patients to normal loading and movement patterns.

To date, no studies have investigated the knee joint loading and muscle forces in TKR
patients during stair ascent using musculoskeletal simulation. Simulation studies have only uti-
lized a single step-up task in their analysis failing to represent the actual movement while
climbing stairs. Knee joint loads and surrounding muscle forces during stair ascent for TKR
patients are not clear. Therefore, the purpose of this study was to determine if the knee joint
loadings following TKR are recovered to the level of healthy individuals, and determine the dif-
ferences in muscle forces causing those loadings. Loading to a joint is greatly contributed by
muscle forces and it is well documented that TKR knees show reductions in muscle forces com-
pared with the knees of healthy individuals. Thus, it was hypothesized that knee joint compres-
sive forces would be reduced following a TKR compared with those in healthy individuals, and
that muscle forces causing knee extension would also be reduced. The posterior stabilized
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TKRs used in this study provides increased anterior/posterior stability. As such, it was further
hypothesized that knee shear loading of the TKR participants would be reduced compared to
healthy counterparts.

Materials and Methods

Participants
The University of Tennessee Institutional Review Board approved the study. All participants in
the study signed a written informed consent prior to data collection. All participants were
recruited for a larger study currently underway in our lab. TKR patients were recruited through
a local orthopedic clinic and all surgeries were performed by the same surgeon. Five patients
(63.6 ± 8.7 yrs, 1.74 ± 0.1 m, 87.0 ± 8.9 kg) received a posterior stabilized TKR and were
14.6 ± 3.4 months (eleven to nineteen months) post-surgery at the time of the data collection.
Five healthy participants (57.8 ± 10.0 yrs, 1.78 ± 0.1 m, 89.0 ± 6.6 kg) had no knee pain in the
past 6 months during daily activities and not been diagnosed of lower extremity joint OA.
They were age, gender, height and body mass matched with TKR patients. Additionally,
healthy participants were selected using the same exclusion criteria for TKR patients (Table 1).

Experimental Procedures
Three dimensional kinematic data were collected experimentally using a nine-camera motion
analysis system (240 Hz, VICONMotion Analysis Inc., Oxford, UK). Reflective anatomical
markers were placed bi-laterally on the following anatomical landmarks: acromion processes,
iliac crests, greater trochanters, medial and lateral femoral epicondyles, medial and lateral mal-
leoli, 1st and 5th metatarsal heads, and toes (i.e. the most anterior aspect of the shoes). Reflective
tracking markers connected to semi-rigid thermoplastic shells were secured to the trunk, pelvis,
thighs, shanks, and on the posterior and lateral heel counter of a pair of standard lab shoes
(Noveto, Adidas, USA). A three-step staircase (FP-Stairs, American Mechanical Technology
Inc., Watertown, MA, USA) was securely bolted to two force platforms (1200 Hz, BP600600
and OR-6-7, American Mechanical Technology Inc., Watertown, MA, USA) in order to

Table 1. Inclusion and exclusion criteria for the TKR subjects.

Exclusion Criteria: Inclusion Criteria:

- Any additional lower extremity joint replacement. - Men and women between the
ages of 35 and 80.

- Any lower extremity joint arthroscopic surgery or intra-articular
injection within the past month.

- Total knee replacement in one
knee.

- Systemic inflammatory arthritis (rheumatoid arthritis, psoriatic
arthritis) (self-reported).

- At least 6-months from TKR.

- No more than 5-years from TKR

- BMI greater than 35.

- Inability to ascend/descend stairs without the use of a handrail.

- Neurologic disease (e.g. Parkinson’s Disease, stroke patients)
(self-reported).

- Any major lower extremity injuries/surgeries.

- Inability to walk without a walking aid.

- Any visual conditions affecting gait or balance.

- Women who are pregnant or nursing.

- Any cardiovascular disease or primary risk factor which
precludes participation in aerobic exercise as indicated by the
Physical Activity Readiness Survey.

doi:10.1371/journal.pone.0156282.t001
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measure ground reaction forces (GRF) during stair negotiation (Fig 1). An additional two steps
and a platform were also included [34, 35].

Before the reflective markers were positioned, participants walked for 3 minutes on a tread-
mill at a self-selected pace as a warm-up. All participants then performed functional assessments

Fig 1. The 5-step (3 instrumented and 2 for turning around) staircase securely bolted to two force platforms for experimental
data collection of ground reaction forces during stair negotiation.

doi:10.1371/journal.pone.0156282.g001
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including: timed up and go (TUG) [36], knee range of motion (ROM) [37], and stair ascent and
stair descent times [38]. Participants were asked to perform a minimum of three practice trials
to determine their self-selected speeds. Participants then performed five successful trials of stair
ascent at the self-selected speed (±5%) which was monitored by two photo cells and electronic
timers (Lafayette Instrument Inc., IN, USA). Step two was the step of interest [39].

Data Analyses
Visual 3D (C-Motion, Inc., Germantown, MD, USA), a biomechanical analysis software suite
was used to filter both kinematic and ground reaction force data at 8 Hz [40], respectively,
using a fourth-order Butterworth low-pass filter. An X-Y-Z (for rotation about mediolateral,
anteroposterior and longitudinal axes) Cardan rotational sequence was used in joint angle cal-
culations and the right hand rule was used for determining the conventions for joint kinematics
and kinetics. All joint moments were computed as internal moments.

Musculoskeletal Modeling and Simulations
The processed individual trials were exported to OpenSim (version 3.0.1, SimTK, Stanford,
CA, USA) to perform musculoskeletal simulations. A generic 12-segment, 19-degree of free-
dom, and 92 muscle-actuated OpenSim musculoskeletal model (Gait 2392 Model), originally
developed by Delp, et al. [41], was scaled to the height and weight of each individual participant
to generate subject-specific models. In order to improve the accuracy of the simulations a resid-
ual reduction algorithm (RRA) was used to minimize virtual residual forces added to the
model to account for dynamic inconsistency as results of experimental errors and modeling
assumptions by making small adjustments to the joint accelerations and body mass parameters
[42]. Kinematic changes from RRA were all kept below 5.5 cm of translation and 3.5 degrees of
rotation; peak residual forces and moments were each kept below 14% of body weight and 1.6
Nm/kg, respectively [43]. Though slightly higher than what is recommended (43), these do not
greatly influence the comparisons between our two participant groups and values for joint
angles, moments and joint reaction forces were ensured to be within two standard deviations
of previous literature, consistent with the suggested practices for the validation of musculoskel-
etal models [23, 43]. Individual muscle excitations and resulting muscle forces were calculated
using computed muscle control (CMC) to drive simulations of the stair ascent movement col-
lected experimentally [44, 45]. The CMC, as a part of static optimizations, has been shown to
generate tibiofemoral contact forces that are higher than those measured in vivo, but have simi-
lar timings and magnitudes [46]. Additionally, the utilization of CMC has a strength over static
optimization alone due to the ability to account for the residuals at the pelvis obtained in RRA
by numerical integration, which allows for the residuals to be linked together temporally with
the original movements, providing more accurate simulation. Joint reaction forces (JRF) were
computed using the JRF Tool in OpenSim.

The dependent variables included: peak vertical GRF, peak knee extension moment, peak
knee abduction moment, peak knee compressive force, peak knee anterior shear forces, peak
knee extensor and flexor muscle forces, velocity, and the functional assessments. The stance of
gait was divided into early stance (loading) and late stance (propulsion) phases, which was
divided at about 50% of stance phase based upon the time when the anteroposterior GRF
changed from a negative value to a positive value. Peak values of forces and moments were
reported for the two phases separately. The average of each variable for the five stair ascent tri-
als of each subject was used in the statistical analyses. In order to compare differences between
TKR patients and healthy individuals, a paired samples t-test was used for each variable (21.0,
IBM SPSS, Chicago, IL) with an alpha level set at 0.05 a priori.
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Results
No significant differences in age (p = 0.358), height (p = 0.540), and mass (p = 0.688) existed
between TKR patients and healthy subjects. No significant differences were found in stair
ascent velocity (actual velocity obtained during movement trials), knee ROM, TUG, and stair
ascent time between healthy controls and TKR patients (Table 2). There were no differences
between groups for knee flexion angle at contact (p = 0.302) or knee extension ROM during
the stance phase (p = 0.645) (Table 3). The peak knee extensor moment was similar in TKR
patients and healthy controls (p = 0.174, Table 3). The knee JRF curves demonstrate an early
stance peak for the shear component and a smaller early stance peak and a larger late stance
peak for the compressive component (Fig 2). No differences were found between groups for
compressive joint reaction forces.

The rectus femoris muscle force showed a smaller early stance peak and a larger late stance
peak (Fig 3a) while the vastus medialis muscle had an early stance peak for TKR patients and a
late stance peak for healthy controls (Fig 3b). The vastus lateralis muscle force had a large early
stance peak (Fig 3c) and the sum of knee extensor muscle forces had a large early stance peak
and smaller late stance peak (Fig 3d). The early stance peak muscle forces of the rectus femoris
(p = 0.020), vastus lateralis (p = 0.003), and sum of knee extensor forces (p = 0.001) were
reduced in TKR patients compared to healthy individuals (Table 4, Fig 3). The late stance peak
muscle force of the vastus lateralis (p = 0.043) was reduced in TKR patients compared to their
healthy counterparts (Table 5, Fig 3). However, the late stance peak vastus medialis force was
greater in TKR patients compared to healthy controls (p = 0.010).

The biceps femoris muscle (Fig 4a) and sartorius muscle (Fig 4b) forces showed peaks at the
beginning and end of stance phase. The gracilis muscle force had one large peak at the begin-
ning of stance phase in TKR patients, while the force in control subjects was relatively constant
(Fig 4c). The medial gastrocnemius muscle force showed a large first peak and a smaller second

Table 2. Stair ascent velocity and functional assessments of healthy controls and TKR patients
(Mean ± SD).

Healthy TKR P-value

Velocity (m/s) 1.6 ± 0.2 2.1 ± 0.6 0.154

Knee ROM (deg.) 121.4 ± 7.4 113.6 ± 7.3 0.133

TUG (sec.) 7.4 ± 1.2 7.4 ± 0.5 0.991

Stair Ascent Time (sec.) 6.2 ± 0.2 7.0 ± 0.7 0.055

doi:10.1371/journal.pone.0156282.t002

Table 3. Peak GRF, knee angle, kneemoments, and knee JRF of healthy controls and TKR patients during stair climbing (Mean ± SD).

Variable Healthy TKR P-value

Early stance Peak Vertical GRF BW) 1.03 ± 0.05 0.98 ± 0.04 0.133

Late Stance Peak Vertical GRF (BW) 1.15 ± 0.16 1.09 ± 0.11 0.456

Knee Flexion Angle at Stair Contact (Deg) 67.5 ± 5.00 64.7 ± 2.81 0.302

Sagittal Knee Range of Motion (Deg) 57.5 ± 3.34 58.9 ± 5.70 0.645

Peak Extension Moment (Nm/kg) 1.07 ± 0.20 0.87 ± 0.23 0.174

Early Stance Peak Abduction Moment (Nm/kg) 0.26 ± 0.21 0.36 ± 0.25 0.518

Late Stance Peak Abduction Moment (Nm/kg) 0.19 ± 0.12 0.28 ± 0.13 0.266

Peak Anterior Shear JRF (BW) 2.82 ± 0.47 2.48 ± 0.50 0.299

Early Stance Peak Compressive JRF (BW) -3.20 ± 0.34 -2.76 ± 0.36 0.089

Late Stance Peak Compressive JRF (BW) -3.90 ± 0.54 -3.89± 0.65 0.988

doi:10.1371/journal.pone.0156282.t003
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peak in TKR patients, while the force in healthy patients has a smaller early stance peak with a
larger late stance peak (Fig 4d). Finally, the lateral gastrocnemius muscle force showed a late
stance peak (Fig 4e). The early stance peak muscle force of the sartorius (p = 0.009) and gracilis
(p = 0.041) were greater in TKR patients compared to healthy controls (Table 4, Fig 4). The
late stance 2nd peak muscle force of the sartorius (p = 0.007) and lateral gastrocnemius
(p = 0.008) were found to be greater while the medial gastrocnemius (p = 0.009) was reduced
in TKR patients compared to healthy controls (Table 5, Fig 4).

Discussion
The primary purpose of this study was to determine the extent to which knee joint loading fol-
lowing TKR is recovered to the level of healthy individuals, and determine the differences in
muscle forces causing those loadings. Our hypothesis was that knee joint compressive forces
would be reduced in TKR knees as a result of reduced knee extensor muscle forces and that
shear loading would also be reduced as a result of the posterior stabilized TKR knees. Our find-
ings suggest that knee extensor muscle forces were reduced in TKR knees compared to healthy
knees, but this did not lead to differences in compressive forces. Furthermore, the findings did
not show a difference in shear loading between TKR and healthy knees.

The peak knee extensor moments in TKR patients compared to healthy individuals during
stair climbing in this study were similar and contrary with findings reported in the literature
[47–50]. This study reported that there were no differences between sagittal plane knee angles
at contact or total range of motion, suggesting both groups had similar locations of the knee

Fig 2. Comparison of mean knee joint reaction forces (JRF) during stair ascent for healthy controls
and TKR patients. (A) shear and (B) compressive were computed using the joint reaction force (JRF) tool in
OpenSim.

doi:10.1371/journal.pone.0156282.g002
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joint center throughout the stair climbing task. Pairing this with similar GRF values suggest
that knee extensor moments would be similar between groups. Additionally, the results showed
no differences in peak knee abduction moment, which are supported in the literature [47–49].
However, it becomes important to note that implant design has been shown to play a role in

Fig 3. Comparison of mean knee extensor muscle forces during stair ascent for healthy controls and TKR patients. (A) rectus femoris, (B)
vastus medialis, (C) vastus lateralis, and (D) sum of knee extensors were computed using the computed muscle control (CMC) tool in OpenSim.

doi:10.1371/journal.pone.0156282.g003

Table 4. Early stance peak knee extensor and flexor muscle forces for healthy controls and TKR patients during stair ascent (Mean ± SD).

Muscle Group Muscle Force (BW) P-value

Healthy Controls TKR Patients

Knee Extensors Rectus Femoris 0.62 ± 0.16 0.31 ± 0.18 0.020

Vastus Medialis 0.51 ± 0.06 0.77 ± 0.37 0.150

Vastus Intermedius 0.58 ± 0.07 0.49 ± 0.13 0.178

Vastus Lateralis 1.06 ± 0.12 0.63 ± 0.20 0.003

Sum 2.45 ± 0.24 1.62 ± 0.24 0.001

Knee Flexors Semimembranosus 0.50 ± 0.14 0.45 ±0.09 0.487

Semitendinosus 0.08 ± 0.04 0.05 ±0.01 0.187

Bicep Femoris Long Head 0.32 ± 0.05 0.30 ± 0.12 0.773

Bicep Femoris Short Head 0.33 ± 0.15 0.53 ± 0.12 0.053

Sartorius 0.03 ± 0.01 0.07 ± 0.02 0.009

Gracilis 0.01 ± 0.007 0.03 ± 0.02 0.041

Medial Gastrocnemius 0.73 ± 0.30 0.94 ± 0.27 0.296

Lateral Gastrocnemius 0.22 ± 0.40 0.40 ± 0.14 0.060

Sum 1.64 ± 0.47 1.83 ± 0.40 0.512

doi:10.1371/journal.pone.0156282.t004
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the existence of differences in peak knee abduction moment. Some studies have found differ-
ences between controls and TKR patients in peak knee abduction moment when using a mobile
bearing design [48, 49]. All patients in this study received a posterior stabilized TKR, which has
been shown to result in no differences in peak abduction moment in the literature [47–49].

The early stance peak compressive JRF was not different between groups, contrary to our
hypothesis. Increased knee muscle forces are likely to be present in order for the compressive
loading to be the same between groups as the loading response peak knee extensor moment
was not different. In support of the hypothesis, combined knee extensor muscle forces during
the loading response phase were reduced in TKR patients compared to healthy controls
(Table 4). The peak rectus femoris and vastus lateralis forces were both reduced in TKR
patients resulting in a reduced sum of knee extensor muscles. Interestingly, two accessory mus-
cle forces, the sartorius and gracilis, also were greater in TKR patients. These findings comple-
ment the lack of differences in early stance peak compressive JRF. These results suggest that
the differences between TKR patients and healthy controls during the loading response phase
are primarily due to the differences in muscle forces. It might be assumed that differences in
muscle force production would directly result in differences in the JRF, but clearly this is not
the case. In addition, the TKR patients in this study had functional outcomes that were similar
to healthy controls (Table 2). This finding suggests that while the reduced quadriceps forces
may cause deficiencies in knee extensor moment production, this may not mean physical func-
tion is impaired.

Contrary to the hypothesis, the late stance peak compressive JRF were also found to be simi-
lar between groups. The magnitudes for compressive loading seen in this study were elevated
slightly over those seen in the literature for stair ascent [17–20], but still within two standard
deviations of previous instrumented studies. TKR patients were found to have an early stance
peak compressive loading of 2.76 ± 0.34 BW and late stance peak of 3.89 ± 0.36 BW compared
to instrumented implant literature which ranged from 2.5 to 3.06 BW [18–20]. Differences in
velocity could explain the discrepancy between the findings reported here and those seen in the
literature. The present study found no differences in the velocity of TKR patients compared to
healthy individuals. However, velocity has been shown in the literature to be reduced in TKR

Table 5. Late stance peak knee extensor and flexor muscle forces for healthy controls and TKR patients during stair climbing (Mean ± SD).

Muscle Group Muscle Force (BW) P-value

Healthy Controls TKR Patients

Knee Extensors Rectus Femoris 0.88 ± 0.19 0.41 ± 0.44 0.061

Vastus Medialis 0.11 ± 0.05 0.86 ± 0.49 0.010

Vastus Intermedius 0.13 ± 0.06 0.08 ± 0.03 0.115

Vastus Lateralis 0.24 ± 0.13 0.09 ± 0.04 0.043

Sum 1.19 ± 0.32 1.32 ± 0.29 0.507

Knee Flexors Semimembranosus 0.42 ± 0.06 0.53 ± 0.14 0.156

Semitendinosus 0.05 ± 0.02 0.05 ± 0.02 0.890

Bicep Femoris Long Head 0.18 ± 0.09 0.15 ± 0.03 0.629

Bicep Femoris Short Head 0.38 ± 0.06 0.47 ± 0.09 0.076

Sartorius 0.04 ± 0.01 0.08 ± 0.02 0.007

Gracilis 0.01 ± 0.004 0.01 ± 0.002 0.737

Medial Gastrocnemius 1.02 ± 0.19 0.32 ± 0.42 0.009

Lateral Gastrocnemius 0.31 ± 0.09 1.06 ± 0.47 0.008

Sum 1.62 ± 0.23 1.89 ± 0.17 0.070

doi:10.1371/journal.pone.0156282.t005
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patients compared to healthy controls [50]. Velocity has not previously been reported in the
instrumented implant research [18–20] making it difficult to know if varying velocities are
present in these studies. Instrumented implant studies are also limited in that they only have
limited number of subjects.

During the push-off (second 50%) of stance, the results showed more variable differences in
individual muscle forces than the loading response phase. While there were some increases and
some reductions in muscle force for knee extensors and flexors neither the sum for flexors or
extensors showed any group differences during the push-off phase. While no differences
existed in peak values it appears a different strategy was utilized by TKR patients to produce
similar levels of muscle forces compared with to healthy controls. It can be seen that the major-
ity of muscle force during the push-off phase is from the rectus femoris in healthy individuals
(Fig 3a). However, TKR patients utilized the vastus medialis more during push-off than healthy

Fig 4. Comparison of mean knee flexor muscle forces during stair ascent for healthy controls and TKR patients. (A) short head of biceps
femoris, (B) sartorius, (C) gracilis, (D) medial gastrocnemius, and (E) lateral gastrocnemius were computed using the computed muscle control (CMC)
tool in OpenSim.

doi:10.1371/journal.pone.0156282.g004
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controls (Fig 3b). Similarly, TKR patients utilized the medial and lateral gastrocnemius differ-
ently than healthy individuals. On the other hand, healthy controls employed the medial gas-
trocnemius more during the second half of stance while TKR patients primarily used the
lateral gastrocnemius more (Fig 4a and 4b). The underlying biomechanical factors causing
these differences remain unclear and the influence they have on JRF. TKR patients may be uti-
lizing the muscles differently as a compensatory strategy for the reduced knee extensor strength
that remains after rehabilitation. It is possible that gait compensation strategies seen in knee
OA patients to relieve pain linger after the TKR rehabilitation is completed. Knee extensor
muscle strength has been shown to be reduced in OA patients [51]. Based on the findings of
this study and others [47–50], the TKR or rehabilitation may have not restored the ability of
TKR patients to produce normal levels of muscle force during stair climbing. Additional differ-
ences may exist at the ankle (not investigated here) resulting in the differences seen during the
push-off phase of stance. It is quite possible that TKR patients utilized the plantarflexors more
to climb stairs instead of the knee extensors. The greater medial gastrocnemius force seen dur-
ing push-off seems to support this strategy. Future research should investigate the differences
between healthy and TKR patients during stair ascent.

Peak shear JRF did not differ between healthy controls (2.82± 0.47 BW) and TKR patients
(2.48 ± 0.50 BW) in the present study. However, shear loading in TKR patients was elevated
above the findings seen in the literature for modeling of a single step-up task which range
between 1.1 and 1.5 BW [33]. The findings of the present study suggest that TKR patients and
healthy controls produce similar anterior shear loading and pattern during stair climbing
(Table 3 and Fig 2). Differences between the present study and studies investigating a step up
task may be due to differences in speed and innate differences between a step-up task and stair
ascent.

Although the generic musculoskeletal model was scaled individually based dimensions of
participants, it does not reflect actual details of musculoskeletal systems of the actual partici-
pants. The use of the same musculoskeletal model for both the healthy and TKR patients is a
limitation which assumes that muscle geometry would be the same following a joint replace. It
should be noted that following replacement the knee is different from a traditional knee, espe-
cially the wrapping point(s) of the quadriceps femoris around the patella, which might have
influenced the magnitude of the moment arm and force of the quadriceps muscle and knee
joint reaction forces. Future research on effects of TKRs on changes in quadriceps muscle
moment arm, its force capacity and knee joint reaction forces is warranted. The validation of a
musculoskeletal model is always an important aspect of modeling. The model of the current
study was validated according to best practices outlines in previous research and contained a
comparison to instrumented data. According to these practices our model is sufficient, but as
always modeling does make assumptions. The same model was utilized for both groups and so
differences to absolute values may be present, but they would be present in both groups and as
such the relative differences in muscle and joint reaction forces would be consistent. Addition-
ally, we only examined effects of muscle forces on joint reaction forces and not their effects on
joint moments, though the overall knee joint moments are presented in both the sagittal and
frontal planes in the current study. Furthermore, healthy older adults were assumed to have no
radiographic knee osteoarthritis.

Conclusions
Evidence from knee extension moment and muscle forces during the loading response phase
indicates reduced muscle force during stair ascent in the knee extensors of TKR patients. This
result combined with greater flexor muscle forces resulted in similar compressive JRF during
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loading response between groups. Some muscle compensatory strategies appear to be present
in the push-off phase. Future research utilizing musculoskeletal modeling and simulation is
necessary to investigate differences in muscle forces dependent on rehabilitation strategies and
differences existing at the ankle. Also, different TKR designs always have a potential impact on
joint loading and muscle contributions. Lastly, comparisons of pre- and post-surgery data
would also provide more insights into understanding if knee joint loading and muscle force
production is improved following joint replacement. Individual subject data can be found in S1
Table.

Supporting Information
S1 Table. Individual subject data.
(XLSX)
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